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Integrating transcriptomics and
network analysis-based
multiplexed drug repurposing to
screen drug candidates for M2
macrophage-associated
castration-resistant prostate
cancer bone metastases

Jinyuan Chang †, Zhenglong Jiang †, Tianyu Ma, Jie Li,
Jiayang Chen, Peizhi Ye and Li Feng*

National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese
Academy of Medical Sciences and Peking Union Medical College, Beijing, China
Metastatic castration-resistant prostate cancer (CRPC) has long been

considered to be associated with patient mortality. Among metastatic organs,

bone is the most common metastatic site, with more than 90% of advanced

patients developing bone metastases (BMs) before 24 months of death.

Although patients were recommended to use bone-targeted drugs

represented by bisphosphonates to treat BMs of CRPC, there was no

significant improvement in patient survival. In addition, the use of

immunotherapy and androgen deprivation therapy is limited due to the

immunosuppressed state and resistance to antiandrogen agents in patients

with bone metastases. Therefore, it is still essential to develop a safe and

effective therapeutic schedule for CRPC patients with BMs. To this end, we

propose a multiplex drug repurposing scheme targeting differences in patient

immune cell composition. The identified drug candidates were ranked from the

perspective of M2 macrophages by integrating transcriptome and network-

based analysis. Meanwhile, computational chemistry and clinical trials were

used to generate a comprehensive drug candidate list for the BMs of CRPC by

drug redundancy structure filtering. In addition to docetaxel, which has been

approved for clinical trials, the list includes norethindrone, testosterone,

menthol and foretinib. This study provides a new scheme for BMs of CRPC

from the perspective of M2 macrophages. It is undeniable that this multiplex
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drug repurposing scheme specifically for immune cell-related bone

metastases can be used for drug screening of any immune-related disease,

helping clinicians find promising therapeutic schedules more quickly, and

providing reference information for drug R&D and clinical trials.
KEYWORDS

drug repurposing, castration-resistant prostate cancer, bone metastases, network
pharmacology, M2 macrophage
Introduction

It is undeniable that prostate cancer has become the second

leading cause of death in men (1). Prostate cancer is

characterized by hormone responsiveness, and androgen

deprivation therapy can make tumor regression in prostate

cancer patients (2). However, most patients progress to

castration-resistant prostate cancer (CRPC) after a period of

castration therapy, and 85% of patients with prostate cancer

develop bone metastases (BMs) and are resistant to

immunotherapy (3–5). To date, bone metastases remain an

incurable form of prostate cancer with a significant impact on

disease-specific morbidity and mortality (5), and represent a

major challenge for advanced fatal prostate cancer.

Tumor-associated macrophages (TAMs) in the

microenvironment have been proven to account for more than

50% of the tumor mass and are key drivers of tumor progression,

metastasis and therapeutic resistance. M1-like TAMs with

antitumor effects and M2-like TAMs with protumor effects

coexist within the microenvironment, and the opposing effects

of these M1/M2 subsets on tumors directly affect current strategies

for antitumor immunotherapy. In addition, macrophages exhibit

dynamic plasticity in the tumor microenvironment and can

transform from an antitumor M1-like phenotype to an M2-like

phenotype during certain specific immune responses, thus

exerting a tumor-supporting influence (6). Studies have shown

that macrophage infiltration is associated with poor prognosis in

non-small cell lung cancer, hepatocellular carcinoma, pancreatic

ductal adenocarcinoma (PDAC), glioblastoma, and bladder

cancer (7). Stimulated by colony-stimulating factor, it increases

the risk of BMs of lung cancer and breast cancer (8). In addition,

osteoclasts formed by their differentiation are involved in bone

remodeling, repair and homeostasis regulation, and are

considered to be one of the driving factors of tumor BMs.

Inhibiting or depleting macrophage infiltration in the bone

microenvironment can effectively prevent BMs. Although CRPC

patients with BMs also have features of immunosuppression,

differences in macrophage phenotypes have rarely been reported

in such patients, and it is unclear whether macrophages in the

bone microenvironment are associated with the BMs of CRPC.
02
In terms of therapeutic drugs, the currently approved bone-

targeted drugs, monoclonal antibodies (denosumab), and

radiopharmaceuticals provide some benefits, effectively

reducing bone pain and pathological fractures in patients with

BMs of prostate cancer, and improving the overall quality of life

in these patients (9, 10). However, a large proportion of patients

still experience skeletal-related events (SREs) during treatment,

and safety and tolerability issues often need to be considered.

Adverse effects, represented by nephrotoxicity and severe

hypocalcemia, usually limit the long-term use of drugs for

BMs (11). In addition, immunotherapy, which plays a role in

most solid tumors, showed dissatisfactory efficacy in patients

with BMs, suggesting a state of immunosuppression in these

patients (5). Therefore, the scientific community needs to

identify, test and approve new therapeutic compounds

targeting the specific relatively immunosuppressive bone

microenvironment of patients with BMs to improve the

symptoms of BMs in CRPC patients, overcome adverse drug

reactions, and prolong patient survival.

However, drug research and development (R&D) is usually

an energy-intensive, low-yield process. Therefore, prioritization

of promising therapeutic drugs based on preclinical evaluation

of pharmacoinformatics and repurposing of existing drugs are

often worthwhile and necessary (12, 13). With the accumulation

of available data, a variety of preclinical drug R&Dmethods have

been proposed to assist researchers in making informed

decisions. Computational chemistry-based ligand-receptor

binding conformational modeling has been widely used in

pharmacodynamics and pharmacokinetics studies, and has

played a crucial role in understanding and identifying drug-

target interactions (14–16), providing a method for

micromechanics analysis in the complex stable system formed

by small molecules and targets (17–19). For example, the study

of the interaction between anthocyanins and human serum

albumin transferrin complexes using spectral, calorimetric,

stopped flow and molecular modeling approaches provides a

new perspective for elucidating the cyclic distribution of

anthocyanins (20). Here, by integrating transcriptomic and

drug susceptibility data, and based on network analysis, a

multiplex drug repurposing scheme was used to investigate
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and comprehensively evaluate the immune infiltration

landscape, differentially expressed genes (DEGs) mediating

immune infiltration-related BMs, and promising candidate

drugs in CRPC patients with BMs. To provide usable

information for drug R&D and repurposing targeting DEGs of

M2 macrophage-related BMs.
Methods

Patients and datasets

The microarray datasets GSE32269 (including 22 tumor

samples and 29 BM samples) and GSE77930 (including 22 tumor

samples and 20 BM samples) with clinical information were

downloaded from Gene Expression Omnibus (GEO) (https://

www.ncbi.nlm.nih.gov/gds) (21), and used as the discovery set

and validation set, respectively. Specifically, the GEOquerry (22)

package of R was used to download data, the hgu133a.db package of

R was used to convert gene probe ID into gene symbol, and the

Normalized between Arrays function in the limma (23) package of

R was used for data normalization.
DEGs analysis and functional
enrichment analysis

Genes with differential expression between the BM group

and the primary group in the GSE32269 and GSE77930 cohorts

were analyzed using the R package limma. And adjusted p< 0.05,

and |log2FoldChange| > 1 were used as filter conditions.

Functional enrichment analysis was performed using the R

package clusterProfiler, and Gene Ontology (GO) and Kyoto

Encyclopedia of Genes (KEGG) terms with adj p<0.05 were

considered significant.
Transcriptome-based assessment
of immune infiltration

The immune score, stromal score and tumor purity were

calculated for each tumor sample in the primary and BM groups,

using the ESTIMATE algorithm. Based on the ssGSEA method,

the tumor immune microenvironment signatures of primary

and BMs were inferred using a manually curated gene expression

signature of 29 immune microenvironment functional genes by

Alexander Bagaev et al. (24). The content of infiltrated immune

cells in the tumor microenvironment of the primary and BM

groups was calculated using the EPIC and Timer methods

encapsulated by the R package IOBR and the CIBERSORT

method provided online (25–27). The EPIC and Timer

methods were executed with default parameters. For the

CIBERSORT method, gene expression profiles prepared from
Frontiers in Immunology 03
standard annotation files were uploaded to the CIBERSORTx

web portal (https://cibersortx.stanford.edu/) and run using the

LM22 gene signature file and 1,000 permutations. To ensure the

accuracy of the results, only samples with a CIBERSORT p

value< 0.05 were retained for further analysis, and immune cells

whose content was 0 in more than half of the samples were

excluded. Immune cells with statistical significance and similar

infiltration patterns in more than two algorithms were

considered reliable.
Evaluation of DEGs and pathways in M2
macrophage-associated BMs

A random forest classifier was constructed using the

randomForest package to identify the genes most associated

with the BM phenotype of CRPC, ranking in importance

according to the mean decrease accuracy value (28). Then, 5

times of ten-fold cross-validation were performed, and the

number of important genes was selected according to the

cross-validation curve. Permutation tests were performed on

important genes using the rfPermute package, and significance

information for each gene was obtained. Gene set enrichment

analysis (GSEA) was performed with the R package Pi to explore

the upregulation of pathways in the BMs group of CRPC (29).

Specifically, the HALLMARK gene set was downloaded for

quantification of pathway activity. The GSEA algorithm was

run with 10,000 permutations using the gene list sorted by

Log2FC as input, followed by the Benjamini-Hochberg method

to control for FDR. Pathways with gene peaks greater than 30

and FDRs less than 0.05 were considered significantly enriched.

Between each method, protein-protein interactions (PPI) based

on the STRING database were used to screen for DEGs

associated with M2 macrophages in BMs (30).
Transcriptome-based multiplex
drug repurposing

The obtained prostate cancer BMs differential genes were

input into the Connectivity Map (31), L1000CDS2 (32) and

L1000FWD (33) tools, respectively. Since the output of

L1000CDS2 was limited to 50 drugs, the same cutoff was

chosen for other databases, and the databases were sorted

according to their reverse enrichment scores (inhibition

scores). The drug scores from three different datasets were

calculated with reference to the method proposed by the

researcher Marios Tomazou to normalize the ranking of drugs

using the weighting of the average ranking and the number of

occurrences, which were used as input for the prior score of

CoDReS. In this study, the weights of each part of CoDReS are

defined as waS=0.45, wFS=0.45, and wStS=0.1 (34, 35).
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Transcriptome-based repurposed drug structures were

searched and downloaded, entered into the ChemBioServer 2.0

tool, used to calculate distance matrices for chemical and

structural similarity, and clustered the drugs using the Ward

method with a minimum Tanimoto similarity of 80% (36). The

drug with the highest ranking according to the CoDReS

normalized score in each cluster was selected to eliminate

redundant structures in the drug list.
Transcriptome-based drug
sensitivity analysis

The R package oncoPredict was used to assess the sensitivity

of CRPC patients with BMs to chemotherapeutic drugs (37). The

package was based on a ridge regression model that used

expression data and drug response data from cancer cell lines

to train the model to predict drug sensitivity from a patient’s

gene expression data. Drug response data for human cancer cell

lines were obtained from Genomics of Drug Sensitivity in

Cancer (GDSC1&2, https://www.cancerrxgene.org/), and

expression data for GDSC1&2 cancer cell lines were obtained

from the GDSC1000 resource (https://www.cancerrxgene.org/

gdsc1000/). Drugs with NA values in more than 20% of cell lines

were discarded. The k-nearest neighbors (KNN) method was

used to estimate the remaining missing values.
Network-based natural
compound screening

In the HERB database, the cell or tissue type was set to be

derived from prostate cancer to screen the natural compounds,

and the obtained compounds were used as the keyword input in

the “Differentially expressed genes” module to obtain the

potential action target of the compound (38). Cytoscape 3.7.2

was used to construct a natural compound-prostate cancer BMs

network, calculating the criticality of natural compounds in the

network according to the formula (1), and normalizing the

ranking of key natural compounds within the unit interval (–

1, 1) by dividing by the absolute maximum score. Key

compounds were classified by structure, and extensive virtual

screening of compounds in the same category was performed in

the MedChemExpress library. ADMETLAB 2.0 was used to

comprehensively evaluate the pharmacophysicochemical

properties and pharmacokinetics of candidate compounds in

the natural compound database, and molecules with reasonable

conformations and low toxicities were considered as promising

inhibitors (39).

ScoreBMi =
DegreeBMreversei − DegreeBMmimici

NSi∩SBM �max ScoreBMj j
Frontiers in Immunology 04
ScoreM2i =
DegreeM2reversei − DegreeM2mimici

NSi∩SGSEA �max ScoreBMj j

i = 1, :::, N Drugs

DRi = wBM � ScoreBMi + wM2 � ScoreM2i (1)

Degreereverse indicates that natural compounds regulate

transcription in the reverse direction (with antagonistic effects)

to BMs differential genes. Degreemimic indicates that natural

compounds regulate transcription in the same direction (with

synergistic effects) as BMs differential genes. Si represents the

gene set related to natural compounds. SGSEA represents the gene

set generated by GSEA. In this study, wBM=0.3 and wM2 =0.7

were set respectively.
Molecular docking and virtual screening

The 3D structure of the compound was downloaded, and if

only 2D structures were available, chem3D was used to draw the

3D structure and optimize the force field. The structural

information of key targets was retrieved and predicted through

the PDB database and AlphaFold Protein Structure Database,

respectively. The most potential ligand binding sites were found

based on the cocrystals, protein cavities and literature reports.

The Arg-Gly-Asp (RGD) structure of SPP1 was the main site

where it is bound by receptors and mediates signaling. The RGD

polypeptide structure of SPP1 was obtained from a cocrystal of

1L5G (PDBID) (40).

The protein and compound structures were imported into

AutoDock software. The compound was set to be flexible and the

center coordinates were set according to the ligand binding site.

The Lamarckian genetic algorithm was used to evaluate the

binding ability between the ligand and the protein (41).
Allosteric sites of SPP1 receptor proteins
based on D3pocket and DCC (dynamic
cross-correlation matrices) analysis

The SPP1 receptor structure downloaded from PDB was

used as input to the D3pocket and R package Bio3D tools (42,

43). The orthosteric and allosteric sites were represented using

PyMOL in light blue and red, respectively. DCC was used to

analyze the trajectory after Gromacs dynamics simulation.
Molecular dynamics

Gromacs was used for 10 ns molecular dynamics simulations

of the candidate compounds and to perform an ensemble

equilibration of temperature and pressure at 310 K and 1 Bar,
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followed by positional confinement of proteins and small

molecules, respectively (44, 45). The last frame structure after

simulation equilibrium was used as the input of the allotype to

predict the potential function of candidate compounds (46).
Comparison with ongoing clinical trials

Clinical studies related to castration-resistant prostate

cancer bone metastases were obtained from ClinicalTrials.gov.

Using “Prostate Cancer”, “Castration resistant”, and “Bone

Metastasis” as keywords, the structures of small molecule

drugs and drugs reported for clinical research were obtained

from PubChem. All candidate compounds were further used as

input to Chembioserver 2.0.
Result

Transcriptome-based DEGs analysis

To detect the dispersion between samples, PCA was

conducted on the included microarray data. As shown in

Figures 1A, S1D, samples can be clearly divided into two

categories, indicating that the samples have good intragroup

consistency and intergroup heterogeneity. By analyzing the

differences in transcriptome expression between the two

groups of patients, in the discovery set, a total of 229 genes

with significant differences were finally obtained, of which 89

were upregulated and 140 were downregulated (Figure 1B). The

biological process of differential genes was mainly enriched in

the formation of extracellular matrix and extracellular structure,

which was positively correlated with the maintenance of

extracellular structure, and was involved in the signal

transduction of integrin binding, cell adhesion and

extracellular matrix receptor interaction pathway (Figure 1C).

Immune infiltration was further used to analyze the

mechanism of BMs from the perspective of immune cell

composition. The results showed that compared with the

primary samples, the microenvironment of BMs contained

more immune cells and stromal cells, and the tumor purity

was relatively low (Figure 1D). Further analysis of immune cell

composition revealed that based on the SSGSEA tool, a total of

11 significant changes in immune infiltration components were

obtained. Among them, immune cells represented by

macrophages and tumor-associated fibroblasts were

significantly increased in BMs, while antitumor cytokines and

MHC-I were significantly reduced (Figures 1E, F). Based on the

EPIC and TIMER tools, four and two different abundances of

infiltrating immune cells were obtained, respectively. Among

them, the abundance of CD8+ T cells, macrophages and tumor-

associated fibroblasts in BMs were significantly higher than that

in the primary focus (Figures 1E, S1A, B). Based on the
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CIBERSORT tool, a total of 2 different types of immune cells

were obtained, including activated NK cells elevated in the

primary focus and M0 macrophages elevated in BMs.

Meanwhile, in the discovery set, M2 macrophages, resting NK

cells, and T regulatory cells were also enriched in BMs (Figure

S1C). Interestingly, the validation set and the discovery set were

highly consistent in the immune cell infiltration results,

suggesting a certain degree of reliability and reproducibility of

the above results (Figures S1F-H). The results of immune

infiltration showed that BMs were enriched in macrophages

and deficient in CD8+ T cells, and the results were mutually

validated by more than two approaches in both the discovery set

and the validation set. Due to the important role of macrophages

in bone homeostasis, this study focused on the further

exploration of their involvement in BMs from the perspective

of macrophages.

The DEGs obtained by the TIMER and EPIC methods were

correlated with macrophage phenotypes. As shown in Figure 2A,

under the condition that the correlation is greater than 0.3 and is

significant, 141 and 1466 macrophage-related DEGs were

obtained in the discovery set and the validation set,

respectively, of which a panel of 42 DEGs was simultaneously

proven to be related to macrophage phenotype by two methods

in the two datasets. The random forest method was further used

to identify the genes with the ability to distinguish BMs in this

collection. When the threshold was set to 5 (Figure 2B), the

genes represented by COL11A1 were obtained, and the set

constituted by them had the maximum discrimination

ability (Figure 2C).

Generally, macrophages are divided into two subtypes, M1

and M2, with different biological functions. It is necessary to

explore which subtypes are enriched in BMs. Although the

content of M2 macrophages did not show differences in the

validation set, the content of M2 macrophages in BMs showed

an upward trend (Figure S1H), while it was significantly

increased in the discovery set. Therefore, based on the

WGCNA method, this study further explored the DEGs

associated with M2 macrophages in the discovery set.

Simultaneously, the correlation between each gene module and

the abundance of macrophages obtained using the EPIC and

TIMER methods was calculated based on the Pearson

correlation coefficient. Finally, 699 genes related to

macrophages (338 based on the EPIC method and 361 based

on the TIMER method) and 147 genes related to M2

macrophage were extracted (Figures S2, S3). To further

confirm the M2 macrophage-related genes, this study used the

macrophage-related genes derived from the EPIC and TIMER

methods as a universal set, including but not limited to the M0,

M1 and M2 macrophage subtypes, and further intersected them

with the related genes of M2 macrophages obtained by

CIBERSORT analysis. A total of 104 genes with the potential

to regulate M2 macrophages were identified based on WGCNA

of the three immune infiltration algorithms (Figure 2D),
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FIGURE 1

Analysis of DEGs and immune infiltration in CRPC with BMs. (A) Sample principal component analysis. (B) Analysis of DEGs in BMs. (C) DEGs of
BMs enrichment analysis. (D) Immune, stromal, and tumor purity scores in patients between the primary focus and BMs. (E) Immune infiltration
analysis. (F) Twenty-nine immune cell characteristics in patients with BMs. *P<0.05; **P<0.01; ****P<0.0001. ns, not significant.
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FIGURE 2

Identification of genes characteristic of M2 macrophage-associated BMs. (A) Macrophage-related DEGs. (B, C) Key gene identification based on
random forest. ***P<0.001. ns, not significant. (D) Analysis of M2 macrophage-related DEGs based on WGCNA. (E) PPI between DEGs of BMs
and M2 macrophage-related genes. (F) GSEA of SPP1 and COL11A1 proteins. (G, H) PPI analysis between proteins in enrichment pathways and
key proteins. (I) GSEA of kernel targets. (J, K) Cancer ecotype analysis and cellular distribution of ligands and receptors.
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suggesting that these genes play a crucial role in regulating the

phenotype of M2 macrophages in CRPC.

To further explore the relevant genes that can predict BMs

and participate in direct or indirect regulation of the M2

macrophage phenotype, 104 M2-related genes, 10 M2

macrophage markers (http://xteam.xbio.top/CellMarker/), and

5 macrophage-related genes with the ability to differentiate bone

metastasis were used for PPI analysis, and the results showed

that SPP1 and COL11A1 were considered to be the key DEGs

with both the ability to differentiate between BMs and to regulate

M2-macrophages (Figure 2E).

GSEA was further used to analyze genes related to SPP1 and

COL11A1, and 22 pathways closely related to the BMs of CRPC

were screened (Figure 2F). The enriched DEGs in the pathway

were 93 and 92, with the ability to regulate BMs, related to SPP1

and COL11A1, respectively (Figure 2G). Interestingly, both had

identical PPI networks under the set threshold, and the obtained

set of 16 genes played a more central role in M2 macrophage-

mediated BMs (Figure 2H), which were used as kernel inputs for

subsequent drug repurposing studies. Functionally, it was

mainly enriched in the pathways of epithelial-mesenchymal

transition and angiogenesis (Figure 2I).

The results of cancer ecotype analysis showed that there

were significant differences in the ecological composition.

Compared with the primary focus, patients with BMs

accounted for more CE1 and CE4, but less CE8, and had

specific CE3 subtypes and lacked CE6 and CE9 subtypes. The

16 kernel genes represented by SPP1 and COL11A1 were mainly

distributed in two ecological subtypes, CE1 rich in macrophages

and CE3 rich in fibroblasts and epithelial cells (Figure 2J).

Proteins represented by integrin, CD44 and S1PR1 distributed

in fibroblasts, epithelial cells and dendritic cells were considered

to be receptors for kernel genes (Figure 2K).
Drug sensitivity analysis

Hundreds of cancer cell line gene expression data and drug

response data from GDSC1&2 were used to train a ridge

regression model to infer the susceptibility of patients in

primary focus versus BMs to different drugs. Since cancer cell

lines in the blood system have different gene expression

signatures from most other cancer cell lines (Figure 3A), they

were excluded to ensure the reliability of the predicted results.

Drugs with IC50 values less than 10 mM and repeated in

GDSC1&2 were considered as potential drugs for the

treatment of prostate cancer BMs. The results showed that

GDSC1&2 included 138 and 51 BMs-sensitive drugs that met

the screening conditions, respectively, of which 19 co-occurring

drugs were repeatedly verified by two databases to have anti-

CRPC and BMs potential (Figure 3B).

Further IC50 studies of the drugs showed that compared

with primary focus, navitoclax was more sensitive to BMs (7.65
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mM) and the efficacy was consistent in the GDSC1&2 databases

(P<0.05). Patients were more sensitive to drugs represented by

docetaxel (mean IC50 of 0.00857 mM and 0.0114 mM in patients

with primary focus and BMs, respectively) and sepantronium

bromide (mean IC50 of 0.0129 mM and 0.0155 mM,

respectively) (Figure 3C).
Transcriptome-based multiplex
drug repurposing

The transcriptome-based drug collection was sorted and

normalized, and a total of 102 structurally-specific drugs with

the potential to negatively regulate DEGs in the BMs of CRPC

were obtained (Table S1). Hierarchical clustering analysis

revealed that the input drugs spanned a broad diversity of

chemical structures. Specifically, 38 clusters were obtained, of

which 31 contained more than one drug (Figure 3D). By

calculating the normalized CoDReS scores of the drugs, a total

of 38 drugs represented by taxifolin were finally obtained.

Combined with GDSC, 19 drugs with potential sensitivity to

BMs were used as positive controls for the subsequent natural

compound screening.
Screening of natural compounds based
on network topology

According to the screening conditions, 10 natural

compounds with potential regulation of prostate cancer were

obtained. According to the constructed network, among the

obtained natural compounds, testosterone had the most

intersecting genes with a total of 134, followed by Withaferin

A and Celastrol (Figure 3E). To standardize and normalize the

number and regulation direction of DEGs contained in natural

compounds, the obtained natural compounds were further

calculated according to formula (1) in this study. Menthol,

testosterone, luteolin and celastrol had higher scores and

potential therapeutic effects on the BMs of prostate cancer

(Table S2). Figure 3F also showed that more of the 16 kernel

targets obtained by GSEA fall into regions with therapeutic

potential. Although Withaferin A had more intersecting genes,

it was excluded from subsequent studies due to its undesirable

logFC value in GSEA-related targets.

To further clarify the role of natural compounds in

macrophage-related BMs, the four natural compounds

obtained in formula (1) were subjected to enrichment analysis,

and a potential pathway map was drawn. As shown in Figure 3G,

all four could regulate the expression of collagen or SPP1,

thereby exerting regulatory effects on the invasion and

metastasis of prostate cancer cells. Meanwhile, menthol,

testosterone and luteolin could also regulate the differentiation

of osteoclasts, participating in the regulation of bone remodeling
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FIGURE 3

Integrating transcriptomes and network-based drug repurposing. (A) Cellular gene expression signature. (B) Sensitive drugs with co-occurrence
in GDSC1&2. (C) IC50 of drugs in primary focus and BMs. (D) Structure-based drug cluster analysis. (E) Network pharmacology of natural
compounds. (F) Topology-based candidate natural compounds. (G) Pathway patterns of candidate natural compounds. (H) Rational structure
compounds in the MedChemExpress database.
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and resorption balance. CTSK protein, as one of the specific

markers of osteoclasts, testosterone and luteolin have

diametrically opposite regulatory directions. As an androgen,

testosterone can inhibit bone resorption, enhancing bone

strength, which is the same as the potential function of

androgen. Luteolin can inhibit the secretion of TNFSF10 from

macrophages, regulating the formation of the pre-

metastatic microenvironment.

Based on the assumption of structural similarity and

functional similarity, 380 terpenoids, 124 steroids and 881

polyphenols in MedChemExpress were included for further

investigation. ADMETLAB 2.0 was used to evaluate the

structural plausibility of the included natural compounds.

Among them, polyphenols, terpenoids and steroids had a total

of 236, 33 and 3 candidate compounds that met the criteria,

respectively (Figure 3H).
Mulberroside C and terrestrosin D have
higher affinity

Molecular docking was performed on the candidate natural

compounds, and the positive drugs obtained in the above

process were used as controls (Figure 4A and Table S3). Two

compounds were obtained (Figure 4B), CID 190453

(mulberroside C) and CID 78177919 (terrestrosin D), both of

which had a higher affinity to the targets than the average value

of the positive control. Determining the binding mechanism

depends on fundamental thermodynamic parameters, such as

binding free energy, which can be calculated from hydrogen

bonds formed between ligands and proteins, electrostatic forces,

van der Waals forces, and hydrophobic interactions (47, 48). To

further quantify the binding ability of the ligand to the protein,

this study further predicted the binding constant by AutoDock

(Table 1), suggesting that the binding constants of mulberroside

C and terrestrosin D to the receptors of SPP1 were both at the

nanomolar level, showing good spontaneous binding ability.

Figure 4C showed that both have good safety profiles, among

which mulberroside C has relatively excellent oral absorption

and drug metabolism. Although terrestrosin D has poor oral

absorption, which is the same as steroid drugs, it has the better

plasma protein binding (PPB) and distribution ability,

suggesting that mulberroside C can be administered orally,

and terrestrosin D can be administered intravenously

or intramuscularly.

Both of them can not only bind to CD44, ITGAV/ITGB3

and S1PR1 receptors through hydrophobic forces, but also form

hydrogen bonds to improve the binding stability (Figures 4D,

S4). In addition, the compounds occupied the residue site of

SPP1 interacting with these three receptors, which affected the

normal function of the signaling pathway.
Frontiers in Immunology 10
Stability and activity analysis of
mulberroside C and terrestrosin D based
on dynamics and allotype tools

Dynamics simulations of CD44, ITGAV/ITGB3 and S1PR1

were performed using Gromacs, and the equilibrated trajectory

files were used as input to D3Pocket and bio3D (Figure 4E).

Previous studies showed that hyaluronate binds to the far N-

terminal domain of CD44 (the red pocket) and does not affect

the OPN-CD44 interaction (Figure 4F). Throughout the

trajectory, the dynamic correlation of residue sites where the

red pocket was located showed a negative correlation with

residues within the blue pocket (Figure 4G). Here, blue and

red pockets were used to bind SPP1 and natural compounds,

respectively. Similarly, as shown in Figures S5A–D, the red

pocket residues of ITGAV/ITGB3 and S1PR1 exhibited a

dynamic correlation with the residues in the blue pocket and

were further investigated as allosteric and orthosteric

sites, respectively.

Molecular dynamics studies of small molecules and

receptors showed that in 10 ns simulations, both SPP1 and

candidate compounds reached equilibrium, fluctuating root

mean square deviation (RMSD) values over time compared to

the position of the CD44 receptor pocket, fluctuating between

0.015 and 0.656 nm, with similar volatility (Figure 4H).

Compared with the CD44 receptor, the RMSD fluctuation of

candidate compound binding to the ITGAV/ITGB3 receptor

was more stable. However, mulberroside C did not stably bind to

the allosteric pocket of S1PR1 (Figures S5E, F).

In addition, after binding of mulberroside C and terrestrosin

D, the fluctuation of residues had different peaks than those of

SPP1 (Figures S5G–I). Taking CD44 as an example, compared

with the binding of SPP1, the flexibility of receptor residues 40-

60 was higher after binding to the candidate compound, and

reached the peak around residues 111 and 165, while these

residues showed lower flexibility when binding to SPP1.

Similarly, after binding SPP1, CD44 was significantly more

volatile at residue 95 than the allosteric site-binding candidate

compound (Figure 4I). This may be related to the ligands

occupying the receptor pocket, which affected the flexibility of

the residue by forming an interaction force, thereby affecting the

movement of the residue at the orthosteric site by binding to the

allosteric site, and then hindering the function of proteins.

The rigidness of the compound in the system can be

addressed through the inspection of the radius of gyration

(Rg) value. As shown in Figures 4J, S5J, K, after the candidate

compounds bound to CD44, the Rg remained at approximately

0.546 ± 0.023 nm and 0.771 ± 0.029 nm, and the SPP1 fluctuates

around 0.572 ± 0.032 nm. Among them, the Rg of terrestrosin D

was significantly larger than that of mulberroside C and SPP1,

which may be related to its complex structure.
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FIGURE 4

Stability evaluation of candidate compounds. (A) Docking simulation of candidate compounds. (B) Chemical formulas of CID 190453 and CID
78177919. (C) Evaluation of pharmacophysicochemical properties based on ADMETLAB2.0. (D) The docking pattern of CID 190453 with CD44.
(E) Molecular dynamics simulation of SPP1 receptors. (F) Allosteric (red pocket) and orthosteric sites (blue pocket) of CD44. (G) DCC analysis of
CD44. (H-J). RMSD, RMSF and Rg analysis of candidate compounds after binding to the SPP1 receptor.
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The last frame after 10 ns simulation was used as the input

file of the allotype tool to predict the function after the receptor

binds to the allosteric pocket. The results show that the DDG
values of the candidate compounds are all negative (Table 2),

suggesting that the function of the candidate compounds is to

inhibit the binding of the protein to SPP1, thereby inhibiting

the pathway.
Evaluation of the integrated drug list
with respect to ongoing clinical trials

Cluster analysis was performed on 62 drugs and clinical

trials obtained from multiplex drug repurposing, and a total of

48 clusters were obtained, of which 2 drugs (docetaxel and

sirolimus) were already in clinical trials. Eight structurally

specific drugs (danazol, 3-Cl-AHPC, 5-fluorocytosine,

rilmenidine, BRD-K09191212, SB-225002, PD-0325901, and

obatoclax mesylate) were also obtained. Among them, PD-

0325901 was reported to have BMs sensitivity in the

GDSC database.

In the remaining clusters, structurally similar drugs to

current clinical trials were highlighted (Figure S5L), and the

most promising repurposing drugs that could play a role in the

treatment of BMs of CRPC by interfering with M2 macrophages

were further screened according to the following three

principles: (a) drugs that were similar to phase 3 or 4 clinical

trials and belonged to the same cluster, (b) drugs that have the

ability to regulate the M2 macrophage-associated BMs genes

obtained by modulating GSEA, and (c) drugs that have been

reported in the li terature to have prostate cancer

therapeutic potential.
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The criteria were met by 5 drugs on the list (norethindrone,

testosterone, docetaxel, menthol, and foretinib). Among them,

testosterone and docetaxel have been used in phase 2 and phase

3 clinical trials, respectively. Although experts still have concerns

about the use of testosterone in prostate cancer, there have been

several phase II clinical trials investigating “bipolar androgen

therapy (BAT)” for CRPC (49). The five drugs mentioned above

have the potential to further become clinical drugs for BMs

of CRPC.
Discussion

The median overall survival in metastatic CRPC was only 13

months (50), underscoring the need for treatment.

Immunotherapy has been successfully used in the treatment of

a variety of tumors, however, accumulating evidence suggests

that prostate cancer is a “cold” immune desert with low immune

infiltration, low tumor mutational burden, and low antigen

presentation. Therefore, prostate cancer does not respond as

strongly to a single immune checkpoint inhibitor treatment as it

does for immune “hot” tumors represented by non-small cell

lung cancer, which leads to limited response to immunotherapy

and suggests the immunosuppressive state of patients with BMs

(51). Due to the dynamic balance between “osteoblasts” and

“osteoclasts” inherent in bone, bone has a relatively unique

immune microenvironment. Studies have shown that in the

tissue samples of patients with osteolytic metastasis of prostate

cancer, an increase in immune infiltration represented by

macrophages and T cells was observed. Compared with

osteolytic metastasis, the content of macrophages in osteogenic

bone metastasis was significantly reduced. In addition, the
TABLE 1 Binding energies and binding constants of mulberroside C and terrestrosin D to the receptors of SPP1.

Target name Compound name Binding energy Ki [Temperature = 298.15 K] (nM)

CD44 CID 190453 -8.5 589.94

CID 78177919 -8.4 698.31

ITGAV/ITGB3 CID 190453 -8.8 355.72

CID 78177919 -8.6 498.40

S1PR1 CID 190453 -10.3 28.35

CID 78177919 -9 253.88
TABLE 2 Calculated DDG Values for candidate compounds after binding to the SPP1 receptors using AlloType.

Protein PDBID Ligand Predicted allsoteric type DDG (kcal/mol)

CD44 4PZ3 CID 190453 Inhibition 32.5070

CID 78177919 Inhibition 41.7766

ITGAV/ITGB3 1L5G CID 190453 Inhibition 39.1615

CID 78177919 Inhibition 35.5584

S1PR1 3V2Y CID 78177919 Inhibition 11.5344
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immune checkpoint B7-H3 is upregulated in tissue samples

from patients with BMs, suggesting that prostate cancer BMs

have immunogenic characteristics distinct from those of the

primary tumor (52). In particular, immune cells represented by

macrophages not only play an important role in bone

homeostasis, but also participate in the regulation of bone

formation (11). Studies have shown that the number of M2

macrophages and the activity of inflammasomes were positively

correlated with bone tumor burden (10).

The results of this study also showed that BMs of CRPC have

higher immune scores and more macrophages than the primary

focus, but the number of CD8+ T cells (EPIC & TIMER) and

activated NK cells (CIBERSORT) in BMs is lower, with more M2

macrophages, T regulatory cells (CIBERSORT) and tumor

related fibroblasts (ssGSEA & EPIC). Moreover, the abundance

of MHC I-related antigen-presenting molecules (ssGSEA) was

lower than that in the primary focus, which resulted in BMs with

relatively low immunogenicity. Thus, the absence of such

“cytotoxic” cells and the infiltration of “immune response

suppressor” cells makes the microenvironment of CRPC

patients with BMs more closely resemble those of cold

immune tumors. Although BMs have significantly higher

immune scores than primary tumors, immune checkpoint

therapy for patients with BMs has not been successful. This is

related to the unique composition of T cell populations and the

infiltration of immunosuppressive cells in patients with BMs (5,

53). These findings underscore the importance of careful

assessment of immune infiltration in CRPC patients with BMs

to guide drug use.

Simultaneously, a collection of DEGs identified from CRPC

with BMs highlighted in enrichment analysis extracellular

matrix and integrin-related pathways that were strongly

associated with prostate cancer metastasis. Specifically, among

the DEGs, a total of 141 genes were involved in the regulation of

macrophages. Through random forest, WGCNA, GSEA and

PPI, it was finally determined that SPP1 and COL11A1 were

related to M2 macrophages with the ability to predict BMs.

As a highly specific osteolysis biomarker, SPP1 and type I

collagen have been previously shown to be expressed and

secreted by a variety of cancers, and participate in cell

adhesion, bone resorption, cell adhesion, metastasis and other

processes by binding to CD44 and integrin receptors (54–58). As

a major mediator of tumor-associated inflammation, SPP1 has

been proven to be related to enzalutamide resistance by

activating the PI3K/AKT and ERK1/2 signaling pathways in

CRPC, and promoting the invasion and metastasis of CRPC

(59). COL11A1 was shown to be involved in immune-related

pathways and was significantly associated with RFS in patients

(60). In consideration of their important roles in CRPC, both

have been suggested by investigators as alternative prognostic

assessments and new promising immunotherapy targets for

drug development.
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Based on the DEGs of the above two groups of patients,

integrated transcriptomic and network-based analysis combined

with existing clinical trials to screen promising drugs for

repurposing, a total of 5 nonrepetitive drugs were obtained

(norethindrone, testosterone, docetaxel, menthol, and

foretinib), and should receive special attention.

As a progesterone derivative, norethindrone inhibits 5a-
reductase, a key protease that converts testosterone to

dihydrotestosterone, has been proven to reduce bone mineral

loss in male castrated mice, and has been used in the treatment

of hormone-refractory prostate cancer (61). Here, this study

highlights its bone-protective effect through the M2

macrophages, which can be further used in the prevention and

treatment of CRPC bone metastases.

Different from progesterone, testosterone, as an important

androgen, has a role in promoting the occurrence and growth of

prostate cancer. Although studies have shown that testosterone

levels correlate with disease progression, and that androgen

deprivation therapy can lead to prostate cancer tumor

regression (2), patients inevitably enter a castration-resistant

stage, where castration-resistant therapy is no longer effective.

Studies have shown that in prostate cancer, the Gleason score is

negatively correlated with testosterone dependence, and highly

aggressive prostate cancer does not depend on testosterone.

Artificial supplementation with exogenous testosterone can

inhibit the further progression of such highly aggressive

prostate cancer, thereby reducing prostate cancer invasion risk

(62, 63). Several clinical trials have been conducted using BAT

for CRPC. Considering the important role of testosterone in

bone health, if exogenous testosterone supplementation is no

longer a contraindication for CRPC, we have reason to believe

that the application of testosterone will be a promising treatment

for BMs of CRPC.

Docetaxel, a drug that has been clinically approved for

CRPC treatment, has been shown to prolong the survival of

prostate cancer patients with more than 4 BMs (64). It also

shows that the drugs obtained based on integrated

transcriptomic and network-based analysis have certain

robustness and reproducibility.

As a multiple receptor tyrosine kinase inhibitor, foretinib

exhibited potent inhibition of c-MET, vascular endothelial

growth factor receptor 2 (KDR) and FLT4, and showed

antitumor and antiangiogenic activities. High expression of c-

MET was found in 83% of prostate cancer BMs, and inhibitors

targeting this protein have been used in clinical trials at various

stages (65).

As a terpenoid, menthol can bind to TRPM8 and has been

approved for the treatment of bronchitis and rhinitis. TRPM8, as

a member of the transient potential receptor family, has been

shown to be highly expressed in androgen-sensitive cancer cells,

is a potential prognostic marker for metastatic CRPC, and is also

considered a promising druggability target for the treatment of
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prostate cancer (66). Although prostate cancer cells depend on

the Ca2+ infiltration of TRPM8 for invasion and metastasis, non-

physiological activation of TRPM8 by menthol inhibits the

proliferation and motility of CRPC (67, 68). Screening potent

specific agonists for activating TRPM8 channels will be one of

the strategies for future drug R&D.

Natural compounds are considered a treasure trove of drug

discovery, with an estimated 25-38% of innovative FDA-

approved chemical drugs derived from phytochemicals or their

derivatives (69). Network-based and integration of existing

natural compound transcriptome sequencing results of

prostate cancer cells. Two of the four potential drug

candidates (Menthol and Testosterone) were included in the

final candidate list, showing the referential role of network

pharmacology in drug R&D. Through further analysis of the

natural compound database, two potential compounds were

finally obtained, namely, mulberroside C and terrestrosin D.

Both have greater affinities for receptor proteins than the average

positive drugs in the virtual screening. In addition, in the follow-

up molecular dynamics, except that mulberroside C and S1PR1

failed to bind stably, they all showed good stability in the 10

ns simulation.

Allostery is a phenomenon in proteins where functional

changes in the active site result from distant perturbations (such

as ligand binding and mutation). In general, allosteric can be

analyzed as a thermodynamic energy cycle, and it is usually

necessary to predict the allosteric ability of drugs before R&D. In

2021, Professor Lai’s research group from Peking University

proposed a tool called allotype to predict the direction of

allosteric regulation based on the force distribution in the binding

site, which is used to calculate the allosteric coupling strength DDG
(46). The results of Allotype also showed that both have the ability

to inhibit the binding of SPP1 to the receptor, thereby inhibiting the

activation of downstream pathways. In terms of inhibitory ability,

compared with terrestrosin D, which has a greater inhibitory

ability against CD44, mulberroside C has a stronger inhibitory

ability against ITGAV/ITGB3. Among the three receptors, the

inhibitory ability of CD44 and ITGAV/ITGB3 was stronger, but

that of S1PR1 was weaker. However, this study wasmainly based on

theoretical calculations, and the binding energy of the drugs were

not measured experimentally, which may result in a discrepancy

between the two. The main reasons for the difference may be as

follows (70): (a) the sampling strategies and scoring criteria for

Lamarck genetic algorithms and grid calculations used in the

molecular docking process limit the increase in accuracy. (b) The

molecular weight of the ligand is too large or contains multiple

polar groups, which participate in the formation of various

electrostatic interactions. (c) Insufficient sampling of ligand

parameters such as spatial position, orientation, distance and
Frontiers in Immunology 14
conformation resulted in the failure to fully consider the effect of

the internal energy contained in the candidate compounds on the

binding energy during the docking process. Despite the problem of

false positives or false negatives during virtual screening, hit quality

improves with the number of compounds screened (71). A total of

1686 compounds were included in this study, and 328 small

molecules were evaluated by molecular docking simulation. The

ligand pose after binding of protein was dynamically evaluated by

molecular docking and molecular dynamics. It is possible to

eliminate false positives or false negatives for binding energies

caused by incorrect ligand posture. Although they were not

included in the list of the most promising repurposed drugs

through the final screening conditions, there were also

experimental studies showing that terrestrosin D has the effect of

inhibiting the growth of prostate cancer and anti-angiogenesis (72).

Drug repurposing is used to rapidly identify and develop

therapeutics for unmet needs. However, the plasma

concentrations of many newly discovered compounds are lower

than the required drug concentrations, limiting their direct clinical

use (73). Combinations in tumor therapy, originally proposed to

overcome drug resistance and provide new treatment options

(74), have been used as a way to increase the success rate of drug

repurposing. Two drugs that exhibit synergistic effects in clinical

treatment allow the drug to achieve the same level of efficacy as a

high-dose single drug at a lower dose, thereby reducing the dose of

one drug and improving clinical safety. Tumor pathogenesis

usually involves pathological features characterized by

redundancy and versatility, limiting the clinical efficacy of

single-target drugs. However, drug combination therapy often

results in complex pharmacodynamic or pharmacokinetic

interactions, or both, due to individual differences and other

factors, which makes it difficult to describe the effectiveness and

side effects of combined drugs, and may bring additional health

issues (75). The evaluation of drug absorption, distribution,

metabolism, excretion and toxicity characteristics is of great

significance for predicting drug interactions. Most antitumor

drugs need to undergo extensive liver metabolism, such as drugs

metabolized by microsomal cytochrome P-450. When other drugs

used in combination inhibit the activity of these enzymes, it is easy

to cause drug interactions in vivo and affect drug efficacy. In this

study, through the multiplex drug repurposing method, among

the five candidate compounds obtained, docetaxel combined with

abiraterone was used for the first-line treatment of metastatic

CRPC, with a lower rate of serious adverse events (76). Although

the phase II clinical study of foretinib showed that all patients

included experienced at least one adverse event (77), its

combination with PD-1 has been shown to be applicable in the

treatment of colorectal cancer (78), suggesting the value of

candidate compounds in combined medication.
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Naturally, this work still has certain limitations. At present,

only two transcriptome dataset has been included for DEGs

analysis, and were used as the discovery set and validation set.

The results may have potential bias, which still needs the support

and proof of a quantity of transcriptome data in the future. In

addition, the transcriptome sequencing results of natural

compounds against prostate cancer cells are limited. Although

this study simulated the natural compound database with

molecular docking and dynamics, the real situation may still

differ from the simulation. Finally, we used a multiplex-drug

repurposing approach integrating transcriptomes and network-

based approaches to generate a drug candidate list. Although

these drugs have demonstrated clinical or experimental

antitumor effects, for bone metastases, the primary site of

treatment is equally important, which requires consideration

of the toxic and adverse reactions of combined pharmacotherapy

in clinical use, and evaluation of drug safety. Here, the research

based on the method of pharmacoinformatics provides new

insights for the repurposing of drugs that are already in the

experiment, exploring the new indications of drugs from the

perspective of synthesis and prediction, and provides a new

scheme for the treatment for BMs of CRPC.
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