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Abstract 

Background:  The coronavirus disease 2019 (COVID-19) has induced a worldwide epidemiological event with a high 
infectivity and mortality. However, the predicting biomarkers and their potential mechanism in the progression of 
COVID-19 are not well known.

Objective:  The aim of this study is to identify the candidate predictors of COVID-19 and investigate their underlying 
mechanism.

Methods:  The retrospective study was conducted to identify the potential laboratory indicators with prognostic val-
ues of COVID-19 disease. Then, the prognostic nomogram was constructed to predict the overall survival of COVID-19 
patients. Additionally, the scRNA-seq data of BALF and PBMCs from COVID-19 patients were downloaded to investi-
gate the underlying mechanism of the most important prognostic indicators in lungs and peripherals, respectively.

Results:  In total, 304 hospitalized adult COVID-19 patients in Wuhan Jinyintan Hospital were included in the ret-
rospective study. CEA was the only laboratory indicator with significant difference in the univariate (P < 0.001) and 
multivariate analysis (P = 0.020). The scRNA-seq data of BALF and PBMCs from COVID-19 patients were downloaded to 
investigate the underlying mechanism of CEA in lungs and peripherals, respectively. The results revealed the poten-
tial roles of CEA were significantly distributed in type II pneumocytes of BALF and developing neutrophils of PBMCs, 
participating in the progression of COVID-19 by regulating the cell–cell communication.

Conclusion:  This study identifies the prognostic roles of CEA in COVID-19 patients and implies the potential roles 
of CEACAM8-CEACAM6 in the progression of COVID-19 by regulating the cell–cell communication of developing 
neutrophils and type II pneumocyte.
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Introduction
In December 2019, the coronavirus disease 2019 
(COVID-19) has been out breaking in Wuhan China 
and rapidly spread throughout the world inducing a 
worldwide panic [1]. The novel coronavirus was iso-
lated from human airway epithelial cells and was named 
severe acute respiratory syndrome-related coronavirus 2 
(SARS-CoV-2), which is highly infectious and induces a 
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high fatality [2–5]. Nowadays, the underlying pathogenic 
mechanism of SARS-CoV-2 has been generally explored 
[6]. Similar to SARS-CoV-1, SARS-CoV-2 uses the recep-
tors of angiotensin converting enzyme II (ACE2) for 
viral entry process. After receptor binding, the spike 
(S) protein priming protease, such as cell surface trans-
membrane serine protease (TMPRSSs) and endosomal 
cathepsins, works in membrane fusion [2, 7]. However, 
these proteases are not prognosis predictors of COVID-
19 patients, which may be significantly associated with 
therapeutic decision-making.

Generally, patients’ characteristics, nutritional sta-
tus, clinical symptoms, comorbidities, inflammatory 
biomarkers and chest CT images are different in terms 
of patient outcome; however, whether these factors can 
serve as prognosis predictors for COVID-19 pneumo-
nia is not clear. Regarding chest CT images, consolida-
tion, emphysema and residual healthy lung parenchyma 
are regarded as independent predictors in COVID-19 
patients [8]. Additionally, high-sensitivity C-reactive pro-
tein–albumin ratio (HsCAR) and low prognostic nutri-
tional index (PNI) and the ratio of interleukin (IL)-6 to 
IL-10 were reported to be related to the prognosis of 
COVID-19 patients [9, 10]. Moreover, carcinoembryonic 
antigen (CEA) is a glycoprotein generated in colonic epi-
theliums in the embryonic period and has been widely 
used as a biomarker for tumorgenesis and progres-
sion. CEA has been also reported to be associated with 
the prognosis of COVID-19 patients [11, 12]. However, 
the potential mechanism of their predicting roles is 
unknown, neither is other candidate predictors.

The aim of this study is to provide novel predictors 
and their hypothetical mechanism in the infection and 
progression of COVID-19. In this study, we systemati-
cally collected and analyzed clinical information from 
hospitalized adult patients with COVID-19 pneumonia 
including demographics, disease, treatment and outcome 
information to identify all potential prognosis indica-
tors for COVID-19 pneumonia. Based on the identified 
predictors, the prognostic nomogram was established to 
guide clinical decision-making. Furthermore, in order to 
explore the underlying mechanism of candidate biomark-
ers, single-cell transcriptomics of bronchoalveolar lavage 
fluid (BALF) from patients with or without COVID-19 
were also analyzed with integrated bioinformatics meth-
ods. This study will provide novel predictors and their 

potential mechanism in the infection and progression of 
COVID-19.

Materials and methods
Patient selection and data extraction
This study was approved by the Ethics Committee of 
Jinyintan Hospital (KY-2020-58.01), followed the Stand-
ards for Reporting of Diagnostic Accuracy Studies State-
ment and Strengthening the Reporting of Observational 
Studies in Epidemiology (STROBE) [13, 14]. A total of 
300 hospitalized adult COVID-19 patients diagnosed 
by reverse transcription polymerase chain reaction (RT-
PCR) in Wuhan Jinyintan Hospital from January 1, 2020, 
to April 30, 2020, were included in the retrospective 
study. The exclusion criteria were: (1) patients younger 
than 18; (2) non-hospitalized patients; (3) patients with 
follow-up period less than 60  days; (4) patients admit-
ted for another reason than COVID-19-related respira-
tory failure (as patients with specific malignancies could 
have increased CEA levels without any correlation with 
COVID-19, all patients with primary malignancy were 
excluded from the study); (5) patients whose survival 
time, endpoint (overall survival), demographic informa-
tion or treatment data was unknown; and (6) patients 
whose admission carcinoembryonic antigen (CEA) was 
unknown.

The clinical data in the study were retrieved from the 
electronic medical record system of Wuhan Jinyin-
tan Hospital on initial admission, including variables of 
demographic information (age at diagnosis and gen-
der), symptom (fever, cough, expectoration, shortness 
of breath and diarrhea), comorbidity (diabetes mellitus, 
hypertension, cardiovascular disease and cerebral infarc-
tion hypertension) and therapeutic information (use 
of glucocorticoid, imaging score, nasal catheter, high 
flow oxygen intake, ventilation). Additionally, labora-
tory indexes were also collected including CEA (ng/ml), 
albumin (g/l), hemoglobin (g/l), neutrophils (× 109/l), 
lymphocytes (× 109/l), C-reactive protein (CRP, mg/l), 
hypokalemia, hypocalcemia, hyponatremia, hyper-
kalemia and hypernatremia. The cutoff values of labora-
tory and imaging indexes were determined according to 
the normal values stipulated by the laboratory and imag-
ing department of Wuhan Jinyintan Hospital.

As the endpoint, the survival time and overall survival 
status of each patient were retrieved. The endpoint of the 

(See figure on next page.)
Fig. 1  Patient characteristics and univariate analysis. The baseline characteristics of 300 COVID-19 patients were described in (A). The cohort 
comprised 170 males and 130 females, with a median age of 63.0 (range 21.0–90.0) years. After removing 17 of the 28 laboratory indicators with 
missing values more than 20% of the sample size, the results of initial Kaplan–Meier survival analysis (C–D) and parameter or nonparametric tests (E) 
suggested that only five (serum CEA, lymphocytes, neutrophils, CRP and albumin) indicators were significantly associated with both imaging score 
and prognosis COVID-19 patients (B)
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Fig. 1  (See legend on previous page.)
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Table 1  Baseline characteristics of COVID-19 patients

Total patients (N = 300)

No %

Age (year)

Median (range) 45.0(0 ~ 93)

Average ± SD

Categorical age

 < 40 26 8.7

40–60 110 36.7

 > 60 164 54.7

Gender

Female 130 43.3

Male 170 56.7

Fever

No 25 8.3

Yes 275 91.7

Cough

No 75 25

Yes 225 75

Expectoration

No 221 73.7

Yes 79 26.3

Shortness of breath

No 128 42.7

Yes 172 57.3

Diarrhea

No 293 97.7

Yes 7 2.3

Comorbidities

No 256 85.3

Yes 44 14.7

Diabetes mellitus

No 251 83.7

Yes 49 16.3

Hypertension

No 193 64.3

Yes 107 35.7

Cardiovascular disease

No 272 90.7

Yes 28 9.3

Cerebral infarction

No 286 95.3

Yes 14 4.7

Glucocorticoid

No 272 90.7

Yes 28 9.3

Imaging score

1.0–2.0 41 13.7

3.0–4.0 83 27.7

5.0–6.0 63 21

7.0–8.0 113 37.7

Table 1  (continued)

Total patients (N = 300)

No %

Nasal catheter

No 141 47

Yes 159 53

High flow oxygen intake

No 216 72

Yes 84 28

Noninvasive ventilation

No 238 79.3

Yes 62 20.7

Invasive ventilation

No 222 74

Yes 78 26

Mode of ventilation

No oxygen 47 15.7

OWNC 99 33.0

HFNC 33 11.0

NIV 38 12.7

IV 83 27.6

Stage

Mild 47 15.7

Severe 132 44.0

Critical 121 40.3

CEA (ng/ml)

Median (range) 3.25 (0.50 ~ 66.60)

Average ± SD 6.88 ± 10.20

Categorical CEA

0–5 194 64.7

 > 5 106 35.3

Albumin (g/l)

 < 30 125 41.7

30–35 109 36.3

35–40 51 17

 > 40 15 5

Hemoglobin (g/l)

 < 115 108 36

115–150 182 60.7

 > 150 10 3.3

Neutrophils (× 109/l)

 < 1.8 17 5.7

1.8–6.3 161 53.6

 > 6.3 122 40.7

Lymphocytes (× 109/l)

 < 1.1 199 66.3

1.1–3.2 101 33.7

CRP (mg/l)

0–6 31 10.3

6–160 202 67.3

 > 160 67 22.3



Page 5 of 20Huang et al. Crit Care          (2021) 25:234 	

present study was the overall death of COVID-19 patient, 
which presented the outcome and prognosis of patients 
in this study. Patients who were diagnosed after April 30, 
2020, were excluded from the study.

Epidemiological statistical analysis
The retrospective study started with descriptive statis-
tic: Discontinuous variables were presented as percent-
ages while continuous variables in normal distribution 
were described as mean ± standard deviation (SD) or 
else reported as median (range). Two statistical methods 
were applied to explore potential significant predictors. 
As initial parameter or nonparametric tests, the Chi-
square test was used to compare the outcomes between 
discontinuous variables, and variance homogeneous and 
normal distributed continuous variables were compared 
by the Student t-test; otherwise, the Mann–Whitney 

U-test or Kruskal–Wallis H-test was used. Besides, the 
Kaplan–Meier survival analysis was used to determine 
the prognostic value of each variable. Furthermore, pre-
dictors with statistical significance in both parameter or 
nonparametric tests and Kaplan–Meier survival analy-
sis were selected to construct the multivariate Cox pro-
portional hazard model. The nomogram was established 
based on the multivariate model to predict the prognosis 
of COVID-19 patients. The significant prognostic factors 
in multivariate Cox model were marked with asterisks (*) 
in the nomogram (*: P < 0.05; **: P < 0.01). Receiver oper-
ating characteristic (ROC) curve and calibration curve 
were drawn to evaluate the discrimination and calibra-
tion of the nomogram.

Processing of single‑cell RNA‑seq data
Single-cell RNA-sequence (scRNA-seq) data of COVID-
19 patients’ and healthy volunteer’s bronchoalveolar 
lavage fluid (BALF, accession no. GSE145926) [15] and 
peripheral blood mononuclear cells (PBMCs, acces-
sion no. GSE150728) [16] were download from the Gene 
Expression Omnibus (GEO). All BALF and PBMC sam-
ples were taken at the initial admission.

The preliminary data processing of single-cell RNA-seq 
data started from the Cell Ranger Single Cell Software 
Suite 3.3.1 (http://​10xge​nomics.​com/). The pair-ended 
reads fastq files were trimmed to remove template switch 
oligo (TSO) sequence and poly-A tail sequence. Then, 
command of “cellranger count” was used to quantify the 
clean reads, aligned to the hg38 human genome. The Seu-
rat method was applied to integrated data analysis [17].

In terms of quality control (QC), genes with average 
read count greater than one and being expressed in at 
least three single cells were considered for further anal-
ysis. Cells with either fewer than 100,000 transcripts or 
fewer than 1,500 genes were filtered out.

In data processing, first, variance stabilizing trans-
formation (VST) method was used to identify variable 
genes. Variable genes were input as initial features for 
principal component analysis (PCA) [17]. Then, the prin-
cipal components (PCs) with P values < 0.05 were filtered 
by the jackstraw analysis and were incorporated into fur-
ther UMAP (uniform manifold approximation and pro-
jection) and t-distributed stochastic neighbor embedding 

Table 1  (continued)

Total patients (N = 300)

No %

Hypokalemia

No 85.7

Yes 43 14.3

Hypocalcemia

No 138 46

Yes 162 54

Hyponatremia

No 275 91.7

Yes 25 8.3

Hyperkalemia

No 287 95.7

Yes 13 4.3

Hypernatremia

No 295 98.3

Yes 5 1.7

Overall survival

Alive 174 58.0

Dead 126 42.0

Survival time (day)

Median (Range) 24 (6 ~ 66)

Average ± SD 26.60 ± 11.09

Fig. 2  Cox proportional hazard model. CEA is the only laboratory indicator with significant results in all univariate and multivariate analyses. To 
identify the optimal cutoff point of CEA, the cyclic log-rank test was performed. And the results showed that CEA = 7.3 ng/ml was the optimal 
cutoff point with the most significant P value in log-rank test (A, B). Then, 12 potential significant indicators (showing prognostic values in Kaplan–
Meier analysis) and two demographic information (age and gender) were incorporated into the initial Cox proportional hazard models, and the 
final multivariate models were constructed to confirm the effects of significant covariates in the initial models to the OS of COVID-19 patients 
(C). The variable of nasal catheter is integrated into a new variable named "Mode of ventilation," a variable with five levels (no oxygen; oxygen 
with nasal canula (OWNC); oxygen through high flow nasal canula (HFNC); noninvasive ventilation (NIV); and invasive ventilation (IV)). The results 
suggested that patients with lower CEA had better OS (HR 0.57; 95% CI 0.354 to 0.920; P = 0.020) in multivariate model, which suggested that CEA 
independently prognostic indicator for COVID-19 patients

(See figure on next page.)

http://10xgenomics.com/
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Fig. 2  (See legend on previous page.)
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(t-SNE) to identify cell subclusters (resolution = 0.50) 
[18]. Only the genes with |log2 fold change (FC)|> 0.5 
and false discovery rate (FDR) value < 0.05 were identi-
fied as differentially expressed genes (DEGs) among cell 
subclusters. Feature plots and violin plots were utilized 
to illustrate the distribution and expression of DEGs, 
respectively. Additionally, scMatch [19], singleR [20] and 
CellMarker [21] were used as references to define each 
cluster. Cell trajectory and pseudo-time analysis was per-
formed by monocle2 [22]. Furthermore, 50 hallmark gene 
sets were retrieved from the Molecular Signatures Data-
base (MSigDB) version 7.1 (https://​www.​gsea-​msigdb.​
org/​gsea/​msigdb/​index.​jsp) and gene set variation analy-
sis (GSVA) algorithm was performed to absolutely quan-
tify the activity of signaling pathways in each single cell 
[23, 24]. Furthermore, the CellphoneDB algorithm was 
used to identify the cellular communication between 
pneumonocyte and immune cells [25].

Identification of the mechanism of abnormal CEA 
expression in COVID‑19 patients
First of all, the distribution and expression of CEA-
related genes (CRGs) including CEACAM1, CEACAM3, 
CEACAM4, CEACAM5, CEACAM6, CEACAM7, 
CEACAM8, CEACAM16, CEACAM18, CEACAM19, 
CEACAM20, CEACAM21, CEACAMP1, CEACAMP2, 
CEACAMP3, CEACAMP4, CEACAMP5, CEACAMP6, 
CEACAMP7, CEACAMP8, CEACAMP9, CEACAMP10, 
CEACAMP11 and CEACAM22P were visualized by fea-
ture plot and violin plot in BALF and PBMC scRNA-seq 
data. Then, co-expression (correlation) analysis was per-
formed among CRGs and 50 hallmark of gene sets to 
identify the potential downstream pathways. The Cell-
phoneDB algorithm was used to illuminate the cellular 
communication between cells with high CRG expression 
and other cells. Besides, two data including scRNA-seq 
data of acute lung injury (ALI) mouse lung (GSE134383) 
and idiopathic pulmonary fibrosis (IPF) mouse lung 
(E-HCAD-14) were downloaded to evaluate the distribu-
tion and expression of CRGs, key receptor–ligand pair of 
cellular communication and potential downstream path-
ways [26–30].

Table 2  Cox proportional hazard regression model for overall 
survival of COVID-19 patients

Variable Overall survival (OS)

Hazard ratio (95% CI) P

Categorical age

 < 40 1.00 (reference)

40–60 1.791 (0.212 to 15.119) 0.592

 > 60 2.118 (0.258 to 17.384) 0.485

Gender

Female 1.00 (reference)

Male 1.727 (1.154 to 2.585) 0.008*

Shortness of breath

No 1.00 (reference)

Yes 1.697 (1.054 to 2.731) 0.029*

Hypertension

No 1.00 (reference)

Yes 1.271 (0.853 to 1.893) 0.239

Cerebral infarction

No 1.00 (reference)

Yes 1.999 (0.921 to 4.342) 0.080

Imaging score

1.0–2.0 1.00 (reference)

3.0–4.0 0.638 (0.127 to 3.191) 0.584

5.0–6.0 0.472 (0.092 to 2.421) 0.368

7.0–8.0 0.603 (0.120 to 3.027) 0.539

Mode of ventilation

No oxygen 1.00 (reference)

OWNC 0.713 (0.058 to 8.810) 0.792

HFNC 8.181 (0.702 to 95.353) 0.093

NIV 18.714 (1.584 to 221.082) 0.020*

IV 21.148 (1.809 to 247.183) 0.015*

Categorical CEA

 > 7.3 1.00 (reference)

0–7.3 0.570 (0.354 to 0.917) 0.020*

Albumin (g/l)

 < 30 1.00 (reference)

30–35 0.894 (0.550 to 1.454) 0.653

35–40 0.594 (0.285 to 1.240) 0.164

 > 40 0.595 (0.072 to 4.937) 0.630

Neutrophils (× 109/l)

 < 1.8 1.00 (reference)

1.8–6.3 0.739 (0.162 to 3.370) 0.696

 > 6.3 0.630 (0.140 to 2.788) 0.538

Lymphocytes (× 109/l)

 < 1.1 1.00 (reference)

1.1–3.2 1.343 (0.773 to 2.332) 0.296

CRP (mg/l)

 > 160 1.00 (reference)

0–6 0.686 (0.056 to 8.457) 0.768

6–160 0.683 (0.452 to 1.023) 0.064

Hypokalemia

Table 2  (continued)

Variable Overall survival (OS)

Hazard ratio (95% CI) P

No 1.00 (reference)

Yes 1.068 (0.656 to 1.737) 0.792

https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
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Statistical analysis
Only p value of two-sided statistical testing lower than 
0.05 was considered statistically significant. All statisti-
cal analysis processes were performed with R version 
3.6.1 software (Institute for Statistics and Mathematics, 
Vienna, Austria; www.r-​proje​ct.​org).

Results
Patient characteristics and univariate analysis
A total of 300 hospitalized adult COVID-19 patients 
diagnosed by RT-PCR in Wuhan Jinyintan Hospital from 
January 1, 2020, to April 30, 2020, were included in this 
retrospective study.

The baseline characteristics of 300 COVID-19 patients 
are described in Fig.  1A and Table  1. The cohort com-
prised 170 males and 130 females, with a median age of 
63.0 (range 21.0–90.0) years. After removing 17 of 28 lab-
oratory indicators with missing values more than 20% of 
the sample size, the results of initial Kaplan–Meier sur-
vival analysis (Fig. 1C–D) and parameter or nonparamet-
ric tests (Fig. 1E) revealed that only five indicators (serum 
CEA, lymphocytes, neutrophils, CRP and albumin) were 
significantly associated with both the imaging score and 
prognosis of COVID-19 patients (Fig. 1B).

Cox proportional hazard model and nomogram
CEA is the only laboratory indicator with significant dif-
ference in all the univariate and multivariate analysis. 
To identify the optimal cutoff point of CEA, the cyclic 
log-rank test was conducted. The results revealed that 
CEA = 7.3  ng/ml was the optimal cutoff point with the 
most significant P value in the log-rank test (Fig. 2A, B). 
The variable of nasal catheter is integrated into a variable 
named “Mode of ventilation,” which is a variable with five 
levels (no oxygen; oxygen with nasal canula (OWNC); 
oxygen through high flow nasal canula (HFNC); nonin-
vasive ventilation (NIV); and invasive ventilation (IV)). 
Since mode of ventilation has the property of the ordered 
categorical variable, even if a patient only takes HFNC 
on admission, then the condition deteriorates and he or 
she receives invasive ventilation, the variable "Mode of 
ventilation" will be marked as IV but not HFNC. Then, 
11 potential indicators showing prognostic values in 
Kaplan–Meier analysis were incorporated into the ini-
tial Cox proportional hazard models, along with two 

demographic information (age and gender). The final 
multivariate models were constructed to confirm the 
effects of significant covariates in the initial models of 
the overall survival (OS) of COVID-19 patients (Fig. 2C 
and Table 2). Patients with lower CEA had better OS (HR 
0.57; 95% CI 0.354 to 0.920; P = 0.020) in the multivari-
ate model, suggesting CEA as a prognostic indicator for 
COVID-19 patients independently.

The prognostic nomogram was constructed based 
on the multivariate Cox model including CEA to pre-
dict the 3-week and 5-week overall survival probability 
of COVID-19 patients (Fig.  3A). The calibration curve 
and the ROC curve (AUC = 0.783) suggested acceptable 
calibration and discrimination of the nomogram, respec-
tively (Fig. 3B; Additional file 5: Figure S1A-B). Besides, 
the risk score (RS) was calculated by the formula gen-
erated by the multivariate Cox model. The scatter plot 
(Additional file  5: Figure S1C) and risk curve (Addi-
tional file 5: Figure S1D) of the model demonstrated the 
RS distribution based on risk score of each patient. The 
Kaplan–Meier curve suggested the prognostic value 
of the RS (Fig.  3C, P < 0.001). Additionally, the residual 
distribution of the multivariate model was accessed by 
the residual plot (Additional file 5: Figure S1E). Eventu-
ally, the RS was shown to be an independent prognos-
tic indicator for COVID-19 patients in both univariate 
(HR = 4.105, 95% CI (2.140 − 7.874), P < 0.001, Fig.  3D) 
and multivariate (HR = 1.053, 95% CI (1.026 − 1.082), 
P < 0.001, Fig.  3E) Cox regression model corrected by 
demographics.

Additionally, since many laboratory values were not 
analyzed as there were more than 20% missing data for 
17 out of 28 variables, raising some concern on the fact 
some prognosis factors could remain unidentified, the 
results of Kaplan–Meier analysis of 17 laboratory values 
with more than 20% missing data were illustrated by sur-
vival curves (Additiona file 1: Table S1; Additional file 5: 
Figure S1F). Some laboratory indicators, such as ALT 
(alanine aminotransferase), AST (aspartate aminotrans-
ferase), PLT (platelet), PCT (procalcitonin), HBDH 
(α-hydroxybutyrate dehydrogenase), LDH (lactate dehy-
drogenase), ferritin, IL-6 (interleukin 6), D-dimer, myo-
globin and HsTNT (high-sensitivity troponin) did show 
prognostic values in univariate analyses.

(See figure on next page.)
Fig. 3  Construction and model diagnosis of prognostic nomogram. The prognostic nomogram was constructed based on the multivariate Cox 
model including CEA, which could predict the 3-week and 5-week overall survival probability of COVID-19 patients (A). The significant prognostic 
factors in multivariate Cox model were marked with asterisks (*) in the nomogram (*: P < 0.05; **: P < 0.01). The time-related ROC curve suggested 
acceptable discrimination of the nomogram (B). Besides, the risk score (RS) was calculated by the formula generated by the multivariate Cox model. 
Kaplan–Meier curve suggested the prognostic value of the RS (C, P < 0.001). Eventually, in univariate (HR = 4.105, 95% CI (2.140 − 7.874), P < 0.001) 
(D) and multivariate (HR = 1.053, 95% CI (1.026 − 1.082), P < 0.001) (E) Cox regression model corrected by demographics, the RS was shown to be an 
independent prognostic indicator for COVID-19 patients

http://www.r-project.org
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Fig. 3  (See legend on previous page.)
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In order to further prove whether these laboratory 
indicators with significance in univariate analysis can 
be used as independent prognostic factors, we, respec-
tively, incorporated these variables into the multivari-
ate Cox regression model and conducted multivariate 
Cox regression analysis for 22 times (keep or remove 
missing values). In the cohort where missing values 
were removed, only the regression models, respectively, 
including AST, ALT, D-dimer and PLT were converged 
(due to the uneven distribution of some variables level 
and events number when removing missing values), 
suggesting that CEA was an independent prognostic 
factor in all multivariate models and both normal PLT 
(HR = 0.635, 95% CI (0.408 to 0.990), P = 0.045) and 
normal ferritin (HR = 0.094, 95% CI (0.010 to 0.860), 
P = 0.037) were also independent favorable factors 
(Additiona file 2: Supplementary material 1) compared 
abnormal levels. In the cohort keeping missing val-
ues, a total of 11 regression models were converged 
and CEA was an independent prognostic factor in all 
multivariate models. Additionally, patients with nor-
mal PLT (HR 0.624; 95% CI 0.406 to 0.960; P = 0.031), 
ferritin (HR 0.089; 95% CI 0.010 to 0.750; P = 0.026), 
IL − 6 (HR 0.494; 95% CI 0.264 to 0.930; P = 0.028) and 
myoglobin (HR 0.520; 95% CI 0.303 to 0.890; P = 0.017) 
had better OS than patients with abnormal levels of 
these laboratory indicators in the multivariate models 
(Additiona file 3: Supplementary material 2). However, 
most of these laboratory indicators did not meet the 
requirements for inclusion in multivariate analysis [31, 
32]. Inclusion of more covariates does not necessarily 
lead to higher accuracy, but instead to overfitting, and 
should be avoided. Thus, only five indicators (serum 
CEA, lymphocytes, neutrophils, CRP and albumin) 
were incorporated into the multivariate Cox model. 
And all these results suggested CEA as a prognostic 
indicator for COVID-19 patients independently.

Subgroup analysis
As smokers or patients with specific malignancies could 
have increased CEA levels without any correlation with 
COVID-19, all patients with primary malignancy were 
excluded from the study. Furthermore, in order to iden-
tify the association between CEA levels and smoking, 
two subgroup Cox proportional hazard regression mod-
els including smoking status (keep or remove missing val-
ues) were constructed, suggesting that the CEA level (HR 
0.547; 95% CI 0.318 to 0.940; P = 0.037) (remove miss-
ing values) (HR 0.620; 95% CI 0.384 to 0.990; P = 0.048) 
(keep missing values) was still an independent prognostic 
indicator for COVID-19 patients (SAdditiona file 4: Sup-
plementary material 3). Moreover, CRG expression levels 
were retrieved from the RNA-seq data of lung squamous 
cell carcinoma (LUSC) available from The Cancer 
Genome Atlas (TCGA). The results of rank-sum tests 
showed that CEA levels in both the serum of COVID-19 
patients (Additional file 6: Figure S2A) and the tissues of 
lung cancer (Additional file 6: Figure S2B-C) were signifi-
cantly higher in smokers than in non-smokers.

Additionally, to further evaluate the prognostic value of 
the mode of ventilation, the Kaplan–Meier analysis was 
performed. The results suggested that the mode of ven-
tilation was significantly associated with the prognosis of 
COVID-19 patients (P < 0.001) (Additional file  7: Figure 
S3).

Identification of the potential mechanism of CEA 
in COVID‑19
The scRNA-seq data of bronchoalveolar lavage fluid 
(BALF) from three patients with moderate COVID-19 
(C141, C142 and C144), six patients with severe or criti-
cal infection (C143, C145, C146, C148, C149 and C152) 
and three healthy controls (C51, C52 and C100) [15] 
were download from the GEO database. (This part was 
a secondary analysis of published data.) A UAMP analy-
sis was performed in 63,010 cells in BALF and clearly 
identified 20 clusters and 11 cell types including B cell, 

Fig. 4  Identification of the mechanism of abnormal CEA expression in COVID-19 patients’ and healthy volunteers’ bronchoalveolar lavage fluid 
(BALF). scRNA-seq data of bronchoalveolar lavage fluid (BALF) from three patients with moderate COVID-19 (C141, C142 and C144), six patients 
with severe or critical infection (C143, C145, C146, C148, C149 and C152) and three healthy controls (C51, C52 and C100) (accession no. GSE145926) 
were download from the GEO database. A UAMP analysis was performed in 63,010 cells in BALF and clearly identified 20 clusters and 11 cell types 
(B cell, CD4 + T cell, CD8 + T cell, dendritic cell, macrophage, monocyte, natural killer cell, neutrophil, T cell: gamma–delta, type I pneumocyte, 
type II pneumocyte) (A, B). All other immune cells (B cell, CD4 + T cell, CD8 + T cell, dendritic cell, monocyte, natural killer cell, neutrophil and T 
cell: gamma–delta) except for macrophages and type I and type II pneumocytes were dominantly differentiated and chemotactic in COVID-19 
patients’ BALF compared to healthy volunteer’s BALF (C). Furthermore, in terms of the expression and distribution of CRGs, CEACAM1, CEACAM3, 
CEACAM5, CEACAM6, CEACAM7, CEACAM8 and CEACAM21 were differentially expressing among moderate, severe/critical COVID-19 patients and 
healthy controls while CEACAM5 and CEACAM6 were significantly localized in the type II pneumocytes of COVID-19 patients (D, E). In particular, 
F summarized the absolute quantification of 50 hallmark gene sets calculated the GSVA in type I and type II pneumocytes, suggesting that the 
interferon response and cell proliferation signaling pathways were significantly activated in type II pneumocytes highly expressing CRGs of 
COVID-19 patients (F)

(See figure on next page.)
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CD4 + T cell, CD8 + T cell, dendritic cell, macrophage, 
monocyte, natural killer cell, neutrophil, T cell: gamma–
delta, type I pneumocyte, type II pneumocyte (Fig.  4A, 
B, Additional file  8: Figure S4A-B). The expression lev-
els and expression percentages of the marker genes in 
each cell type were displayed in Additional file 8: Figure 
S4C and S4D, respectively. Except for macrophages and 
type I and type II pneumocytes, all other immune cells 
(B cell, CD4 + T cell, CD8 + T cell, dendritic cell, mono-
cyte, natural killer cell, neutrophil and T cell: gamma–
delta) were dominantly differentiated and chemotactic 
in the BALF of COVID-19 patients compared to healthy 
volunteer (Fig. 4C). Furthermore, in terms of the expres-
sion and distribution of CRGs, CEACAM1, CEACAM3, 
CEACAM5, CEACAM6, CEACAM7, CEACAM8 and 
CEACAM21 were differentially expressed among mod-
erate, severe/critical COVID-19 patients and healthy 
controls while CEACAM5 and CEACAM6 were signifi-
cantly localized in the type II pneumocytes of COVID-19 
patients (Fig. 4D–E). Additionally, the cell cycle analysis 
suggested that COVID-19 patients were more likely to 
have cells in the G2M and S stages (Additional file 9: Fig-
ure S5A-B). Moreover, cellphoneDB analysis illustrated 
that pneumocytes of COVID-19 patients communicated 
extensively with other immune cells through CRGs. In 
particular, the number of type II pneumocyte was found 
to significantly increase in COVID-19 and have cross talk 
with neutrophils via CEACAM8-CEACAM6 (Fig.  4F, 
Additional file 9: Figure S5C). Figure 4G summarizes the 
absolute quantification of 50 hallmark gene sets calcu-
lated the GSVA in type I and type II pneumocytes, sug-
gesting that the interferon response and cell proliferation 
signaling pathways were significantly activated in type 
II pneumocytes highly expressing CRGs of COVID-19 
patients.

Similarly, the scRNA-seq data of 94,448 PBMCs from 
six patients with moderate COVID-19 and six healthy 
volunteers were also downloaded (This part was a sec-
ondary analysis of published data) [16]. The UAMP 
analysis identified 18 clusters and 10 cell types includ-
ing B cell, B cell Naïve, CD4 + T cell, CD8 + T cell, 
macrophage–monocyte, myelocyte, natural killer cell, 

neutrophil, plasma cell. platelets (Fig.  5A, B; Additional 
file 10: Figure S6A-B). All types of immune cell were sig-
nificantly differentiated and chemotactic in COVID-19 
patients’ PBMCs compared to healthy controls (Fig. 5C). 
CEACAM1, CEACAM4, CEACAM6 and CEACAM8 
were differentially expressed between PBMCs of COVID-
19 patients and healthy controls, while CEACAM1, 
CEACAM6 and CEACAM8 were significantly localized 
in a novel cell subtype annotated as developing neutro-
phils, which was significantly differentiated and chemo-
tactic (Fig.  5D, E). Additionally, dot plots summarized 
the results of Gene Ontology (GO) and the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) enrichment 
analysis. Based on GO analysis, the DEGs were associ-
ated with the neutrophil activation and degranulation 
(Fig.  5F). According to KEGG analysis, the DEGs were 
related to protein processing in endoplasmic reticulum, 
phagosome, Epstein–Barr virus infection and tubercu-
losis (Fig. 5F). Additionally, cell cycle analysis suggested 
that the developing neutrophils in COVID-19 patients’ 
PBMCs were all engaged in the G2M and S stages (Addi-
tional file 10: Figure S6C-D). And more extensive cellular 
communication analysis performed by iTALK algorithm 
(https://​github.​com/​Coolg​enome/​iTALK/) further illus-
trated mechanisms between the developing neutrophils 
and the other PBMCs (Additional file 10: Figure S6E-F). 
Eventually, all neutrophils were extracted separately and 
re-analyzed for dimensionality reduction. The UAMP 
analysis identified two cell types including canonical neu-
trophils and developing neutrophils (Additional file  11: 
Figure S7A-B). A significant increase in the number of 
developing neutrophils was found in COVID-19 while 
CEACAM1, CEACAM6 and CEACAM8 were also sig-
nificantly co-localized developing neutrophils (Addi-
tional file 11: Figure S7C-D).

The specific expressions of CRGs in COVID‑19 patients
The scRNA-seq data of ALI mouse lungs (https://​www.​
ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE13​4383) 
and IPF mouse lungs (https://​www.​ebi.​ac.​uk/​gxa/​sc/​
exper​iments/​E-​HCAD-​14/​resul​ts/​tsne) were also down-
loaded to evaluate the distribution and expression of 

(See figure on next page.)
Fig. 5  Identification of the mechanism of abnormal CEA expression in COVID-19 patients’ and healthy volunteers’ PBMCs scRNA-seq data of 94,448 
PBMCs from six patients with moderate COVID-19 and six healthy volunteers were download from the GEO database (accession no. GSE150728). 
The UAMP analysis identified 18 clusters and 10 cell types (B cell, B cell Naïve, CD4 + T cell, CD8 + T cell, macrophage–monocyte, myelocyte, natural 
killer cell, neutrophil, plasma cell, olatelets) (A, B). All types of immune cell were significantly differentiated and chemotactic in COVID-19 patients’ 
PBMCs compared to healthy controls (C). What is more, CEACAM1, CEACAM4, CEACAM6 and CEACAM8 were differentially expressing between 
PBMCs of COVID-19 patients and healthy controls while CEACAM1, CEACAM6 and CEACAM8 were significantly localized in a novel cell subtype 
annotated as “developing neutrophils,” which was significantly differentiated and chemotactic only in COVID-19 patients with ARDS reported by 
Wilk, A.J., et al. (D, E). Additionally, dot plots in F summarized the results of Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) enrichment analysis of the DEGs of the developing neutrophils (F)

https://github.com/Coolgenome/iTALK/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE134383
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE134383
https://www.ebi.ac.uk/gxa/sc/experiments/E-HCAD-14/results/tsne
https://www.ebi.ac.uk/gxa/sc/experiments/E-HCAD-14/results/tsne
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CRGs, key receptor–ligand pair of cellular communica-
tion and potential downstream pathways [26–30]. The 
UAMP analysis identified 18 clusters and 6 cell types in 
ALI mouse lungs while there were no abnormal expres-
sions of CRGs (Fig. 6A–C). The interferon response and 
cell proliferation signaling pathways were not signifi-
cantly activated in type II pneumocytes of ALI mouse 
lungs (Fig. 6D). Similarly, abnormal expressions of CRGs 
were also not detected in 31 clusters and 10 cell types 
of IPF mouse lungs (Fig.  6E–G). Besides, the heatmap 
of GSVA also showed that the interferon response and 
cell proliferation signaling pathways were not activated 
in type II pneumocytes of IPF mouse lungs (Fig.  6H). 
Therefore, abnormal expressions of CRGs in COVID-19 
patients were COVID-19-specific and not related to CEA 
involvement in ALI and IPF.

Protein–protein interaction (PPI) network of CRGs
String [33] database was utilized to construct the PPI 
network of CRGs, illustrating that several CRGs had 
direct interaction with a variety of immune cell surface 
markers (Fig.  7A–C). Besides, the protein expression 
levels of CRGs in normal lung samples of The Human 
Protein Atlas were also checked [34], showing that 
only CEACAM21 was stained moderately in pneumo-
cytes while the proteins of CEACAM5, CEACAM6 and 
CEACAM8 were not detected in normal lung samples 
(Fig.  7D). To sum up, the prognostic value of CEA was 
identified in COVID-19 patients and the developing 
neutrophils/neutrophil progenitors (highly expressed 
CEACAM8, ELANE and LYZ) could have the cross talk 
with type II pneumocyte (highly expressed CEACAM5 
and CEACAM6) via CEACAM8-CEACAM6.

Discussion
The COVID-19 has induced a worldwide epidemiologi-
cal event with a high infectivity and mortality [35]. Iden-
tification of predicting biomarkers may assist clinicians 
in decision-making. However, the candidate predictors 
of COVID-19 remain unclear. In this study, we identified 
CEA as a potential biomarker for COVID-19 patients. To 
further explore the underlying mechanism, we used the 

single-cell transcriptomics of BALF from patients with 
or without COVID-19, along with the scRNA-seq data of 
ALI and IPF mouse lungs. We found that the developing 
neutrophils/neutrophil progenitors can have the cross 
talk with type II pneumocyte via CEACAM8-CEACAM6 
in COVID-19 but not ALI and IPF.

The predicting biomarkers are important for clinical 
decision-making; thus, many efforts have been made to 
identify them in patients with COVID-19 pneumonia. 
Previously, the inflammatory biomarkers (IL-6, IL-8, 
IL-10 and ratio of IL-6 to IL-10), patients’ characteris-
tics (age) and chest CT images (consolidation, emphy-
sema and residual healthy lung parenchyma) have been 
reported to predict the prognosis of COVID-19 patients 
[8, 36]. In addition, the innovative method of machine 
learning is also used to precisely evaluate the COVID-19 
pneumonia [37].

In this study, based on the clinical information of hos-
pitalized adult COVID-19 patients, we identified CEA as 
a prognostic indicator for COVID-19 patients indepen-
dently. Additionally, the prognostic nomogram includ-
ing CEA was also constructed with a good applicability 
(AUC = 0.776). CEA, initially considered as an oncofetal 
protein, is an epithelial cell glycoprotein with a molecu-
lar mass of 180–200 kDa. At present, CEA is viewed as a 
normal epithelial molecule and its abnormal expression 
is generally found in tumors [38].

In COVID-19, we also found that CEACAM8 is highly 
expressed in the developing neutrophils/neutrophil pro-
genitors, while CEACAM5 and CEACAM6 are highly 
expressed in type II pneumocyte. In humans, CEA and 
CEA subfamily members (CEACAMs) are cell sur-
face heavily glycosylated proteins. In the bacterial or 
viral infection, CEA and CEACAM1 participate in the 
adherence of enteric bacteria to the apical membrane of 
colonic M cells in the human gut mucosa [39]. Besides, in 
the human respiratory tract, CEACAM1 and CEACAM5 
increase the host susceptibility to bacterial infection 
upon viral challenge [40].

COVID-19 can lead to fatal comorbidities, especially 
acute respiratory distress syndrome (ARDS), which 
mainly caused by the injury to the alveolar epithelial cells 

Fig. 6  The abnormal expressions of CRGs in COVID-19 patients were COVID-19-specific and not related to CEA involvement in ALI and IPF. Due to 
the close correlation between CEA and ALI and IPF, we initially speculated that the poor prognosis of COVID-19 patients mediated by CEA might 
be related to ALI and IPF pathophysiologically. To validate this hypothesis, scRNA-seq data of ALI and IPF mouse lungs were also downloaded 
to evaluated the distribution and expression of CRGs, key receptor–ligand pair of cellular communication and potential downstream pathways. 
The UAMP analysis identified 18 clusters and 6 cell types in ALI mouse lungs while there were no abnormal expressions of CRGs (A, C). And the 
interferon response and cell proliferation signaling pathways were not significantly activated in type II pneumocytes of ALI mouse lungs (D). 
Similarly, abnormal expressions of CRGs were also not detected in 31 clusters and 10 cell types of IPF mouse lungs (E, G). Besides, the heatmap of 
GSVA also showed that the interferon response and cell proliferation signaling pathways were not activated in type II pneumocytes of IPF mouse 
lungs (H)

(See figure on next page.)



Page 15 of 20Huang et al. Crit Care          (2021) 25:234 	

Fig. 6  (See legend on previous page.)



Page 16 of 20Huang et al. Crit Care          (2021) 25:234 

[41]. And it has been reported that the major risk fac-
tors for severe COVID-19 are shared with IPF, namely 
increasing age, male sex and comorbidities such as 
hypertension and diabetes [42]. Due to the close corre-
lation between CEA and ALI/IPF, we initially speculated 
that the poor prognosis of COVID-19 patients mediated 
by CEA might be related to ALI and IPF pathophysiologi-
cally. Because there are no natural models for IPF and 
ALI, the use of animal models that reproduce key known 
features of the disease is warranted. Direct lung infection 
is the leading cause of ARDS/ALI and can be modeled in 
mice using live pathogens and sterile models of inflam-
mation while the bleomycin mouse model has identified 
many of the molecular and cellular mechanisms rec-
ognized as being important in pathogenesis of IPF [43, 
44]. Therefore to validate this hypothesis, scRNA-seq 
data of ALI mouse lungs and IPF mouse lungs were also 
downloaded to evaluate the distribution and expression 
of CRGs, key receptor–ligand pair of cellular commu-
nication and potential downstream pathways [26–30]. 
The cross talk via CEACAM8-CEACAM6 was found 
between developing neutrophils and type II pneumo-
cyte in COVID-19 but not ALI and IPF suggesting that 
during COVID-19 infection process, the differentiated 
developing neutrophils might regulate some biologi-
cal processes of type II pneumocyte. The previous study 
reported that some CEACAMs were shown to be recep-
tors that facilitate entry of middle east respiratory syn-
drome coronavirus [45]. And CEACAM were involved 
in cell–cell recognition and modulate cellular processes 
that range from the shaping of tissue architecture and 
neovascularization to the regulation of insulin homeo-
stasis and T-cell proliferation [46]. However, the role of 
CEACAM in COVID-19 remains hypothetical in ARDS 
pathophysiology.

In COVID-19, the developing neutrophils were 
found to have cross talk with type II pneumocyte via 
CEACAM8-CEACAM6. Generally, CEACAM can be 
engaged in cellular communication which may affect 
various signal transduction processes related to cell acti-
vation, differentiation and apoptosis [47, 48]. In this pro-
cess, CEACAM8-CEACAM6 regulation network may 
promote the differentiation of developing neutrophils, 
which are the newly annotated cells in patients with 
ARDS and represent neutrophils at various developmen-
tal stages [16]. The developing neutrophils may further 

lead to COVID-19 progression and induce the ARDS. 
Besides, it also regulates the proliferation of type II pneu-
mocyte, which highly expresses ACE2 and serves as the 
major infected cell type by SARS-CoV-2 [49].

CEA level has been reported to be correlated with 
severity of several lung disease [28, 50–52]. The close 
association between respiratory epithelial damage and 
the release of CEA in IPF has been validated by a study 
based on BALF and serum measurement of CEA [50]. 
Acute exacerbations of IPF is pathologically manifested 
as diffuse acute lung injury (DALI) on the basis of pul-
monary interstitial fibrosis [28]. Since COVID-19 pneu-
monia belongs to interstitial pneumonia and IPF was the 
result of the final fibrosis of interstitial pneumonia, we 
initially speculated that the poor prognosis of COVID-19 
patients mediated by CEA might be related to ALI and 
IPF pathophysiologically. However, abnormal expression 
of CRGs was not found in both scRNA-seq samples of 
ALI and IPF while no developing neutrophils were anno-
tated. Thus, abnormal expressions of CRGs in COVID-19 
patients were COVID-19-specific and not related to CEA 
involvement in ALI and IPF.

To the best of our knowledge, the present study was 
the first to systematically evaluate the prognostic roles 
of CEA in COVID-19 patients and implies the potential 
mechanism in BALF and PMBC. The results implied the 
potential for clinical application. However, several limita-
tions were present in this study. First, the retrospective 
nature of the present study was a limitation compared 
with a prospective study. Secondly, the generalizability of 
the nomogram had not been validated externally by the 
multicenter data, nor had the potential mechanism of 
CRGs been verified by wet experiments. Third, the case 
number of scRNA-seq data of BALF from three patients 
with moderate COVID-19, six patients with severe or 
critical infection and three healthy controls was limited. 
Fourth, smokers could have increased CEA levels with-
out any correlation with COVID-19. However, smoking 
status was unknown for more than 25% of the patients. 
Any conclusion seems therefore debatable. Due to the 
limited number of smoking patients in this study (11/300) 
and the large number of patients with unknown smoking 
status (79/300), the relationship between smoking status 
and CEA in COVID-19 patients needs to be further stud-
ied. Last but not least, the limitation of sample size may 
contribute to the major bias of this study. Subsequent 

(See figure on next page.)
Fig. 7  Protein–protein interaction (PPI) network of CRGs. String database was used to construct the PPI network of CRGs, illustrating that several 
CRGs had direct protein–protein interactions with a variety of immune cell surface markers (A, C). Besides, the protein expression levels of CRGs in 
normal lung samples of The Human Protein Atlas were also checked, showing that only CEACAM21 were stained moderately in pneumocytes while 
the proteins of CEACAM5, CEACAM6 and CEACAM8 were not detected in normal lung samples (D)
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studies should focus on clinical studies with larger sam-
ple sizes and higher levels of evidence and basic studies 
exploring the molecular mechanisms of key biomarkers.

Conclusion
This study identifies prognostic roles of CEA in 
COVID-19 patients and implies the potential mecha-
nism of CEACAM8-CEACAM6 in the progression of 
COVID-19 by regulating the cellular communication 
of developing neutrophils and type II pneumocyte. The 
abnormal expressions of CRGs in COVID-19 patients 
were COVID-19-specific and not related to CEA involve-
ment in ALI and IPF.
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Additional file 1. Table S1: Results of Kaplan–Meier survival analysis of 17 
laboratory values with more than 20% missing data.

Additional file 2. Supplementary material 1: Converged multivari-
ate Cox regression model including 5 potential prognostic laboratory 
indicators with significance in univariate analysis (remove missing values). 
In the cohort where missing values were removed, only the regression 
models, respectively, including AST, ALT, ferritin, D-dimer and PLT were 
converged (due to the uneven distribution of some variables level and 
events number when removing missing values), suggesting that CEA was 
an independent prognostic factor in all multivariate models and both 
normal PLT (HR = 0.635, 95% CI (0.408 to 0.990), P = 0.045) and normal fer-
ritin (HR = 0.094, 95% CI (0.010 to 0.860), P = 0.037) were also independent 
favorable factors compared abnormal levels.

Additional file 3. Supplementary material 2: Converged multivariate 
Cox regression model including 11 potential prognostic laboratory indica-
tors with significance in univariate analysis (keep missing values). In the 
cohort keeping missing values, a total of 11 regression models were con-
verged and CEA was an independent prognostic factor in all multivariate 
models. Additionally, patients with normal PLT (HR 0.624; 95% CI 0.406 to 
0.960; P = 0.031), ferritin (HR 0.089; 95% CI 0.010 to 0.750; P = 0.026), IL − 6 
(HR 0.494; 95% CI 0.264 to 0.930; P = 0.028) and myoglobin (HR 0.520; 95% 
CI 0.303 to 0.890; P = 0.017) had better OS than patients with abnormal 
levels of these laboratory indicators in the multivariate models.

Additional file 4: Supplementary material 3: Multivariate Cox regression 
model including smoking information (keep or remove missing values). As 
smokers or patients with specific malignancies could have increased CEA 
levels without any correlation with COVID-19, all patients with primary 
malignancy were excluded from the study. Furthermore, in order to iden-
tify the association between CEA levels and smoking, two subgroup Cox 
proportional hazard regression models including smoking status (keep or 
remove missing values) were constructed, suggesting that the CEA level 
(HR 0.547; 95% CI 0.318 to 0.940; P = 0.037) (remove missing values) (HR 
0.620; 95% CI 0.384 to 0.990; P = 0.048) (keep missing values) was still an 
independent prognostic indicator for COVID-19 patients.

Additional file 5. Figure S1: Model diagnosis of prognostic nomogram. 
The calibration curve and time-related ROC suggested acceptable calibra-
tion and discrimination of the nomogram (A-B). Besides, the risk score (RS) 
was calculated by the formula generated by the multivariate Cox model. 
The scatter plot (C) and risk curve (D) of the model demonstrated the RS 
distribution based on risk score of each patient. And the residual distribu-
tion of the multivariate model was accessed by the residual plot (E). 
Additionally, the results of Kaplan–Meier analysis of 17 laboratory values 
with more than 20% missing data were illustrated by survival curves (F).

Additional file 6. Figure S2: Subgroup analysis between CEA and smok-
ing status. The CRG expression levels were retrieved from the RNA-seq 
data of Lung Squamous Cell Carcinoma (LUSC) available from The Cancer 
Genome Atlas (TCGA). The results of rank-sum tests showed that CEA 
levels in both the serum of COVID-19 patients (A) and the tissues of lung 
cancer (B-C) were significantly higher in smokers than in non-smokers. 
Therefore, smoking status of patients should be considered when CEA 
was considered as a prognostic indicator.

Additional file 7. Figure S3: Kaplan–Meier curve evaluating the prog-
nostic value of the mode of ventilation. To further evaluate the prognostic 
value of mode of ventilation, the Kaplan–Meier analysis was performed. 
The results suggested that mode of ventilation was significantly associ-
ated with the prognosis of COVID-19 patients (P < 0.001).

Additional file 8. Figure S4: Identification of cellular subpopulation in 
COVID-19 patients’ and healthy volunteers’ bronchoalveolar lavage fluid 
(BALF). scRNA-seq data of bronchoalveolar lavage fluid (BALF) from three 
patients with moderate COVID-19 (C141, C142 and C144), six patients with 
severe or critical infection (C143, C145, C146, C148, C149 and C152) and 
three healthy controls (C51, C52 and C100) (accession no. GSE145926) 
were download from the GEO database. A UAMP analysis was performed 
in 63,010 cells in BALF and clearly identified 20 clusters and 11 cell types 
(B cell, CD4 + T cell, CD8 + T cell, dendritic cell, macrophage, monocyte, 
natural killer cell, neutrophil, T cell: gammadelta, type I pneumocyte, type 
II pneumocyte) (A-B). The expression levels and expression percentages of 
the marker genes in each cell type were displayed in figure S5C and figure 
S5D, respectively (C-D).

Additional file 9. Figure S5: Cell cycle and cellphoneDB analysis in 
COVID-19 patients’ and healthy volunteers’ bronchoalveolar lavage fluid 
(BALF). Cell cycle analysis suggested that COVID-19 patients were more 
likely to have cells in the G2M and S stages (A-B). And cellphoneDB analy-
sis illustrated that pneumocytes of COVID-19 patients communicated 
extensively with other immune cells through CRGs (C).

Additional file 10. Figure S6:  Identification of cellular subpopulation 
in COVID-19 patients’ and healthy volunteers’ PBMCs. The UAMP analysis 
identified 18 clusters and 10 cell types (B cell, B cell Naïve, CD4 + T cell, 
CD8 + T cell, macrophage–monocyte, myelocyte, natural killer cell, neutro-
phil, plasma cell. platelets) (A-B). Besides, cell cycle analysis suggested that 
the developing neutrophils in COVID-19 patients’ PBMCs were all engaged 
in the G2M and S stages (C-D). And a more extensive cellular communica-
tion analysis performed by iTALK algorithm further illustrated mechanisms 
between the developing neutrophils and the other PBMCs (E–F)

Additional file 11. Figure S7: Subgroup analysis for all neutrophils in 
COVID-19 patients’ and healthy volunteers’ PBMCs. All neutrophils were 
extracted separately and re-analyzed for dimensionality reduction. The 
UAMP analysis identified two cell types including canonical neutrophils 
and developing neutrophils (A-B). A significant increase in the number 
of developing neutrophils was found in COVID-19 while CEACAM1, 
CEACAM6 and CEACAM8 were also significantly co-localized developing 
neutrophils (C-D).
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