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INTRODUCTION

Cardiac magnetic resonance (CMR) imaging enables the 
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Objective: T1 mapping provides valuable information regarding cardiomyopathies. Manual drawing is time consuming and 
prone to subjective errors. Therefore, this study aimed to test a DL algorithm for the automated measurement of native T1 
and extracellular volume (ECV) fractions in cardiac magnetic resonance (CMR) imaging with a temporally separated dataset. 
Materials and Methods: CMR images obtained for 95 participants (mean age ± standard deviation, 54.5 ± 15.2 years), 
including 36 left ventricular hypertrophy (12 hypertrophic cardiomyopathy, 12 Fabry disease, and 12 amyloidosis), 32 dilated 
cardiomyopathy, and 27 healthy volunteers, were included. A commercial deep learning (DL) algorithm based on 2D U-net 
(Myomics-T1 software, version 1.0.0) was used for the automated analysis of T1 maps. Four radiologists, as study readers, 
performed manual analysis. The reference standard was the consensus result of the manual analysis by two additional expert 
readers. The segmentation performance of the DL algorithm and the correlation and agreement between the automated 
measurement and the reference standard were assessed. Interobserver agreement among the four radiologists was analyzed.
Results: DL successfully segmented the myocardium in 99.3% of slices in the native T1 map and 89.8% of slices in the post-T1 
map with Dice similarity coefficients of 0.86 ± 0.05 and 0.74 ± 0.17, respectively. Native T1 and ECV showed strong correlation 
and agreement between DL and the reference: for T1, r = 0.967 (95% confidence interval [CI], 0.951–0.978) and bias of 9.5 
msec (95% limits of agreement [LOA], -23.6–42.6 msec); for ECV, r = 0.987 (95% CI, 0.980–0.991) and bias of 0.7% (95% 
LOA, -2.8%–4.2%) on per-subject basis. Agreements between DL and each of the four radiologists were excellent (intraclass 
correlation coefficient [ICC] of 0.98–0.99 for both native T1 and ECV), comparable to the pairwise agreement between the 
radiologists (ICC of 0.97–1.00 and 0.99–1.00 for native T1 and ECV, respectively).
Conclusion: The DL algorithm allowed automated T1 and ECV measurements comparable to those of radiologists.
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comprehensive evaluation of cardiac structure, function, and 
tissue characteristics [1]. Late gadolinium enhancement 
(LGE) is the reference standard for noninvasive imaging 
of myocardial scars or focal fibrosis in ischemic and non-
ischemic cardiomyopathies; however, diffuse myocardial 
fibrosis can remain undetected because LGE imaging shows 
the relative difference between enhancing areas and normal 
nulled myocardium [2-5]. In contrast, T1-mapping provides 
pixel-wise illustrations of absolute T1 relaxation times on 
a map and allows direct T1 quantification; therefore, it can 
detect diffuse myocardial fibrosis that is not assessable 
by LGE [5]. Native T1 values are a composite signal of 
myocytes and extracellular volume (ECV). It is increased 
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in cases of edema, fibrosis, or amyloid deposition, and 
decreased in cases of lipid or iron overload. When a contrast 
agent is used, the ECV fraction can be estimated from the 
ratio of the T1 signal values. It is thought to be a more 
robust measure of myocardial fibrosis than native T1 or 
post-contrast T1 [6]. Both native T1 values and ECV provide 
valuable information for the differential diagnosis and 
prognosis of various cardiomyopathies [5].

The endocardial and epicardial contours of the left 
ventricle (LV) must be manually drawn on maps for mapping 
values. This time-consuming step requires an experienced 
reviewer to achieve reproducible measurements and to avoid 
erroneous inclusion of the blood pool or epicardial fat. In 
addition, manual segmentation is a source of interreader 
variability. Therefore, an automated method for measuring 
mapping values is desirable. Automated measurements of 
native T1 maps have shown good correlation and agreement 
with manual measurement [7-10]. However, previous studies 
have mainly focused on the native T1 value, while ECV has 
rarely been assessed [11].

A recently developed, commercially available deep 
learning (DL) algorithm allows automated segmentation 
of T1 maps and measurement of native T1, post-T1, and 
ECV fractions of the LV myocardium in 16 American Heart 
Association (AHA) segment models.

In this study, we aimed to test the performance of a 
commercial DL algorithm for the automated segmentation 
and measurement of native T1 values and ECV fractions of 
the myocardium in CMR with a temporally separated dataset 

and compare its performance with that of radiologists.

MATERIALS AND METHODS

Study Design and Participants
This retrospective study was approved by the Institutional 

Review Board, and the requirement for informed consent 
was waived (IRB No. 1-2021-0008). 

The medical records of 755 eligible patients aged > 19 
years who underwent CMR in a tertiary care hospital were 
retrospectively reviewed from November 2018 to December 
2019. Among them, patients with both clinical and CMR-
based diagnoses of left ventricular hypertrophy (LVH) 
(hypertrophic cardiomyopathy [HCM], cardiac amyloidosis 
[CA], and Fabry disease [FD]) and dilated cardiomyopathy 
(DCM) were consecutively selected from November 2018. 
This testing cohort was a temporally separated dataset that 
did not overlap with the dataset used for DL development 
and validation. The exclusion criteria were inadequate 
image quality or uncertain diagnosis (n = 9). Data from a 
prospective study was used to establish a group of healthy 
volunteers (HV) [12]. Further details regarding the inclusion 
criteria are described in the Supplementary Materials 
section. Finally, 36 patients with LVH [12 with HCM, 12 
with FD, and 12 with CA], 32 with DCM, and 27 with HV 
were included (Fig. 1).

CMR Acquisition Protocols
CMR imaging was performed using a 3Tesla system 

Left ventricular hypertrophy
(n = 36)

Hypertrophic cardiomyopathy (n = 12)
Fabry disease (n = 12)

Cardiac amyloidosis (n = 12)

Dilated cardiomyopathy
(n = 32)

Healthy volunteers
(n = 27)

Participants from a prospective study

Underwent T1 mapping cardiac magnetic resonance 
from November 2018 to December 2019 (n = 755)

Inadequate image quality or
uncertain diagnosis (n = 9)

Retrospective medical records review

Consecutive selection
from November 2018

Fig. 1. Study flowchart. From 755 patients who underwent cardiac magnetic resonance imaging patients with left ventricular hypertrophy 
and dilated cardiomyopathy were consecutively selected. The exclusion criteria were inadequate image quality or uncertain diagnosis. Healthy 
volunteers were included from a prospective study. Finally, 36 patients with left ventricular hypertrophy, 32 patients with dilated cardiomyopathy, 
and 27 healthy volunteers were included.



1253

Automated Measurement of T1 and ECV Using Deep Learning

https://doi.org/10.3348/kjr.2022.0496kjronline.org

(Siemens 3T Prismafit). Three short-axis modified look-
locker inversion-recovery (MOLLI) images at the basal, mid-
ventricular, and apical slices were acquired for native T1 
mapping using an 8 image, 11 heart-beat 5-(3)-3 bSSFP 
sequence with a slice thickness of 8 mm. Next, a total 
dose of 0.1 mmol/kg gadolinium agent (Uniray, gadoterate 
meglumine, Dongkook Pharmaceutical Co., Ltd.) was 
injected. Ten minutes after contrast injection, post-contrast 
MOLLI T1 mapping was performed for T1 determination 
at three slices at an identical location as that for native 
T1 mapping, using a 9 image, 11 heart-beat 4-(1)-3-(1)-
2 bSSFP sequence. Motion correction was applied to the 
native T1 and post-contrast T1 mapping images.

DL Algorithm for the Automated Measurement of T1 
Values and ECV

A DL algorithm based on 2D U-Net (Myomics-T1 software, 
version 1.0.0, Phantomics) was used for automated analysis 
of T1 maps. The details of the DL models are described in 
Supplementary Materials and Figure 2. It automatically 
segmented the LV myocardium on the maps and provided 
values of native T1, post-T1, and ECV fractions in 16 
AHA segments. To include only the myocardial tissue, a 
10% epicardial and endocardial offset was applied. The 
hematocrit level was entered directly by the user.

Reference Standard
The LV myocardium was manually segmented by two 

experienced board-certified cardiac radiologists (with 12 
and 25 years of experience, respectively), and the consensus 
results were used as the reference standard. For manual 
segmentation, the endocardial and epicardial borders of the 
LV were delineated using CVI42 software (Circle CVI). The 

segmentation mask was saved, and T1 times in 16 segments 
were recorded. Epicardial and endocardial offsets of 10% 
were applied. The ECV fraction was calculated using the 
following equation: ECV (%) = (ΔR1m/ΔR1b)·(1–Hct)·100, 
where R1m is R1 in the myocardium, R1b is R1 in the 
blood, Hct is the hematocrit level, and ΔR1 is the change 
in relaxivity. ΔR1 was determined using the following 
equation: ΔR1 = R1post–R1pre, where R1post and R1pre are R1 
values before and after gadolinium chelate administration, 
respectively [13].

Segmentation Performance Evaluation
The segmentation performance was evaluated in 

two ways. First, a cardiac radiologist (with 10 years of 
experience) reviewed the predicted masks and determined 
whether segmentation was successful or suboptimal. Image 
segmentation was considered suboptimal if a myocardium 
with a valid shape was not produced or if areas other than 
the LV myocardium were included. Second, we used the 
Dice similarity coefficient (DSC) to measure the degree of 
overlap between automated segmentation and the reference 
standard [14].

Reader Study
A reader study was performed with four radiologist 

readers, including two radiology residents (R1 and R2 [non-
authors] with 3 and 4 years of experience, respectively) 
and two board-certified cardiac radiologists (R3 and R4 
with 6 and 10 years of experience, respectively). They 
independently segmented the LV myocardium of 95 subjects 
using the CVI42 software (Circle CVI). They were blinded to 
the reference standards or results of other readers. T1 times 
in the 16 AHA segments were recorded, and the ECV fraction 

Fig. 2. Illustration of the fully automated myocardium analysis. The DL architecture, 2D U-Net, used for myocardium segmentation is 
shown in the left image. Developed DL models segment the myocardium in native T1 and post-T1 maps. Based on DL segmentation results, RVIPs 
and reference axes are generated for AHA 16 segments analysis. In the middle image, automatically defined myocardium contours and color-coded 
reference lines are shown. T1 maps and ECV fractions are converted to the AHA 16 segments model. Automated measurements are summarized 
in the form of a bull’s eye map as shown in the right image. AHA = American Heart Association, DL = deep learning, ECV = extracellular volume, 
RVIP = right ventricular insertion point 
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was calculated as described above.

Statistical Analysis
Segmentation accuracy of the DL algorithm in terms of 

DSC was compared among patients with left ventricular 
hypertrophy, dilated cardiomyopathy, and HV using the 
Kruskal–Wallis test and post-hoc tests with Bonferroni 
correction. Correlations between the automated and 
reference values were assessed using scatter plots with 
regression slopes and Pearson’s correlation coefficients. 
Agreements between automated and reference values were 
evaluated using Bland–Altman analyses. Interobserver 
agreement in the reader study was assessed using the 
intraclass correlation coefficient (ICC) with a two-way 
random model under absolute agreement. Statistical 
analyses were performed using the R software (version 
4.0.5. (R Foundation for Statistical Computing). Statistical 
significance was set at p < 0.05.

RESULTS

Baseline Characteristics
Table 1 presents the baseline characteristics of the study 

participants. The HVs were the youngest among the three 
groups (47.7 vs. 56.3–57.9 years, p = 0.019). The height, 
body mass index, body surface area, and hematocrit were 
not significantly different between the groups. Patients 
with DCM had the highest body weight, but the difference 
was clinically insignificant (mean, 68.8 vs. 61.9–62.4 kg, 
p = 0.043).

Segmentation Performance of DL Algorithm
The computation time for segmenting each map was less 

than 5 seconds (mean 1.4 seconds, range 0.6–4.6 seconds 
in the native T1 map; mean 0.6 seconds, range 0.6–1.1 
seconds in the post-T1 map). DL successfully segmented 
the myocardium in the native T1 map in 99.3% (283/285) 
of the slices in 97.9% (93/95) of patients. Suboptimal 
segmentations were noted in one patient with CA (basal 
slice) and one patient with DCM (apical slice). In the 
post-T1 map, DL successfully segmented the myocardium 
in 89.8% (256/285) of the slices in 87.4% (83/95) of 
subjects. Suboptimal segmentations were present in 9 
of 12 patients with CA (all slices in 8 patients, mid and 
apical slices in 1 patient), 1 patient with FD (apical slice), 
1 patient with DCM (apical slice), and 1 patient with HV 
(apical slice).

The DSC was 0.86 ± 0.05 in the native T1 map and 0.74 ± 
0.17 in the post-T1 map (Table 2, Supplementary Fig. 1). 
The DSC on the native T1 map was significantly different 
among the three groups (mean 0.88, 0.85, and 0.85 for 
LVH, DCM, and HV, respectively; p < 0.001). In post-hoc 
analysis, DSC was higher in the LVH group than in the DCM 
or HV groups (adjusted p = 0.001 for both). The DSC on the 
post-T1 map was not significantly different among the three 
groups (mean 0.68, 0.76, and 0.80 for LVH, DCM, and HV, 
respectively; p = 0.134). In the LVH group, the mean DSC 
on the post-T1 map was 0.81, 0.84, and 0.40 in HCM, FD, 
and CA, respectively. If the results of patients with CA were 
excluded from the analysis, DSC on the post-T1 map was 
0.79 ± 0.08 in the total population (n = 83) and 0.83 ± 0.05 

Table 1. Baseline Characteristics of Study Participants

Parameter
All Subjects

(n = 95)
Left Ventricular Hypertrophy

(n = 36)
Dilated Cardiomyopathy

(n = 32)
Healthy Volunteers

(n = 27)
P*

Sex 0.507
Female 48 (50.5) 16 (44.4) 16 (50) 16 (59.3)
Male 47 (49.5) 20 (55.6) 16 (50) 11 (40.7)

Age, years 54.5 ± 15.2 57.9 ± 12.9 56.3 ± 15.8 47.7 ± 15.7 0.019
Height, cm 164.6 ± 8.6 163.2 ± 6.9 166.5 ± 10.6 164.2 ± 7.9 0.286
Weight, kg 64.4 ± 12.2 62.4 ± 9.0 68.8 ± 15.3 61.9 ± 10.7 0.043
BMI, kg/m2 23.7 ± 3.6 23.4 ± 3.2 24.7 ± 4.4 22.8 ± 2.6 0.106
BSA, m2 1.7 ± 0.2 1.7 ± 0.1 1.8 ± 0.2 1.7 ± 0.2 0.060
Hematocrit, % 39.8 ± 5.3 38.5 ± 6.0 40.4 ± 5.2 40.9 ± 4.1 0.154
LVEDVi, mL/m2 100.4 ± 44.1 79.6 ± 22.7 150.5 ± 35.3 68.7 ± 11.3 < 0.001
LVESVi, mL/m2 58.6 ± 46.2 32.0 ± 14.4 115.5 ± 33.8 26.8 ± 6.1 < 0.001
LVEF, % 48.1 ± 19.5 59.9 ± 11.7 23.9 ± 7.7 61.2 ± 5.4 < 0.001

Data are mean ± standard deviation or number (%). *Comparison among three groups. BMI = body mass index, BSA = body surface area, 
LVEDVi = left ventricular end-diastolic volume index, LVEF = left ventricular ejection fraction, LVESVi = left ventricular end-systolic volume 
index
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in the LVH group (n = 24).

Correlation and Agreement between Automated and 
Reference Values

There was a strong correlation between the automated 
and reference native T1 values per subject (r = 0.967 [95% 
confidence interval {CI} 0.951–0.978], slope = 0.9338), 
per-slice (r = 0.980 [95% CI 0.975–0.984], slope = 0.9957), 
and per-segment analyses (r = 0.951 [95% CI 0.946–0.956]; 

slope = 0.9648) (Fig. 3, top row).
The automated and reference native T1 values were in 

good agreement in per-subject (bias 9.5 msec, 95% limits 
of agreement [LoA] -23.6–42.6 msec), per-slice (bias 
10.6 msec, 95% LoA -32.8–53.9 msec), and per-segment 
analyses (bias 9.6 msec, 95% LoA -61.4–80.6 msec) (Fig. 3, 
bottom row).

Automated ECV was strongly correlated with the 
reference ECV per subject (r = 0.987 [95% CI 0.980–0.991], 
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Fig. 3. Scatter plots and Bland-Altman plots of automated and reference native T1 values. Automated T1 showed strong correlation 
with reference T1 in per-subject (r = 0.967 [95% CI 0.951–0.978], slope = 0.934), per-slice (r = 0.980 [95% CI 0.975–0.984], slope = 0.996), 
and per-segment analyses (r = 0.951 [95% CI 0.946–0.956], slope = 0.965). Automated and reference T1 values were in good agreement in per-
subject (bias 9.5 msec, 95% LoA -23.6–42.6 msec), per-slice (bias 10.6 msec, 95% LoA -32.8–53.9 msec), and per-segment analyses (bias 9.6 
msec, 95% LoA -61.4–80.6 msec). CI = confidence interval, LoA = limits of agreement

Table 2. Segmentation Performances of the Deep Learning Algorithm on Native T1 and Post-T1 Maps
Group DSC on Native T1 Map DSC on Post-T1 Map

All subjects (n = 95) 0.86 ± 0.05 0.74 ± 0.17
Left ventricular hypertrophy (n = 36) 0.88 ± 0.05 0.68 ± 0.25

Hypertrophic cardiomyopathy (n = 12) 0.89 ± 0.02 0.81 ± 0.05
Fabry disease (n = 12) 0.87 ± 0.08 0.84 ± 0.04
Cardiac amyloidosis (n = 12) 0.87 ± 0.04 0.40 ± 0.24

Dilated cardiomyopathy (n = 32) 0.85 ± 0.05 0.76 ± 0.10
Healthy volunteers (n = 27) 0.85 ± 0.03 0.80 ± 0.07

p value* < 0.001 0.134
Adjusted p value† 0.001 NA
Adjusted p value‡ 0.001 NA

Data are mean ± standard deviation. *Comparison among left ventricular hypertrophy, dilated cardiomyopathy, and healthy volunteers, 
†Comparison between left ventricular hypertrophy and dilated cardiomyopathy, ‡Comparison between left ventricular hypertrophy and 
healthy volunteers. DSC = Dice similarity coefficient, NA = not applicable
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slope = 0.943), per-slice (r = 0.968 [95% CI 0.960–0.975], 
slope = 0.943), and per-segment analyses (r = 0.956 [95% 
CI 0.951–0.960], slope = 0.935) (Fig. 4, top row).

The automated and reference ECV were in good 
agreement in per-subject (bias 0.7%, 95% LoA -2.8%–
4.2%), per-slice (bias 0.9%, 95% LoA -4.4%–6.2%), and 
per-segment analyses (bias 0.7%, 95% LoA -5.7%–7.2%) 
(Fig. 4, bottom row).

Interobserver Agreement and Agreement between the 
Automated Measurement and Radiologist Readers

Regarding the native T1 value, pairwise agreement 
between radiologists was excellent (ICC range, 0.97–1.00) 
(Table 3), and the ICC among the four readers was 0.99. The 
agreement between the automated measurement and each 
radiologist was excellent, with an ICC range 0.98–0.99.

Regarding ECV, the pairwise agreement between 
radiologists was excellent (ICC range, 0.99–1.00), and 
the ICC among the four readers was 0.99. The agreement 
between the DL and each radiologist was excellent, with an 
ICC range 0.98–0.99. 

Supplementary Table 1 shows the inter-observer 
agreement among the three groups. In the LVH group, 

agreement was excellent in all pairwise comparisons (ICC 
0.99–1.00). In the DCM and HV groups, the agreement 
between DL and each radiologist was good to excellent for 
native T1 (ICC 0.83–0.95) and ECV (ICC 0.78–0.97), while 
the pairwise agreement between radiologists was moderate 
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Fig. 4. Scatter plots and Bland-Altman plots of automated and reference ECV. Automated ECV showed strong correlation with reference 
ECV in per-subject (r = 0.987 [95% CI 0.980–0.991], slope = 0.943), per-slice (r = 0.968 [95% CI 0.960–0.975], slope = 0.943), and per-segment 
analyses (r = 0.956 [95% CI 0.951–0.960], slope = 0.935). Automated and reference ECV were in good agreement in per-subject (bias 0.7%, 95% 
LoA -2.8%–4.2%), per-slice (bias 0.9%, 95% LoA -4.4%–6.2%), and per-segment analyses (bias 0.7%, 95% LoA -5.7%–7.2%). CI = confidence 
interval, ECV = extracellular volume, LoA = limits of agreement

Table 3. Interobserver Agreement and Agreement between the 
Automated and Manually Measured Native T1 and ECV Fraction

Comparison
ICC (95% Confidence Interval)*
Native T1 ECV

Reader 1–reader 2 0.98 (0.78–1.00) 0.99 (0.86–1.00)
Reader 1–reader 3 0.97 (0.59–0.99) 0.99 (0.88–1.00)
Reader 1–reader 4 1.00 (0.97–1.00) 1.00 (1.00–1.00)
Reader 2–reader 3 1.00 (0.97–1.00) 1.00 (1.00–1.00)
Reader 2–reader 4 1.00 (1.00–1.00) 1.00 (0.99–1.00)
Reader 3–reader 4 0.99 (0.97–1.00) 1.00 (0.99–1.00)
Among four readers 0.99 (0.96–0.99) 0.99 (0.99–1.00)
Automatic–reader 1 0.98 (0.95–0.99) 0.99 (0.98–0.99)
Automatic–reader 2 0.99 (0.98–0.99) 0.98 (0.97–0.99)
Automatic–reader 3 0.98 (0.95–0.99) 0.99 (0.97–0.99)
Automatic–reader 4 0.99 (0.98–0.99) 0.99 (0.98–0.99)
Automatic–average 
  of four readers

0.99 (0.99–0.99) 0.99 (0.98–0.99)

*Based on per-subject basis. ECV = extracellular volume, ICC = 
intraclass correlation coefficient
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to excellent for native T1 (ICC 0.61–0.99) and ECV (ICC 
0.66–0.99).

DISCUSSION

In this study, we aimed to test a DL algorithm for the 
automated measurement of myocardial native T1 values 
and ECV fractions in CMR with a temporally separated 
dataset. The algorithm achieved fast segmentation (< 5 
sec/image) and successfully segmented the myocardium 
in 99.3% of slices in the native T1 map and 89.8% of 
slices in the post-T1 map with high DSC (0.86 ± 0.05 and 
0.74 ± 0.17, respectively). Native T1 and ECV from the 
automated method and the reference standard were highly 
correlated with good agreement. Further, DL achieved very 
good agreement with the radiologists, similar to the inter-
radiologist agreement.

Automatic segmentation based on DL reduces the 
workload of radiologists, minimizes user bias, and enables 
large-scale study. Although extensive research has been 
conducted on the automated segmentation of cine images 
[15-17], information on the automated analysis of T1 
mapping CMR is lacking [7-11,18]. In 2018, Huang et al. 
[18] proposed an automated regional analysis of native T1 
values in the LV. However, only ten healthy individuals were 
included in this study. Prior studies have mainly focused 
on the native T1 map [7,8,10,18], while only a few studies 
have investigated the post-T1 map [9] or ECV [11]. The 
performance of DL has been evaluated in a heterogeneous 
population [7,8,11] or in patients with known myocardial 
fibrosis who have LGE [9]. In addition, most studies did 
not include a per-segment analysis [7-10,18], which may 
be critical for analyzing focal myocardial disease. Most 
importantly, these studies are still in the research stage 
and have not yet been used widely in clinical practice. We 
comprehensively evaluated automated native T1 and ECV 
measurements in LVH, DCM, and HV on a per-subject, per-
slice, and per-segment basis using a commercially available 
DL algorithm with experts’ measurements as reference.

DL successfully segmented the myocardium in most 
slices (99.3%) in the native T1 map. This success rate 
was higher than that reported in previous studies on the 
automated segmentation of native T1 maps (84.3%–91.3%) 
[7,8]. In the post-T1 map, DL successfully segmented 
the myocardium in 89.9% of slices. The most suboptimal 
segmentation occurred in patients with CA or apical slices. 
The DSC on the native T1 map in our study (0.86 ± 0.05) 

was similar to the previously reported values of automated 
measurement (range, 0.81–0.85) [7-9]. On the post-T1 map, 
the mean DSC was 0.74 ± 0.17, similar to the value reported 
in a previous study that included patients with ischemic 
cardiomyopathy, DCM, and HCM (range, 0.74–0.77) [9]. If 
patients with CA were excluded from our analysis, a higher 
DSC (0.79 ± 0.08) was obtained.

Our results suggest that automated segmentation is 
challenging in the apical slices and post-T1 maps of 
patients with CA. Difficulty in automated segmentation 
of the apical myocardium has also been reported in a 
previous study [7]. This is probably because the apical slice 
is more susceptible to partial volume effects [19], which 
requires cautious segmentation. Using a cross-reference 
with a long-axis image could be helpful in this regard. If 
the location of the apical slice identified in the long-axis 
image is inappropriate, or there is a high possibility that a 
partial volume effect will occur, the slice may be excluded 
from the analysis. Additionally, if the T1 map is obtained 
from four or more slices, appropriate slices can be selected 
from the long-axis image. Myocardial segmentation on the 
post-T1 map can be more challenging than on the native 
T1 map, mainly because of the low contrast between the 
myocardium and the blood pool. Furthermore, in cases 
of amyloid deposition or myocardial fibrosis, gadolinium 
accumulates in the expanded extracellular space, resulting 
in shortening of the T1 inversion time [20,21]. This further 
complicates segmentation of the post-T1 map. In fact, the 
DSC on the post-T1 map was the lowest in the LVH group 
among the three groups, most likely because of the low DSC 
in patients with CA. Therefore, the automated segmentation 
of the post-T1 map has limitations in patients with CA, and 
a re-check of the segmentation is necessary in such cases. 

Automated measurements of T1 values and ECV fractions 
revealed a strong correlation and good agreement with the 
reference standard. However, some cases showed significant 
differences between the two methods. While previous 
studies excluded cases with unsuccessful segmentation for 
correlation or reproducibility analysis [7,8,11], we analyzed 
all cases, including cases with suboptimal segmentation. 
This resulted in some outliers in the Bland–Altman plots.

Automated measurements of native T1 and ECV also 
achieved excellent agreement with the radiologists in 
pairwise comparisons, showing rates similar to the inter-
radiologist agreement. In addition, it consistently achieved 
good-to-excellent agreement with the radiologists’ values 
in the subgroup analysis of all three groups. Our results 
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suggest that this DL algorithm may reach the radiologist’s 
level of agreement for measuring mapping values. Therefore, 
it may reduce the workload of radiologists in clinical 
practice and can be beneficial for research that requires 
analyzing a large amount of data with reduced reader 
dependency.

Our study had several limitations. First, this was a 
retrospective study that tested a commercial algorithm. 
Second, all images were acquired using a single MR 
scanner at 3T. Further studies are required to evaluate the 
performance of images acquired at different field strengths 
and from different machines. Third, this study included only 
cases without significant artifacts, and the performance 
of this DL algorithm may differ for patients with severe 
artifacts. Finally, because this DL algorithm does not 
have an automated quality control process, an inadequate 
segmentation can be missed. However, an overall good 
correlation and agreement with the reference were achieved, 
and agreements between the DL and each radiologist 
were comparable to the inter-radiologist agreements. A 
quick review of automatically drawn regions of interest is 
desirable in clinical practice, and modifications may be 
needed in some cases, especially in patients with suspected 
CA. Nevertheless, the overall burden of work can be reduced 
compared with manual processing.

In conclusion, automated T1 and ECV measurements 
using the commercial DL algorithm showed good correlation 
and agreement with the reference standard and radiologist 
readers.

Supplement
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