
ONCOLOGY LETTERS  28:  539,  2024

Abstract. Delineating the clinical target volume (CTV) 
and organs at risk (OARs) is crucial in rectal cancer radio‑
therapy. However, the accuracy of manual delineation (MD) 
is variable and the process is time consuming. Automatic 
delineation (AD) may be a solution to produce quicker and 
more accurate contours. In the present study, a convolutional 
neural network (CNN)‑based AD tool was clinically evalu‑
ated to analyze its accuracy and efficiency in rectal cancer. 
CT images were collected from 148 supine patients in whom 
tumor stage and type of surgery were not differentiated. The 
rectal cancer contours consisted of CTV and OARs, where 
the OARs included the bladder, left and right femoral head, 
left and right kidney, spinal cord and bowel bag. The MD 
contours reviewed and modified together by a senior radiation 
oncologist committee were set as the reference values. The 
Dice similarity coefficient (DSC), Jaccard coefficient (JAC) 
and Hausdorff distance (HD) were used to evaluate the AD 
accuracy. The correlation between CT slice number and AD 
accuracy was analyzed, and the AD accuracy for different 
contour numbers was compared. The time recorded in the 
present study included the MD time, AD time for different 
CT slice and contour numbers and the editing time for AD 
contours. The Pearson correlation coefficient, paired‑sample 
t‑test and unpaired‑sample t‑test were used for statistical anal‑
yses. The results of the present study indicated that the DSC, 
JAC and HD for CTV using AD were 0.80±0.06, 0.67±0.08 
and 6.96±2.45 mm, respectively. Among the OARs, the 
highest DSC and JAC using AD were found for the right and 
left kidney, with 0.91±0.06 and 0.93±0.04, and 0.84±0.09 and 
0.88±0.07, respectively, and HD was lowest for the spinal cord 
with 2.26±0.82 mm. The lowest accuracy was found for the 

bowel bag. The more CT slice numbers, the higher the accu‑
racy of the spinal cord analysis. However, the contour number 
had no effect on AD accuracy. To obtain qualified contours, the 
AD time plus editing time was 662.97±195.57 sec, while the 
MD time was 3294.29±824.70 sec. In conclusion, the results of 
the present study indicate that AD can significantly improve 
efficiency and a higher number of CT slices and contours 
can reduce AD efficiency. The AD tool provides acceptable 
CTV and OARs for rectal cancer and improves efficiency for 
delineation.

Introduction

Rectal cancer is a severe malignancy that endangers the lives 
of patients, which has an incidence rate ranking third in the 
world and fifth in China (1,2). Radiotherapy is recognized as 
an essential method in the treatment of rectal cancer (3). It 
has been demonstrated that the accuracy of the determined 
clinical target volume (CTV) and organs at risk (OARs) 
when treating patients is closely related to tumor control and 
radiation toxicity (4‑6), even beyond the impact of inadequate 
planning and relative significant positioning errors (7,8). The 
specific process of manual delineation (MD) is composed 
of the contouring by a junior physician and the review and 
revision by a senior physician in the same group. Therefore, 
manual contours can vary markedly due to the differences 
in the knowledge level and clinical experience among physi‑
cians and the anatomical structure among patients (9‑13). 
Meanwhile, it is time‑consuming to perform MD for pelvic 
CTV and OARs, which fills a large proportion of the prepara‑
tion process before radiotherapy (9,14).

With the development of computer technology, automatic 
delineation (AD) of CTV and OARs for rectal cancer has 
been increasingly applied in clinical practice (15‑17). The AD 
tool was developed with the aid of specific software that was 
trained based on a large sample and can complete the AD of 
contours for patients in a very short time (18). Meanwhile, the 
accuracy of AD is increasing (19), and it is independent of the 
body size, shape and age of patients (20). Among various AD 
tools, convolutional neural network (CNN)‑based tools have 
been increasingly applied in clinical practice owing to their 
higher accuracy, and these CNN‑based tools have significantly 
improved working efficiency while ensuring acceptable 
automatic contours (21‑24). Liu et al (25) evaluated a deep 
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neural network‑based tool for automatic prostate segmentation 
based on a large cohort of patient images. The authors made 
comparisons between AD and MD using the Dice similarity 
coefficient (DSC), Hausdorff distances (HD) and center of 
mass distances (CMD) and found that the mean DSC and HD 
were >0.85 and >7.0, respectively, and the mean CMD was 
within 5 mm. Based on these results, it was concluded that 
the AD tool used achieved a high level of accuracy in the 
contours of the prostate gland compared with the consensus 
contours, thus exhibiting a promising application prospect. 
Liu et al (26) introduced a CNN‑based segmentation model 
that could provide accurate AD in much less time compared 
with manual contours. The authors also confirmed that the 
bladder, bone marrow, left femoral head, right femoral head, 
rectum, small intestine and spinal cord in 105 patients with 
cervical cancer were delineated by the model. Compared 
with the corresponding manual contours set as the reference 
values, the mean DSC was 0.924, 0.854, 0.906, 0.900, 0.791, 
0.833 and 0.827 for the bladder, bone marrow, femoral head 
left, femoral head right, rectum, small intestine and spinal 
cord, respectively; the mean HD was 5.098, 1.993, 1.390, 
1.435, 5.949, 5.281 and 3.269 for the aforementioned OARs, 
respectively. The results corroborated that the AD contours 
were highly acceptable in clinical practice. To et al (27) and 
Breto et al (28) implemented the CNN‑based AD on MR 
images for prostate and cervical regions, respectively, which 
achieved desirable contours. Bi et al (29) revealed that the tool 
resulted in a 35% decrease in time spent in the comparison 
between AD and MD (median, 9.59 vs. 14.81 min; P<0.001). 
Men et al (20) suggested that the test time for the CNN‑based 
AD of the CTV, bladder, left and right femoral heads, colon 
and intestine in rectal cancer was 45 sec per patient.

The focus of most existing studies is placed on different 
CNN‑based tools used in prostate and cervical cancer (25‑28). 
Furthermore, the existing studies on AD in rectal cancer either 
addressed one type of patient [such as Sha et al (30) studied 
preoperative radiotherapy patients and Song et al (15) analyzed 
postoperative patients] or they do not discuss the efficiency of 
AD (31). For patients with rectal cancer that did not require 
assessment for tumor staging or surgery type, the accuracy 
and efficiency of CNN‑based AD for CTV and OARs are 
rarely analyzed. Therefore, the present study was conducted 
to identify whether the commercial CNN‑based tool could 
automatically delineate both CTV and OARs in rectal cancer 
with high accuracy and efficiency.

Materials and methods

Patient cohort. The planning CT images of 148 patients who 
were diagnosed with rectal cancer without the distinguish‑
ment between tumor stages and surgery were collected from 
March, 2021 to June, 2024. The present study was approved 
by the Ethics Committee of The Second Affiliated Hospital 
of Zhengzhou University (Zhengzhou, China; approval 
no. 20210302). Written informed consent was obtained from 
the patients for the use of their anonymized data in the present 
study. All methods were implemented following relevant 
guidelines and regulations. The inclusion criteria were as 
follows: i) Preoperative and postoperative patients with rectal 
cancer; ii) patients who underwent pelvic CT for rectal cancer 

radiotherapy; iii) patients who received the examination in 
a supine position; iv) planning CT with or without intrave‑
nous contrast; and v) patients who urinated and then drank 
500 ml water 30 min before the CT scan. Patients who had a 
radiotherapy history and received the examination in a prone 
position were excluded from the present study. The purpose 
of radiotherapy in the 105 preoperative patients was to reduce 
the tumor stage and thus remove the lesions more completely 
upon surgery; therefore, the radiotherapy administered was 
not aggressive. The purpose of radiotherapy in the 43 postop‑
erative patients was to irradiate subclinical lesions to reduce 
the postoperative recurrence rate; therefore, the radiotherapy 
administered was also not aggressive in this instance. Of the 
43 postoperative patients, anastomotic fistula occurred in 
4 patients, bleeding occurred in 3, bowel obstruction occurred 
in 2, urinary retention occurred in 3 and no other postoperative 
complications were recorded. All patients were immobilized 
using a radiotherapy‑specific thermoplastic mold. A summary 
of the patient characteristics is shown in Table I.

The planning CT process was divided into 2 days. The first 
day involved individualized customization of the thermoplastic 
mold, which was left in place for 24 h to ensure fixation and 
repeatability throughout the radiotherapy period. CT images 
were acquired on the second day. All patients were scanned 
using a Philips Brilliance Big Bore CT (Philips Healthcare). 
The scan parameters were as follows: i) Scanned slice thick‑
ness, 5 mm; ii) tube voltage, 120 kV; and iii) reconstructed 
with a 512x512 voxel matrix. The field of view was adapted to 
the size of the patient.

CNN architectures. The CNN architecture used was designed 
based on the modified U‑Net and termed ‘RT‑Mind’ (version 
1.1; MedMind Technology Co., Ltd.) (http://www.medicalmind.
cn/). The manufacturer's description of the tool is as follows: 
In the basic U‑Net, to learn features from part to whole, 
the encoder aggregated semantic information by reducing 
spatial information. Semantic information was received by 
the decoder. Therefore, the feature extraction ability of the 
encoder was very important. However, the simple convolution 
layer of U‑Net experienced difficulty in learning complicated 
features efficiently. Therefore, the entire U‑net encoder was 
replaced by the dual path network (DPN) architecture. A 
large number of advanced abstract features and parameters 
were encoded into the input image by the DPN. The core of 
the DPN was the micro‑block, which combined the advan‑
tages of both the Residual block and the Dense block into a 
dual‑path architecture. Since the Residual block enabled the 
reuse of features, while the Dense block enabled the explora‑
tion of new features, this combination markedly improved the 
representation learning ability. To achieve an improved feature 
extraction capability, the whole DPN92 architecture (32) was 
used in the U‑net encoder. The micro‑block was embedded 
in the decoder to replace the standard convolution operation, 
thus enabling the decoder to obtain the same performance in 
recovering abstract features.

A CT slice can be considered a grey‑scale image with only 
one channel. This results in a 2D model that incorporates each 
CT slice independently. The model used in the present study 
was designed as a 2.5D architecture by assigning three adja‑
cent slices to three channels, to obtain the 3D information from 
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the CT images. The output was the center slice delineation. 
The output block can also be modified so that a multi‑class 
segmentation result can be output. The modified U‑Net was 
a combination of the ResNet block and the DenseNet block, 
thus obtaining the ability to focus on a larger receptive field of 
the image and to extract more high‑level semantic features for 
ambiguous boundary segmentation.

The learning, validation and test procedures were previ‑
ously completed by the tool manufacturer at Peking Union 
Medical College Hospital (Beijing, China) (33,34). Therefore, 
only the accuracy and efficiency of its clinical use were 
assessed in the present study. Fig. 1 shows the main compo‑
nents of the CNN architecture.

Contour delineation. Planning CT images were imported into 
the CNN‑based tool for AD. According to the delineation 
guidelines of Valentini et al (35) and the Radiation Therapy 
Oncology Group (36), the manual contours for all patients 
were re‑delineated by a junior physician and then reviewed and 
modified together by three oncologists with >10 years collec‑
tive experience in radiotherapy for pelvic tumors; these contour 
were set as the reference values. More specifically, in terms of 
the CTV: i) The high‑risk areas of the primary tumor included 
the tumor or tumor bed, the rectal mesenteric and presacral 
areas and the target area of low to medium rectal cancer, which 
included the rectal sciatic fossa; and ii) the regional lymphatic 
drainage area included the lymphatic drainage area of the 
common iliac vessels in the true pelvis, the rectal mesenteric 
area, the lymphatic drainage area of the internal iliac vessels 

and the closed lymph node area. The MD OARs included the 
skin, bladder, left femoral head, right femoral head, left kidney, 
right kidney, spinal cord and bowel bag. The skin was consid‑
ered the external contour of all CT images. The delineation 
range for the bladder was defined inferiorly from its base and 
superiorly to the dome. The delineation range for the left and 
right femoral heads was defined as the proximal femur inferi‑
orly from the lowest level of the ischial tuberosities (right or 
left) and superiorly to the top of the ball of the femur, including 
the trochanters. The kidney was represented by the kidney 
parenchyma. The bony inner edge of the spinal canal was 
defined as the spinal cord, including all CT slices. A correctly 
delineated bowel bag encompassed all the small bowel and 
colon contours, and the upper bound was 4‑5 CT slices further 
up in the uppermost layer of the CTV (36).

AD accuracy. According to the comparative method proposed 
by Yeghiazaryan and Voiculescu (37), DSC, Jaccard coefficient 
(JAC) and HD were used to compare the manual and automatic 
contours quantitatively. In the following formulae, A and B repre‑
sent the manual and automatic contour volumes, respectively.

DSC represents the overlap degree between the automatic 
and manual contours in terms of volume. The range of DSC 
is 0‑1. DSC=0 implies that the two contours do not overlap at 
all, and DSC=1 implies that the two contours coincide entirely. 
The DSC can be expressed as follows: DSC (A, B)=

JAC represents the ratio of the intersection of the automatic 
and manual contours to their combination, in which the simi‑
larity and differences between the two sets of contours are 
compared. The range of JAC is 0‑1. JAC=0 indicates that the 
automatic contours are entirely inconsistent with the manual 
contours, and JAC=1 indicates that the automatic contours are 
completely consistent with the manual contours. The JAC can 
be expressed as follows: JAC 

HD can be used to quantify the maximum distance 
between the surface of the automatic and manual contours. 
In addition, this metric can be employed to quantify the 
maximum distance between two contours by calculating the 
distance between the closest points in both directions, from 
contour A to B and vice versa. The HD can be expressed as 
follows: HD (A, B)=max [h (A, B), h (B, A)], where h (A, B) 
represents the Euclidean distance between voxels a and b 
belonging to contours A and B, which can be expressed as 
follows, h (A, B)=maxbεB(minaεA||a‑b||).

It is necessary to analyze the variations in AD accuracy 
in case of differences in the contour and CT slice numbers of 
these patients. The effect of the CT slice number on the AD 
accuracy was mainly analyzed based on correlation analyses, 
while the effect of the contour number on the AD accuracy 
was mainly achieved by comparing DSC, JAC and HD for 
two groups with different numbers of contours. To analyze the 
effect of the contour number on AD accuracy, the AD contours 
were divided into two groups. Contours such as the CTV, 
spinal cord, left kidney, right kidney, bowel bag, bladder, left 
femoral head, right femoral head, left femoral head‑neck and 
right femoral head‑neck were assigned to Group C. Contours 
such as the skin, CTV, bladder, left femoral head, right femoral 
head, left femoral head‑neck, and right femoral head‑neck were 
assigned to Group D. The accuracy of the identical contours 
between the two groups was compared.

Table I. Characteristics of the included 148 patients with rectal 
cancer.

Characteristics Value

Median age, years (range) 61 (32‑80)
Sex, n (%) 
  Male 80 (54.1)
  Female 68 (45.9)
RT step, n (%) 
  Preoperative RT  105 (70.9)
  Postoperative adjuvant RT 43 (29.1)
Tumor stage, n (%) 
  Ⅱ 30 (20.3)
  Ⅲ 71 (48.0)
  Ⅳ 47 (31.7)
Pathological type, n (%) 
  Adenocarcinoma 121 (81.8)
  Adenosquamous carcinoma 10 (6.8)
  Undifferentiated carcinoma 17 (11.4)
Distance from the anal verge, n (%) 
  <5 cm 84 (56.8)
  5‑10 cm 34 (23.0)
  >10 cm 30 (20.2)

RT, radiotherapy.

https://www.spandidos-publications.com/10.3892/ol.2024.14672
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AD efficiency. To analyze the AD efficiency, the duration of 
the AD and MD were recorded. The MD time included the 
delineation time of the junior physicians and the review time 
of the senior physicians. The contours included the skin, CTV, 
bladder, left femoral head, right femoral head, left kidney, right 
kidney, spinal cord and bowel bag. The editing time for the AD 
contours by the senior physicians was also recorded.

To evaluate the influence of the CT slice number on 
delineation efficiency, the AD time of all 148 patients was 
counted, and the correlation between CT slice number and 
delineation time was analyzed. Meanwhile, the influence of 
the contour number on the AD time was also analyzed. The 
contour number was divided based on Group C vs. Group D, 
as described in the AD accuracy subsection.

Statistical analysis. Statistical analysis was performed using 
SPSS 26 (IBM Corp.). The Pearson correlation test was used to 
analyze the effects of the CT slice number and contour number 
on the AD time, as well as the effects of the CT slice number 
on the AD accuracy. The paired t‑test was used to compare 
between Group C to Group D. The unpaired t‑test was used 
to compare the MD time and the AD + editing time. P<0.05 
was considered to indicate a statistically significant difference.

Results

Accuracy evaluation of the AD contours. The DSC, JAC and 
HD between the manual (reference values) and the automatic 
contours are shown in Table II. According to the results, for 
CTV the DSC was 0.80±0.06, the JAC was 0.67±0.08 and the 
HD was 6.96±2.45 mm. For the OARs, the left kidney had the 
highest DSC (0.93±0.04) and JAC (0.88±0.07), and the spinal 
cord had the lowest HD (2.26±0.82 mm). By contract, the bowel 
bag had the worst performance in terms of DSC (0.64±0.12), 
JAC (0.50±0.14) and HD (12.84±4.70 mm). The other OARs had 
a DSC of >0.83±0.07 (left and right femur), JAC of >0.71±0.10 
(left femur) and HD <3.86±1.66 mm (bladder). These results 
were also pictorially shown in Fig. 2. Therefore, minor modi‑
fications (only when needed) of the automatic contours were 
required before clinical application, except for the bowel bag.

Table II also shows the correlation between the CT slice 
number and the AD accuracy indices. Most AD accuracy 

indices were not statistically related to the CT slice number, 
except for the DSC (r=0.662; P=0.027) and HD (r=‑0.638; 
P=0.019) of the spinal cord. The effect of the contour number 
on the AD accuracy was also collected. The DSC and JAC of 
all contours were 1.00 and 1.00, respectively, and the HD of 
all contours ranged from 0.000 to 0.002 mm. Therefore, the 
contour number had no impact on AD accuracy.

To present the accuracy of AD when determining the 
CTV, an example was shown in Fig. 3. The automatic contours 
(cyan) of the CTV indicated a smaller volume than the manual 
contours (pink) and insufficient layers in the head and foot 
direction, expect for this, the AD of the CTV was accurate. 
Fig. 4A, D and E illustrate typical examples of the consistency 
between the automatic and manual contours of the bladder, 
left and right kidneys and spinal cord. A match for the femoral 
head and the femoral head‑neck is shown in Fig. 4B and C. 
In the present study, both the femoral head and the femoral 
head‑neck were delineated by this AD tool. Hence, the results 
showed a good match, regardless of the contour style selected 
by physicians. Fig. 4F shows an example of the bowel bag.

Evaluation of AD Efficiency. As shown in Table III, there was 
a significant difference between the AD + editing time (sum 
of delineation and review time) and the MD time on the same 
contours in the same group of patients (P<0.001). To obtain 
accurate contours, the AD + editing time was 662.97±195.57 sec, 
while the MD time was 3294.29±824.70 sec. In the AD + editing 
process, the editing time had a predominant proportion with 
584.57±193.79 sec. The AD efficiency increased by 5 times. 
The contours with the most editing time were the bowel bag 
and CTV.

Additionally, there was a significant positive correlation 
between the CT slice number and the AD time (r=0.912; 
P<0.001), as shown in Table IV. The lower the CT slice number, 
the shorter the AD time. When these contours were applied 
in Group C, the AD time was 80.83±9.88 sec in an average 
CT slice number of 91. When these contours were applied in 
Group D, the AD time was 57.96±7.90 sec in an average CT 
slice number of 91. Given that Group D had a lower contour 
number than Group C, it can therefore be considered that 
the lower the contour number, the shorter the AD time. This 
difference was statistically significant (P<0.001; Table V).

Figure 1. Main components of the convolutional neural network‑based tool.
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Discussion

The delineation of the CTV and OARs is essential in the 
radiotherapy of rectal cancer. The inaccurate delineation of 
the CTV and OARs is one of the primary factors limiting the 
feasibility and effectiveness of radiotherapy. At present, contour 
delineation is still achieved manually, which may infer variable 
accuracy between observers. Most notably, contour delineation 
may be the most time‑consuming step in radiotherapy (38,39).

As one of the technical solutions of deep learning, 
CNN‑based tools have been applied increasingly in medical 
image analyses. Hence, it is essential to explore the accuracy 
of the clinical implementation of these tools. In a previous 
study, AD and MD were compared in cervical cancer (40). 
The results revealed that CNN‑based AD exhibited improved 
evaluation results. Moreover, the authors argued that the 
higher accuracy of their model was attributed to the large 
number of training cases, which may improve the accuracy 

Table II. DSC, JAC and HD between the automatic and manual contours and their correlation with the CT slice number.

 CT slice number, 90.68±14.72
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Contour Mean DSC ± SD r, P‑value Mean JAC ± SD r, P‑value Mean HD ± SD, mm r, P‑value

CTV 0.80±0.06 0.081, 0.614 0.67±0.08 0.074, 0.604 6.96±2.45 ‑0.081, 0.688
Bladder 0.90±0.06 ‑0.143, 0.435 0.83±0.10 ‑0.147, 0.482 3.86±1.66 0.184, 0.253
L femur  0.83±0.07 ‑0.265, 0.110 0.71±0.10 ‑0.299, 0.077 3.32±1.32 0.174, 0.284
R femur  0.83±0.07 ‑0.327, 0.056 0.71±0.11 ‑0.284, 0.086 2.88±0.98 0.175, 0.356
Left kidney  0.93±0.04 ‑0.053, 0.886 0.88±0.07 ‑0.079, 0.882 3.29±1.65 0.031, 0.924
Right kidney  0.91±0.06 0.029, 0.952 0.84±0.09 0.014, 0.980 3.52±1.60 ‑0.374, 0.255
Spinal cord 0.84±0.05 0.662, 0.027a 0.73±0.08 0.514, 0.091 2.26±0.82 ‑0.638, 0.019a

Bowel bag 0.64±0.12 0.533, 0.087 0.50±0.14 0.486, 0.111 12.84±4.70 ‑0.557, 0.185

aP<0.05. DSC, Dice similarity coefficient; JAC, Jaccard coefficient; HD, Hausdorff distance; SD, standard deviation; CTV, clinical target 
volume; femur L/R, left/right femoral head.

Figure 2. Box plots of the (A) DSC, (B) JAC and (C) HD for the CTV, bladder, femur L, femur R, kidney L, kidney R, spinal cord and bowel bag. CTV, clinical 
target volume; Dice similarity coefficient; JAC, Jaccard coefficient; HD, Hausdorff distance; femur L/R, left/right femoral head.

Figure 3. Typical example of the clinical target volume automatic contours (Dice similarity coefficient=0.721, Jaccard coefficient=0.564 and Hausdorff 
distance=6.596 mm), where the automatic contours are represented in cyan and manual contours are represented in pink.

https://www.spandidos-publications.com/10.3892/ol.2024.14672
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and robustness of AD in medical centers in developing coun‑
tries. Zabihollahy et al (41) also evaluated the AD of the CTV 
in cervical cancer. It was found that this tool achieved a DSC 
of 0.85±0.03 and a 95th percentile HD of 3.70±0.35 mm in 
the testing cases, which significantly outperformed other novel 
tools (P<0.05). Meanwhile, the tool generated an uncertainty 
map using Monte Carlo techniques to draw the attention of 
physicians to highly uncertain regions where careful review 
and manual editing may be required. Mohammadi et al (42) 
trained the ResU‑Net model based on 72 patients with cervical 
cancer, which was further verified using 10 patients and 
tested using 30 patients. The DSC of the testing data set was 
95.7±3.7, 96.6±1.5 and 92.2±3.3% for the bladder, rectum and 
sigmoid, respectively, and the HD was 4.05±5.17, 1.96±2.19 
and 3.15±2.03 mm, respectively. The average symmetric 

surface distance was 1.04±0.97, 0.45±0.09 and 0.79±0.25 mm, 
respectively, which achieved a good agreement between the 
automatic and manual contours and improved the robustness 
of AD. The aforementioned results supported the conclusion 
that the CNN‑based AD tool can provide accurate contours.

Among the contours in the present study, except for the 
bowel bag, the most significant difference was observed in 
the CTV. The DSC (0.80±0.06), JAC (0.67±0.08) and HD 
(6.96±2.45 mm) were somewhat inferior to those reported in 
other previous studies. Ju et al (43) found that the DSC, JAC 
and HD of automatic contours of the CTV in cervical cancer 
were 0.82, 0.30 and 1.86 mm, respectively. Men et al (20) 
obtained an average DSC of 0.877 in the automatic contours 
of the CTV in rectal cancer. Song et al (15) concluded that 
the DSC of the CTV was 0.88 in rectal cancer. As reported 

Figure 4. Examples of AD contours vs. MD contours for the (A) bladder (AD in green, MD in blue), (B) left and right femoral heads (AD in yellow and pink, 
MD in green and red), (C) femoral head‑neck (AD in yellow and pink, MD in green and red), (D) left and right kidneys (AD in magenta and red, MD in cyan 
and green), (E) spinal cord (AD in green, MD in yellow) and (F) bowel bag (AD in blue, MD in purple, clinical target volume in green). MD, manual delinea‑
tion; AD, automatic delineation.
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in certain previous studies (15,20,43), this evidence may be 
attributed to the perception and bias among observers and the 
difficulty in differentiating the soft tissues of CTV structures 
on CT images. It may also be related to the fact that the AD 
tool used in the present study did not differentiate between 
preoperative and postoperative rectal cancer options, and the 
same delineation option was used for all patients. To achieve 
a larger sample size and to assess the delineation efficiency 
of the tool, both preoperative and postoperative patients were 
included in the present study. Although the accuracy of the 
CTV was somewhat compromised, it remained reasonably 
accurate. The tool also provided criteria that were consistent 
with the CTV contours of rectal cancer from leading experts 
in China (33,34), which made the editing contours and the 
subsequent clinical work more consistent. To visualize the 
accuracy of automatic CTV determination, the automatic and 
manual contours of the CTV of a single patient were also 
compared in the present study. The AD volume was smaller 
than the MD volume, but the difference was not notable. 
In general, necessary modifications are needed after the 
completion of AD.

In the present study, except for the bowel bag, the DSC 
of all OARs was >0.83±0.07 (left and right femur), with the 
bladder reaching 0.90±0.06 and the left and right kidneys 

reaching 0.93±0.04 and 0.91±0.06, respectively. The JAC 
was >0.71±0.10 (left femur), particularly for the left kidney, 
which was 0.88±0.07. The maximum HD was 3.86±1.66 mm 
for the bladder. The bladder, left and right kidneys and 
spinal cord had a higher accuracy, exhibiting a larger DSC 
and JAC and a lower HD, which may be related to there 
being little inconsistency in the boundary of these OARs 
and these OARs exhibiting a notably different density from 
the surrounding tissues. The contouring accuracy of physi‑
cians may have also varied, which could be improved by AD 
tools (29,44,45). For instance, whether the physicians chose 
to delineate the femoral head or the femoral head‑neck, 
the AD tool had a corresponding contour to match it. The 
results of the OARs in the present study were consistent 
with those reported in previous studies (26,40‑42), which 
can be regarded as notable support for the high accuracy of 
this AD tool in rectal cancer.

In the present study, the effect of the CT slice number on 
AD accuracy was also analyzed. It was found that only the 
DSC and HD of the spinal cord were correlated with the CT 
slice number, and the absolute values of the correlation coeffi‑
cients were both >0.6 with statistically significant correlations. 
This indicated that the accuracy of the AD of the spinal cord 
was strongly correlated with the CT slice number. Based on 
the fact that the spinal cord is generally only evaluated for the 
maximum dose, physicians delineate all the CT slices with the 
spinal cord. This may be related to AD of the spinal cord only 
having a larger error at the cauda equina division and a smaller 
error at other parts. Thus, the larger the CT slice number, the 
smaller the proportion of errors. This suggested that physi‑
cians should pay attention to the spinal cord cauda equina 
junction in the modification of the AD of the spinal cord. In 
the present study, the AD accuracy was also compared with 
different contour numbers. The results demonstrated that the 
contour number had no impact on the AD accuracy, proving 
the robustness of the AD tool.

The most marked difference between the manual and 
automatic contours was observed in the bowel bag. The AD 
of the bowel bag had the smallest DSC and JAC, the largest 
HD and the greatest dispersion of data. However, there were 
no marked differences in the number of CT slices in the 
manual and automatic contours of the bowel bag. In one 
case, when there were identical CT slices between the AD 
and MD of the bowel bag, the DSC, JAC and HD were 0.876, 
0.780 and 6.764 mm, respectively, which was not notably 
different from the accuracy of other AD contours. In our 
department, due to the delineation efficiency and dose 

Table III. Duration of AD and MD on the same contours in the same group of patients.

Item Mean ± SD (range) t‑test P‑value

MD time, sec 3294.29±824.70 (2100‑4920) 19.832a <0.001a

AD + editing time, sec 662.97±195.57 (246‑1172)  
  AD time, sec 78.40±10.32 (65‑101)  
  Editing time for AD contours, sec 584.57±193.79 (180‑1080)  

aMD time vs. AD + editing time. SD, standard deviation; AD, automatic delineation; MD, manual delineation.

Table IV. Correlation analysis of the CT slice number and AD 
time.

Item Mean ± SD (range) r P‑value

CT slice number, n 90.68±14.72 (70‑135) 0.912 <0.001
AD time, sec 80.83±9.88 (67‑102)  

SD, standard deviation; AD, automatic delineation.

Table V. Comparison of the AD time for both groups of contour 
numbers.

Item Mean ± SD (range) t P‑value

Group C 80.83±9.88 (67‑102) 30.221 <0.001
Group D 57.96±7.90 (48‑89)  

SD, standard deviation; AD, automatic delineation.
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volume limits of the bowel bag, physicians only delineated 
4‑5 CT slices further up in the uppermost layer of the CTV, 
while the AD of the bowel bag appeared in all CT slices 
where the bowel bag was present. Hence, the difference 
in the contour volume naturally resulted in poor accuracy 
of the bowel bag. When the dose‑volume parameters for 
the bowel bag, such as V50 Gy <10%, were evaluated, the 
over‑delineation of the bowel bag can lower the evaluation 
accuracy and may ultimately lead to the emergence of bowel 
bag toxicity (46). At present, there is no option in the AD 
tool to decide the range of the bowel bag, and it is suggested 
that the tool manufacturer should arrange relevant options 
regarding the delineation range in the future.

In the present study, the editing time for AD contours 
including CTV and OARs was 584.57±193.79 sec. Although 
relatively poor delineation accuracy may be obtained, physicians 
can still modify existing contours to increase the delineation 
efficiency (15,47). This conclusion was also validated in the 
present study. To obtain accurate contours, the MD time of 
contours including CTV and OARs was 3294.29±824.70 sec, 
while the AD + editing time was 662.97±195.57 sec, and the 
efficiency increased 5‑fold. Owing to the time‑saving advantage, 
AD may increase clinical efficiency and reduce the waiting 
times for initial treatment. In terms of the advantages of AD, 
Lustberg et al (48) found a median time reduction of 10 min for 
deep‑learning AD. Ginn et al (45) analyzed an AD tool for head, 
neck and pelvic OAR delineation. The time of AD plus the modi‑
fication process was less than that of MD alone, with an average 
time reduction of 43.4% or 11.8 min per patient. Hu et al (49) 
analyzed the efficiency of a cloud‑based solution for AD. Based 
on the difference between the average time for AD and MD, the 
average time reduction was 291 sec for the male pelvic cavity 
and 210 sec for the female pelvic cavity. In the present study, 
the mean AD time was 78.40±10.32 sec when CTV, OARs 
(including skin, spinal cord, left and right kidneys, duodenum, 
bowel bag, intestinal tube, bladder, left and right femoral heads 
and left and right femoral head‑neck), and an average CT slice 
number of 91 were selected, which was much shorter than the 
time (1,560‑2,880 sec) for the MD of the pelvic CTV (9) and 
the MD time (3,294.29±824.70 sec) for delineating the CTV, 
bladder, left and right femoral heads, left and right kidneys, spinal 
cord and bowel bag in the present study. To explore the factors 
affecting the MD efficiency, the CT slice number and the contour 
number were further analyzed. The CT slice number displayed a 
significant positive correlation with AD time (r=0.912; P<0.001), 
indicating that as the CT slice number decreased, the AD time 
also decreased. Different contour numbers also significantly 
affected the AD time (P<0.001), indicating that as the contour 
number decreased, the AD time also decreased.

However, there are several limitations to the present study. 
First, the present study did not assess the relationship between 
accurate delineation and treatment effect, and this will be 
analyzed in our future work. Second, the present study lacks 
data on recurrence and surgical cure rates in postoperative 
patients. Third, there is a lack of localization training for the 
AD tool, increasing the inaccuracy of the automatic contours 
compared with manual contours.

In summary, the present study demonstrated through quan‑
titative analyses that the CNN‑based AD tool could provide 
a certain degree of clinically acceptable CTV and OARs for 

patients diagnosed with rectal cancer in whom tumor stage and 
type of surgery were not differentiated. Additionally, the AD 
tool may provide a valuable starting point for manual editing, 
which will significantly accelerate the contour delineation 
process. In the present study, it was also found that only the AD 
accuracy of the spinal cord had a positive correlation with the 
CT slice number, and the AD accuracy of the bowel bag was 
not high due to the absence of limits to the delineation range. 
Moreover, reducing the CT slice number and contour number 
may improve AD efficiency. In conclusion, it is suggested that 
the CNN‑based AD tool should be used in radiotherapy centers, 
particularly in those centers with good economic conditions, to 
improve the accuracy and efficiency of contouring.
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