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ABSTRACT
Sugarcane white leaf disease (SCWLD) is caused by phytoplasma, a serious sugarcane
phytoplasma pathogen, which causes significant decreases in crop yield and sugar
quality. The identification of proteins involved in the defense mechanism against
SCWLD phytoplasma may help towards the development of varieties resistant to
SCWLD. We investigated the proteomes of four sugarcane varieties with different
levels of susceptibility to SCWLD phytoplasma infection, namely K88-92 and K95-
84 (high), KK3 (moderate), and UT1 (low) by quantitative label-free nano-liquid
chromatography-tandemmass spectrometry (nano LC-MS/MS). A total of 248 proteins
were identified and compared among the four sugarcane varieties. Two potential
candidate protein biomarkers for reduced susceptibility to SCWLD phytoplasma
were identified as proteins detected only in UT1. The functions of these proteins are
associated with protein folding, metal ion binding, and oxidoreductase. The candidate
biomarkers could be useful for further study of the sugarcane defense mechanism
against SCWLD phytoplasma, and in molecular and conventional breeding strategies
for variety improvement.

Subjects Biotechnology, Genomics, Plant Science
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INTRODUCTION
Sugarcane (Saccharum spp.) is an important economic crop in tropical and subtropical
areas. It is regarded as a major source of crystal sugar and the second largest resource
for biofuel (Wongkaew, 2012). Sugarcane cultivation is negatively impacted by infectious
diseases, and in Thailand, the second-largest sugarcane exporter in the world, sugarcane
white leaf disease (SCWLD) is amajor problem. SCWLD-affected plants present leaves with
chlorosis and proliferating tillers, stunted growth, and un-millable canes (Marcone, 2002).
In 2011/12, more than 27,200 hectares of sugarcane plantation in Thailand were affected
by SCWLD, resulting in economic losses to the sugar industries of approximately one
billion Thai baht (Wongkaew et al., 1997; Office of The Cane and Sugar Board & Ministry
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of Industry Thailand, OCSB; Wongkaew, 2012). SCWLD is caused by infection with
phytoplasma phloem pathogens, which are nonculturable, wall-less prokaryotes residing in
the sieve tube elements of the plant (Marcone, 2002). In Thailand, SCWLD phytoplasmas
are naturally transmitted by the leafhopper Matsumuratettix hyroglyphicus (Matsumoto,
Lee & Teng, 1969) and Yamatotettix flavovittatus (Hanboonsong et al., 2002).

Since phytoplasma resides in the plant’s phloem systems, it is difficult to eliminate
by chemical treatment in commercial fields. Alternatively, breeding of resistant varieties
may offer a more practical and efficient approach to mitigate SCWLD compared with
conventional thermotherapy and chemical control of insect vectors of phytoplasma (Rao,
Mall & Marcone, 2012). Genetic engineering of sugarcane has been applied for crop
protection to generate SCWLD-resistant cultivars (Lakshmanan et al., 2005). However,
the complexity of the sugarcane genome (Hayes et al., 2021) makes selective genetic
modification too time-consuming and impractical (Scortecci et al., 2012). Hence, a greater
understanding of the molecular basis for natural variation in SCWLD susceptibility among
existing varieties could be applied for the purpose of sugarcane breeding of resistant
varieties.

Diverse protein functions have been annotated for plant growth and development,
metabolism, and tolerance to pathogenic attack (Sugio & Hogenhout, 2012;Margaria, Abbà
& Palmano, 2013; Luge et al., 2014). Proteomic profiling of protein expressions that change
in response to infection in plant diseases can give insights into plant defense responses
to pathogen invasion (Luge et al., 2014; Li et al., 2019). A proteomic-based comparison
of sugarcane varieties with different susceptibilities to sugarcane smut disease provided
insights into the interactions between the fungal pathogen and sugarcane plant (Singh et
al., 2019). For bacterial pathogens of sugarcane, proteomic profiling has been conducted
for sugarcane infected with Gluconacetobacter diazotrophicus (Lery et al., 2011).

Label-free quantitative mass spectrometry is a common method for proteomic analysis
(Neilson et al., 2011). This technique is employed to quantify protein abundance by
combining data from spectral counting and peptide ion intensities of the protein across
several samples (Zhu, Smith & Huang, 2010). Previous proteomic studies based on protein
separation by one-dimensional gradient polyacrylamide gels (1DE) and two-dimensional
gels followed by tandemmass spectrometry (MS) systems were conducted to profile protein
expressions in sugarcane under various abiotic and biotic stresses (Jangpromma et al., 2010;
Barnabas et al., 2015; Salvato et al., 2019). This technique has also been used to investigate
the response to phytoplasma infection in paulownia (Cao et al., 2017) and other plants
(Dermastia, Kube & Šeruga Musić, 2019). However, to our knowledge, LC-MS has not been
used to study the proteins expressed in sugarcane infected with phytoplasma.

In the present study, we applied the label-free quantification proteomic approach for
comparing four sugarcane varieties with differing susceptibilities to phytoplasma infection.
We identified proteins expressed only in varieties with low and/or moderate susceptibility
to phytoplasma, but not in highly susceptible varieties. These proteins could serve as
potential biomarkers in sugarcane breeding programs for selecting phytoplasma-resistant
varieties.
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MATERIALS & METHODS
Plant material
The experiments were conducted with four commercial sugarcane cultivars varying in
susceptibility to phytoplasma infection: high (K88-92 and K95-84), moderate (KK3) and
low (UT1) susceptibility. According to a study in 2019 at the Mitr Phol Innovation and
Research center (L Soulard, 2019, unpublished data), K88-92 and K95-84 were identified
as significantly more susceptible to SCWLD, while UT1 was characterized as significantly
less susceptible to SCWLD. The variety KhonKaen 3 (KK3) was used as a reference since it
is the most cultivated variety in Thailand (Khumla et al., 2021).

Greenhouse experiment
The experiment was a 4 × 4 × 3 design with four genotypes (K88-92, K95-84, UT1 and
KK3); four timepoints: t = 2 days after inoculation (dai), t = 7 dai, t = 14 dai and t = 30
dai; and three biological replicates (3 individual pots) per variety-timepoint. Timepoints
were chosen according to the multiplication and distribution of phytoplasma in infected
cane described by Roddee, Kobori & Hanboonsong (2018).

Inoculation process
The inoculation of plants was performed at two months after planting by insect vector
Matsumuratettix hiroglyphicus leafhoppers that were previously inoculated withCandidatus
phytoplasma through consumption of white leaf sugarcane for a minimum of one week.
The inoculation treatment consisted of exposing the whole plant to five insect vectors
under acrylic cylinders until the target timepoint was reached. Samples were immediately
frozen in liquid nitrogen and stored at−80 ◦C until further sample processing. The leaf
samples at 30 dai were used for proteomic analysis.

Validation of the inoculation by nested PCR
The inoculation of the plants was confirmed by nested PCR after inoculation of all plants.
In order to give enough time to the pathogen to multiply and spread systematically
in the infected cane (Roddee, Kobori & Hanboonsong, 2018), the nested PCR test was
performed at 90 days after inoculation on all plants of the experiment.The test was
performed using two sets of primers designed to amplify the 16S-23S rRNA Intergenic
Spacer Region of phytoplasma (Hanboonsong et al., 2002). The first set consisted
of primers MLO-X (5′- GTTAGGTTAAGTCCTAAAACGAGC-3′) and MLO-Y (5′-
GTGCCAAGGCATCCACTGTATGCC-3′) which amplified a 700 bp DNA fragment
with the following PCR conditions: 95 ◦C for 5 min followed by 35 cycles of 95 ◦C for
1min, 60 ◦C for 1min and 72 ◦C for 1 min 30 s, and a final extension at 72 ◦C for 10
min. Resulting PCR products were diluted 1:40 with sterile water and 1 µl of diluted
product was used for the nested PCR performed with the second set of primers. This
pair consisted of the primers P1 (5′-GTCGTAACAAGGTATCCCTACCGG-3′) and P2
(5 ′-GGTGGGCCTAAATGGACTTGAACC-3′), which amplified a 210 bp DNA fragment
with the following PCR conditions: 95 ◦C for 2 min followed by 35 cycles of 95 ◦C for 1
min, 68 ◦C for 30 s, and 72 ◦C for 30 s, and a final extension at 72 ◦C for 10 min. All PCR
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products were checked by electrophoresis and visualized under UV light using the gel doc
XR+ Imager (BioRad, California, USA).

Protein extraction
To extract the total proteins, sugarcane leaf was pulverized to fine powder in liquid
nitrogen. A total of 200 mg of each sample was dissolved by 0.5% sodium dodecyl sulfate
(SDS) with continuous vortexing for 30 min at room temperature. The pellets were
precipitated by centrifugation at 10,000 g for 5 min. The supernatant was transferred
to a new microcentrifuge tube, and subsequently mixed with 0.15% 2,5-dimethoxy-4-
chloroamphetamine (DOC) and 72% trichloroacetic acid. The sample was incubated
at −20 ◦C overnight to allow for thorough precipitation. The pellets were collected by
centrifugation at 16,000 g for 10 min. The pellet was washed thrice with cold acetone and
centrifuged at 16,000 g for 5 min. The pellets were reconstituted in 0.5% SDS, and the
protein concentration was determined by the Lowry method (Lowry et al., 1951).

Protein digestion
Dithiothreitol (DTT) prepared in 10 mM ammonium bicarbonate was added to a final
concentration of 10 mM to each 5 µg protein sample to reduce disulfide bonds. The
reformation of disulfide bond was prevented by the addition of 30 mM iodoacetamide
(IAA) in 10 mM ammonium bicarbonate. The protein samples were digested with 50 ng
of sequencing grade porcine trypsin 1:20 (w/w) (Promega, Walldorf, Germany) for 16 h
at 37 ◦C. The peptides were dried under speed vacuum concentrator and resuspended in
0.1% formic acid (FA) prior to nano LC-MS/MS analysis.

Protein identification and quantification
The extracted peptides were analyzed with the HCTUltra LC-MS system (Bruker Daltonics
Ltd; Hamburg, Germany) coupled with a nanoLC system (UltiMate 3000 LC System,
Thermo Fisher Scientific; Madison, WI, USA) equipped with an electrospray. Briefly, five
microliters of peptide smples separated with the flow rate of 300 nL/min on nanocolumn
(Acclaim PepMapTM 100 C18 column 50 mm internal diameter 0.075 mm). Solvent A and
B containing 0.1% formic acid in water and 80% acetonitrile, respectively, were used to
elute peptides using a linear gradient of 4–70% of solvent B (0–20 min) followed by 90%
B from 20–25 min retention time to remove all peptides in the column. Mass spectra (MS)
andMS/MS spectra were obtained in the positive-ion mode over the range (m/z) 400–1500
(Compass 1.9 software, Bruker Daltonics).

Bioinformatics and data analysis
Protein intensities of the LC-MS data were measured based on peptideMS signal intensities
by the DeCyderMS2.0 analysis software (GEHealthcare, Chicago, IL, USA). The PepDetect
module was performed to evaluate the peptide by producing ion peptides with the following
settings as previously described in (Aroonluk, Roytrakul & Jantasuriyarat, 2019): mass
resolution, 0.6; typical peak width, 0.1; ion trap mass resolution, 10,000; charge status,
from 1 to 4; and m/z shift tolerance, 0.1 u. The PepMatch module evaluated the signal
intensity maps from each sample. All MS/MS data from the Decyder MS analysis were
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Table 1 Percentage of white leaf disease infection of SCWL phytoplasma after 90 day post-inoculation.

Sugarcane
varieties

No. infected plants/
no. of test plants

%White leaf
disease infection

K88-92 8/12 66.7
K95-84 8/12 66.7
KK3 10/12 83.3
UT1 5/12 41.7

completed by applying the global variable mode of carbamidomethyl, variable mode of
oxidation (M), peptide charge state (1+, 2+ and 3+), and m/z tolerance 0.1 u. These
spectra were searched against NCBI protein databases (http://www.ncbi.nlm.nih.gov/) with
Saccharum officinarum (51,209 sequences; September 2020) to identify matching peptides
by using the Mascot software search engine tool 2.3.0 (Matrix Science, London, UK). One
gram of BSA was used as an internal standard to normalize protein intensities from each
dataset. The mass spectrometry proteomics data have been deposited as PXD028041 for
ProteomeXchange and JPST001297 for JPOST. The identified proteins were analyzed with
the MultiExperiment Viewer software (MeV, version 4.9.0) and filtered with a one-way
ANOVA (p< 0.05) (Saeed et al., 2003). Uniport (http://www.uniprot.org/) and search tools
were used to identify gene ontology (GO). Venn diagrams were constructed to identify
intersections of proteins detected among different sugarcane varieties (Bardou et al., 2014).

RESULTS
Detection of SCWLD phytoplasma in sugarcane
The leaf samples collected from inoculation at 90 day post inoculation on the pots were
subjected to total DNA extraction and nested PCR analysis. The percentage of individual
infection with phytoplasma varied from 41.7% in UT1, 66.7% in K88-92 and K95-84 and
83.3% in KK3 (Table 1). These data confirm upublished reports that UT1 is markedly less
susceptible to SCWLD phytoplasma infection than K88-92 and K95-84.

Proteomic profiling of sugarcane
The shotgun proteomic approach was employed to obtain protein profiles of Saccharum
officinarum varieties infected with phytoplasma. 248 proteins were identified in total, of
which 237, 166, 105, and 129 proteins were detected in the K88-92, K95-84, KK3, and UT1
varieties, respectively.

Gene ontology analysis
The 248 proteins identified from the proteomic data were classified based on gene
ontology (GO) functional annotation levels (biological processes, cellular components,
and molecular functions). At the biological process level, protein functions include:
unknown function (149 proteins, 60.08%), DNA metabolic process [GO:0006259]
(30 proteins, 12.10%), cellular process [GO:0009987] (16 proteins, 6.45%), metabolic
process (14 proteins, 5.65%), cellular metabolic process [GO:0044237] (13 proteins,
5.24%), carbohydrate metabolic process [GO:0005975] (nine proteins, 3.63%), transport
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[GO:0006810] (eight proteins, 3.23%), cellular component organization [GO:0016043]
(five proteins, 2.02%), response to stimulus [GO:0050896] (three proteins, 1.21%) and
reproduction [GO:0000003] (one proteins, 0.40%) (Fig. 1A). At the cellular components
level, protein functions include unknown function (157 proteins, 63.31%), integral
component of membrane [GO:0016021] (36 proteins, 14.52%), cell part [GO:0044464] (20
proteins, 8.06%), organelle [GO:0043226] (19 proteins, 6.85%) membrane [GO:0016020]
(7 proteins, 2.82%), macromolecular complex [GO:0032991] (four proteins, 1.61%),
protein complex [GO:0043234] (three proteins, 1.21%), chloroplast [GO:0043227]
(two proteins, 0.81%) and extracellular region part [GO:0044421] (two proteins,
0.81%) (Fig. 1B). At the molecular functions level, protein functions include unknown
function (97 proteins, 39.11%), binding [GO:0005488] (36 proteins, 14.52%), ATP
binding [GO:0005524] (28 proteins, 11.29%), hydrolase activity [GO:0016787] (18
proteins, 7.26%), DNA binding [GO:0003677] (14 proteins, 5.65%), transporter activity
[GO:0005215] (11 proteins, 4.44%), oxidoreductase activity (10 proteins, 4.03%), catalytic
activity [GO:0003824] (eight proteins, 3.23%), transferase activity [GO:0016740] (five
proteins, 2.02%), nucleic acid binding transcription factor activity [GO:0001071] (four
proteins, 1.61%), ADP binding [GO:0043531] (three proteins, 1.21%), lyase activity
[GO:0016829] (three proteins, 1.21%), structural molecule activity [GO:0005198]
(three proteins, 1.21%), enzyme regulator activity [GO:0030234] (two proteins, 0.81%),
isomerase activity [GO:0016853] (two proteins, 0.81%), acetolactate synthase regulator
activity [GO:1990610] (one protein, 0.40%), aldehyde oxygenase (deformylating) activity
[GO:1990465] (one protein, 0.40%), cullin family protein binding [GO:0097602] (one
protein, 0.40%) and signal transducer activity [GO:0004871] (one protein, 0.40%) (Fig.
1C)

Identification of candidate biomarker proteins expressed in
sugarcane cultivars with low and moderate susceptibility to
phytophora infection
Comparison of protein profiles among the different varieties revealed 53 proteins common
to all four varieties, whereas 2, 1 and 36 proteins were identified as uniquely expressed in
UT1, KK3 and K88-92, respectively (Fig. 1). We investigated the protein in more detail, in
particular the proteins expressed in cultivars with moderate susceptibility to phytoplasma
infection (UT1) but not in cultivars with susceptibility (K88-92, K95-84 andKK3) (Table 2).
Peptidyl-prolyl cis-trans isomerase and 9-cis-epoxycarotenoid dioxygenase were found to
be uniquely expressed in UT1. From these results, we thus identified two proteins that
could serve as candidate biomarkers for susceptibility to phytoplasma infection.

Protein ID score: The number reflects the combined scores of all observed mass spectra
that can be matched to amino acid sequences within that protein. A higher score indicates a
more confident match. Log2 Abundance: The log2 report ion intensities for each spectrum
belonging to this protein.
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(A)

(B)

(C)

Figure 1 Gene ontology (GO) analysis. Biological functions among the 248 proteins identified from pro-
teomic analysis of four varieties of sugarcane. Pie charts show the represented GO terms at the levels of bi-
ological process (A), cellular components (B) and molecular function (C).

Full-size DOI: 10.7717/peerj.12740/fig-1
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DISCUSSION
The distribution pattern of SCWL phytoplasma in the sugarcane was reported in the
previous study (Roddee, Kobori & Hanboonsong, 2018). This research indicates that SCWL
phytoplasma sequentially spreads from the inoculated leaf to all parts of plant, before
dispersal to cover the above mature leaves within 35 days of the inoculation. After 90
days of inoculation, SCWL phytoplasma fully distributed in infected young or immature
sugarcane plants. For this reason, we investigated potential candidate proteins at 30 days
and determined white leaf disease infection of SCWL phytoplasmaat 90 days.

Previous studies have demonstrated that proteins could be used as biomarkers for
monitoring distinct biochemical processes related to stress response that affect the
physiological state of plants (Bechtold et al., 2009; Jangpromma et al., 2010). In the current
study, we collected leaf samples from four sugarcane varieties with varying susceptibility to
phytoplasma infection to identify potential candidate protein biomarkers of susceptibility.
Among the 248 proteins that were identified by LC-MS/MS analysis (Table S1), the
results showed different protein profiles among cultivars infected with phytoplasma.
Two protein candidate biomarkers of susceptibility to phytoplasma were identified with
different biological functions involved in the biochemical processes of protein folding
(peptidyl-prolyl cis-trans isomerase), and metal ion binding and oxidoreductase (9-cis-
eposycarotenoid dioxygenase and oxygenase) (Fig. 2; Table 2). The relationships of these
proteins to phytoplasma susceptibility in sugarcane are discussed below.

The peptidyl-prolyl cis/trans isomerase (PPiase) or cyclophilin is an enzyme involved
in chaperone activity, signal transduction (Schiene-Fischer & Yu, 2001; Singh et al., 2020),
cell cycle control and protein secretion. PPiase is also a component of the plant immune
system (Vespa et al., 2004: Dos Santos & Park, 2019), and overexpression of the peptidyl
prolyl isomeraseFKBP12 gene (PaFKBP12) inArabidopsis enhances resistance to abiotic and
biotic stress such as high temperature, drought and salt stress ((Alavilli et al., 2018). Other
examples of PPIases in host immunity reactions include Cyplophilin C-CyP isolated from
Chinese cabbage (B. campestris ssp. Pekinensis L.), which inhibits growth of several fungi,
includingCandida albicans, Rhizoctonia solani, Botryis cinerea, Trichoderma harzianum and
T. viride (Lee et al., 2007).

9-cis-epoxycarotenoid dioxygenase is a key enzyme in the abscisic acid (ABA)
biosynthetic pathway. ABA is a crucial plant hormone that regulates plant growth, plant
development and biotic/abiotic stress tolerance (Sah, Reddy & Li, 2016). The deposition
of callose on the plates of sieve tubes is an early plant response to phytoplasma attack
that creates a barrier to phytoplasma migration in shoots (Vitali et al., 2013). Thus, plant
responses to phytoplasma infection could affect gas exchange, carbon assimilation and
water transpiration (Tan &Whitlow, 2001;Endeshaw et al., 2012).When plants are attacked
by abiotic stress, rapid accumulation of ABA induces stomatal closure to reduce water loss
(León et al., 1996; Estrada-Melo, Reid & Jiang, 2015) and sucrose accumulation in guard
cells (Lu et al., 1997). Overexpression of genes involved with ABA expression leads to
increased drought tolerance as well as negative pleiotropic effects including leaf-margin
chlorosis, and seed dormancy (Thompson et al., 2000).
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Table 2 List of two proteins uniquely expressed in strains with low andmoderate susceptibility to white leaf disease.

Varieties Protein IDs Protein names Protein
ID score

Peptides Function Log2 Abundance

K88-92 K95-84 KK3 UT1

UT1 A0A059Q1N9 Peptidyl-prolyl cis-trans isomerase 5.98 IVMELYANEVPK 1. Protein folding 0.00 0.00 0.00 19.64

I6WA52 9-cis-epoxycarotenoid dioxygenase 18.24 VRINLR 1. Metal ion binding
2. Oxidoreductase

0.00 0.00 0.00 16.10

Notes.
Protein ID score: The number reflects the combined scores of all observed mass spectra that can be matched to amino acid sequences within that protein. A higher score indicates a more confident match.
Log2 Abundance: The log2 report ion intensities for each spectrum belonging to this protein.
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Figure 2 Comparison of protein expression profiles among sugarcane cultivars. The intersections of
proteins identified as expressed in sugarcane cultivars infected with phytoplasma are shown for cultivars
with high susceptibility to phytoplasma infection (K88-92 and K95-84), moderate susceptibility (KK3),
and low susceptibility (UT1).

Full-size DOI: 10.7717/peerj.12740/fig-2

CONCLUSIONS
The present study reports the proteomic profiles of four sugarcane varieties with varying
susceptibility to phytoplasma. Two potential protein candidate biomarkers were identified
from proteins detected only in sugarcane varieties of moderate and low susceptibility to
phytoplasma. These biomarker candidates constitute proteins with diverse functions
(protein folding, metal ion binding and oxidoreductase), of which relationships to
phytoplasma infection susceptibility are suggested. However, verification of these
biomarkers using an independent method, e.g., quantitative reverse-transcription PCR
is needed. This is the first report of potential protein candidate biomarkers related to
sugarcane white leaf disease susceptibility, which may be useful in breeding programs for
selecting resistant varieties.

ADDITIONAL INFORMATION AND DECLARATIONS
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