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Abstract: Understanding the mechanisms of deformation and fracture of metastable β titanium alloys
is of great significance for improving formability and service life. By combining the in-situ tensile
test, TEM characterization and EBSD analysis, the tensile deformation behavior, activation of slip
systems, crack initiation, and propagation of a high strength metastable β titanium alloy (Ti-5Cr-4Al-
4Zr-3Mo-2W-0.8Fe) with equiaxed microstructure are investigated. The equiaxed microstructure is
composed of primary α (αp) phase, transformed β (βt) matrix phase, and secondary α (αs) phase.
In contrast to the hexagonal αp grain with limited slip systems, the body-centered βt matrix has
more slip systems, however the hindering effect of αs phases on dislocation slip leads to the different
deformability of the αp phase and βt matrix. The equiaxed αp grains are more prone to deformation
and rotation to coordinate the overall deformation. The shear band leads to the formation of sub-grain
boundary and even the fragmentation of αp grains. As a result, the microvoids tend to nucleate at the
grain boundary, phase interface, slip band, and shear band. The inhomogeneous deformation in the
plastic deformation zone around the crack tip is the primary cause of damage. The crack propagation
caused by microvoids coalescence advances along the grain boundaries and phase interfaces in
the form of intergranular, and along the activated slip systems and shear bands in the form of
transgranular. Pinpointing the situation in the equiaxed microstructure and combining that in other
typical microstructures will help to summarize the universal deformation and fracture mechanisms
of metastable β titanium alloy, and provide a basis for alloy design and microstructure tailoring.

Keywords: metastable β titanium alloy; equiaxed microstructure; dislocation slip; crack propagation;
in-situ tensile test

1. Introduction

Titanium alloys are the fundamental materials in the fields of aerospace, marine,
and medicine, and have been the long-standing research focus of material scientists [1].
In particular, metastable β titanium alloys have been widely applied in the structural
components of the aviation industry due to their high specific strengths, better crack
resistance, and excellent corrosion resistance [2,3]. Through a series of heat treatment
and hot working, the microstructure of metastable β titanium alloys can be tailored to
achieve the matching of high strength and well plasticity [4,5]. Compared with several
typical microstructures, it is found that the equiaxed microstructure can help the alloys
to achieve the above objective to the greatest extent [6]. Therefore, better understanding
of the dependence of mechanical property and deformation capacity on the equiaxed
microstructure is the key to improve the formability and service life of the alloys.

Recently, many works have been conducted on the deformation and fracture mecha-
nisms of metastable β titanium alloys. Wang et al. [7,8] studied the tensile deformation and
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fracture behaviors of a new metastable β titanium alloy with single β phase and lamellar
microstructure, successively. Firstly, the general mechanisms of deformation and fracture
of metastable β titanium alloys was revealed by investigating the slip transfer and crack
propagation at β grain boundaries; subsequently, the research scope was expended to slip
transfer and crack propagation among various obstacles in the lamellar microstructure,
including α lamella, β interlayer, phase interface, and grain boundary. Chen et al. [9]
studied the effects of microstructure variables on the deformation and fracture mecha-
nisms of the Ti-7333 alloy with bimodal microstructure, and found that the precipitation
of secondary α phase significantly increases the density of the α/β phase interface and
effectively hinders the dislocation movement, and the sole microvoids coalescence fracture
mode and the mixed fracture mode respectively show relatively straight and tortuous crack
propagation paths. These studies confirm that the microstructure and deformation degree
determine the dominant deformation modes, including dislocation slip, stress-induced
martensitic transformation, mechanical twinning, grain rotation and sliding, etc., and show
the change of crack propagation modes when the crack meets different microstructures
during the propagation process. However, the equiaxial microstructure is not covered.
Liu et al. [10] ex-situ investigated the plastic deformation mode and slip transfer between
the phase interface of the Ti-5Al-2.5Cr-0.5Fe-4.5Mo-1Sn-2Zr-3Zn alloy with equiaxed α

grains, and revealed the dependence of deformation on the activation of slip systems with
various Schmid factors (SF). In this work, the crystallographic orientation of the alloy was
systematically characterized. However, further study on the relationship between crack
propagation and crystallographic orientation could not be conducted unfortunately by
ex-situ technology.

In-situ characterization techniques can observe the deformation, damage, and fracture
of materials in real time, so they are widely used in titanium alloy research. Zhang et al. [11]
observed the tensile deformation of the near-β titanium alloy Ti-17 with bimodal microstruc-
ture under in-situ scanning electron microscopy (SEM), and explored that the basal and
prismatic slips are the dominant slip mode of α phase. Hémery et al. [12] studied the
slip transfer in the Ti-6Al-4V alloy with a bimodal microstructure, and suggested that it
is related to the grain boundaries and geometric compatibility factor m’. Jia et al. [13]
researched the deformation mechanism of the Ti60 alloy with bimodal microstructure, and
found that the prismatic slip system is the most easily activated in the equiaxed α grains,
while the reason for the poor deformation ability of large lamellar α colonies is that there
are relatively few slip systems. In addition to the in-situ SEM, the in-situ X-ray diffraction
(XRD) [14], in-situ electron backscatter diffraction (EBSD) [15], in-situ transmission electron
microscopy (TEM) [16], and other in-situ characterization techniques have also been used
to study the real-time changes of phase composition, grain orientation, and dislocation con-
figuration of titanium alloys during thermal-mechanical processing. In view of the excellent
comprehensive properties of metastable β titanium alloys with equiaxed microstructure, it
is of practical significance to in-situ study the phenomenon and mechanism of deformation
and fracture in the equiaxed microstructure.

In this work, the tensile deformation and fracture mechanisms of a strength and plas-
ticity well-matched metastable β titanium alloy Ti-5Cr-4Al-4Zr-3Mo-2W-0.8Fe (Ti-54432)
with equiaxed microstructure are studied by an in-situ tensile test under SEM. Combined
with TEM characterization and EBSD analysis, the microstructure changes during defor-
mation, damage, and fracture were studied, including the activation of slip systems, the
elongation, sliding and rotation of grains, the formation of shear band and sub-grain, the
initiation and propagation of crack, as well as the morphology and composition of the
fracture. Meanwhile, the underlying mechanism and influence rule of the deformation and
fracture were discussed.
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2. Experimental Procedure and Analysis Method
2.1. Material Preparation

The test material is a new high strength metastable β titanium alloy Ti-54432, which
is produced by Northwest Institute for Nonferrous Metal Research, China. The chemical
composition (wt.%) of this alloy is 4.10 Al, 5.33 Cr, 3.99 Zr, 2.63 Mo, 2.09 W, 0.83 Fe, 0.08 O,
and balance Ti. A cast ingot was fabricated by the vacuum self-consuming arc-melting
three times. The ingot was successively forged at 1150 ◦C and 950 ◦C (in β phase region) to
refine the grains. Then the β-forged billet was re-forged at 830 ◦C (in a+β phase region).
In each of the above three forging steps, the height reduction of the billet was more than
50%. The β transus temperature (Tβ) of the alloy was determined to be 860 ± 5 ◦C by
the metallographic method. Some flakes were cut by wire EDM from the forged billet to
prepare the tensile specimen, and the slow-feeding method of wire walking was adopted
in the cutting process to ensure the surface quality of the specimen. Figure 1 shows the
shape and dimension of in-situ tensile test specimen. To obtain the desired equiaxed
microstructure, the tensile specimens were solution treated at 830 ◦C for 1 h plus air cooled
to room temperature, and then aged at 600 ◦C for 6 h.
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Figure 1. Sketch of shape and dimension of in-situ tensile test specimen (unit: mm).

2.2. In-Situ Tensile Test and Microstructure Characterization

The in-situ tensile tests were conducted at a tensile speed of 0.05 mm/min in a Gatan
loading auxiliary system installed on a Quanta FEG-450 SEM (FEI, Hillsboro, OR, USA).
Several interruptions were performed during the in-situ tensile process to observe the
microstructure evolution of the alloy, at this moment the tensile speed was reduced to 0.
The observation area was framed near the tip of the V-notch on the specimen. The XRD
analysis of the phase component of the alloy was conducted by a Bruker D8 Advance X-ray
diffractometer (Bruker, Billerica, MA, USA) with Cu-Kα. The fracture morphology was
observed by a field emission JSM-6460 SEM (JEOL, Showa, Tokyo, Japan) at an acceler-
ating voltage of 15 kV. The crystallographic orientation was acquired by EBSD analysis
combined with the HKL Channel 5 software (Oxford Instruments, Witney, Oxon, UK) at
the acceleration voltage of 20 kV and a step size of 0.7 µm. The EBSD specimens were
electrochemically polished in an electrolyte mix of perchloric acid and glacial acetic acid
with a volume proportion of 1:16 at a voltage of 60 V, an electric current of 0.7 A, and a
dwelling time of 30 s. The microstructure characteristics were characterized by a JEM-200
CX TEM (JEOL, Showa, Tokyo, Japan) at 200 kV, and the TEM specimens were taken from
the severe plastic deformation zone near the fracture on the tensile specimen. In other
words, the farther away from the fracture, the less plastic deformation, thus the sampling
location should be as close to the fracture as possible. In detail, some flakes were cut by
wire EDM, and sanded down to about 40 µm. Then some 3-mm diameter disks were cut
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from the flakes and twin-jet electropolished in a solution of 60% methanol, 35% butanol,
and 5% perchloric acid (in volume) at 30 V and −20 ◦C.

2.3. Identification of Activated Slip System

The activated slip systems were identified by analyzing the slip trace and the calculated
value of the corresponding SF [17]. Since the dislocation is difficult to move in <c+a> type
slip systems with large critical shear stress, only the activation of <a> type slip systems in
the α phase is considered here. The crystallographic orientation of α grain in the interest
region was determined by EBSD data analysis. The SF is used to evaluate the difficulty of
slip system’s activation, and the calculation formula of its value is [11,18,19]:

SF =
nTc

|n| · |Tc|
· sTc

|s| · |Tc|
, (1)

where, n represents the unit vector in the normal direction of slip plane, s represents the
unit vector in the slip direction, and Tc represents the unit vector in the stress axis direction
in crystal coordinates. The larger the SF value of a slip system is, the easier it is to be
activated, and the slip system with the largest SF value is the principal slip system.

In addition, there is an effect of the angle between the slip plane in a specific slip
system and the stress axis on the activation of the slip systems. Therefore, whether the slip
system is activated, can be judged by comparing the calculated value θc with the measured
value θm (from SEM image) of this angle when analyzing the slip traces, and the calculation
formula of θc:

θc = arccos
STTc

|ST | · |Tc|
, (2)

where, ST is the unit vector of the intersecting line between the slip plane and the specimen
observation surface. ST = n × Nc, where Nc is the unit vector in the normal direction of
the specimen observation surface. In general, the criterion of ±5◦ is used to match θc
and θm. If the deviation between θc and θm is less than 5◦, the slip system is determined
to be activated, while if the deviation is greater than 5◦, the slip system is considered to
be inhibited.

3. Results
3.1. Tensile Deformation
3.1.1. Stress-Strain Relationship

Figure 2 illustrates the stress-strain relationship of the Ti-54432 alloy during the in-situ
tensile test with several interruptions. The curves can be divided into elastic deformation
segment, plastic deformation segment, and transient fracture segment. In the plastic
deformation stage, due to the selection of the specimen with notch and the stress release
during the interruptions of the in-situ tensile test, the stress value on the tensile curve is
relatively low. In fact, the yield strength, tensile strength, and elongation of the Ti-54432
alloy with equiaxed microstructure measured by a uniaxial tensile test are about 1122 MPa,
1148 MPa, and 20%, respectively. The reason for the smaller stress of a notched specimen in
the in-situ tensile test than that of a standard specimen in the uniaxial tensile test is that the
internal stress states of the two specimens under uniaxial tension are not same. In general,
the shear strength of metal materials is much lower than the tensile strength. The stress
state near the notch is no longer a simple uniaxial tensile stress state, the existence of shear
stress leads to more deformation of the specimen. Even so, it also can be seen from the
stress-strain relationship during tensile deformation that the strength and plasticity of the
Ti-54432 alloy with equiaxed microstructure are well matched.
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Figure 2. Stress-strain curve of the Ti-54432 alloy in the in-situ tensile test with several interruptions.

3.1.2. Deformation and Rotation of Grains

Figure 3 shows the initial microstructure of the Ti-54432 alloy before the in-situ tensile
test. In the SEM image, not only the equiaxed primary α (αp) phase and the transformed β

(βt) matrix phase, but also a small quantity of the short rod-like secondary α (αs) phase
on the βt matrix can be observed. The XRD pattern confirms the coexistence of α and β

phases, and the quantitative analysis shows that the α phases account for 55.4% (volume
fraction) and the remaining 44.6% is accounted by the β phases. Due to the low solution
temperature, a large number of αp grains are formed during the solution process, which
inhibit the nucleation and precipitation of the αs phase on βt matrix during the subsequent
aging process, thus the amount of the αs phase is small.
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Figure 4 shows the microstructure evolution of the Ti-54432 alloy during the in-
situ tensile test, from which the size change of the equiaxed αp grains can be measured.
Two adjacent equiaxed αp grains are labeled as the measurement objects, and the length
between the farthest two points in the two grains are measured. The initial distance between
the two points in the tensile specimen with a strain of 4.8% is 5.304 µm. When the strain
increases to 5.9% and 7.5%, the distance between the two points becomes 5.362 µm and
5.450 µm, respectively. In other words, the strains of equiaxed grains are respectively
about 1.09% and 2.75% when the corresponding strain increments of the specimen are
1.1% and 2.7%. The strain of equiaxed αp grains and the macroscopic strain of alloy
are very close, indicating that the deformation of the alloy is mainly contributed by the
deformation of equiaxed αp grains, and the adjacent grains elongate along the tensile
direction simultaneously to coordinate the deformation [9].
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In the process of tensile deformation, the substructure evolution in the grain depends
on the cumulative (maximum) misorientation [20–22]. The orientation inside the grain
is consistent before deformation. Four grains in the deformed Ti-54432 alloy are selected
for crystallographic orientation analysis, including two α grains and two β grains, as
shown in Figure 5. For the two α grains, their cumulative misorientations, namely the
misorientations between two pixels along the arrow direction (A-A’ and B-B’), are 20◦ and
12◦, respectively. This indicates that the α grains rotate along the arrow direction and
seriously deform by the dislocation slip, accumulating abundant dislocations within the
grains. For the two β grains, the cumulative misorientations (C-C’ and D-D’) are 18◦ and
12◦, respectively, indicating that the β grains also rotate. As a result, the large angular
rotation and serious deformation adjust the grains to a crystallographic orientation that is
more conducive to the dislocation slip, but also provide the possibility for the nucleation of
microvoids at the grain boundary.



Materials 2022, 15, 1325 7 of 17
Materials 2022, 15, x FOR PEER REVIEW 7 of 17 
 

 

 
Figure 5. Misorientation of selected four grains in the Ti-54432 alloy after the in-situ tensile test: (a) 
α grain 1; (b) α grain 2; (c) β grain 1; and (d) β grain 2. 

3.2. Damage and Fracture 
3.2.1. Damage Evolution 

Figure 6 presents the damage evolution of the Ti-54432 alloy during the in-situ tensile 
test. When obvious plastic deformation occurs, some slip lines appear near the tip of the 
V-notch, and the surface of the specimen changes from flat to rough, showing the charac-
teristic of fluctuation. The sliding and rotation of α and β grains result in the nucleation 
of microvoids at the phase interfaces. As the deformation continues, the stress concentra-
tion and inhomogeneous deformation near the V-notch intensify, and the microvoids 
grow up and gradually coalesce into microcracks. Several microcracks in the shear band 
near the tip of the V-notch converge to form a principal crack, which then expands rapidly 
to split the specimen. Although the overall crack propagation path is relatively straight, 
the local magnification of the crack tip region shows that the crack actually has several 
slight deflections during propagation. At the same time, more grains around the V-notch 
participate in deformation, and the severe plastic deformation in the crack initiation re-
gion makes the specimen surface more uneven. Some secondary microcracks appear in 
the deformation zone on both sides of the principal crack. 
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(a) α grain 1; (b) α grain 2; (c) β grain 1; and (d) β grain 2.

3.2. Damage and Fracture
3.2.1. Damage Evolution

Figure 6 presents the damage evolution of the Ti-54432 alloy during the in-situ tensile
test. When obvious plastic deformation occurs, some slip lines appear near the tip of the V-
notch, and the surface of the specimen changes from flat to rough, showing the characteristic
of fluctuation. The sliding and rotation of α and β grains result in the nucleation of
microvoids at the phase interfaces. As the deformation continues, the stress concentration
and inhomogeneous deformation near the V-notch intensify, and the microvoids grow
up and gradually coalesce into microcracks. Several microcracks in the shear band near
the tip of the V-notch converge to form a principal crack, which then expands rapidly
to split the specimen. Although the overall crack propagation path is relatively straight,
the local magnification of the crack tip region shows that the crack actually has several
slight deflections during propagation. At the same time, more grains around the V-notch
participate in deformation, and the severe plastic deformation in the crack initiation region
makes the specimen surface more uneven. Some secondary microcracks appear in the
deformation zone on both sides of the principal crack.
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3.2.2. Fracture Mode

Figure 7 displays the fracture morphology of the Ti-54432 alloy after the in-situ tensile
test. The fracture surface is relatively flat and consists of many regular dimples. Many
microvoids can be found at the bottom and edges of the dimples, and the microcracks are
formed by the coalescence of several adjacent microvoids. In the region where shearing
occurs, the shear band consists of some small and shallow dimples at an angle of 45◦ to the
tensile direction. These features suggest that the Ti-54432 alloy with equiaxed microstruc-
ture exhibits excellent ductility, and its fracture mode is the microvoids coalescence fracture.
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4. Discussion
4.1. Deformation Mechanism
4.1.1. Activation of Slip Systems

Table 1 lists seven activated slip systems in αp grains identified by the SF calculation
and slip trace analysis, and the corresponding grains are labeled in the inset figure. These
activated slip systems can be classified to two pyramidal slip systems, two basal slip
systems and three prismatic slip systems. The activation of slip systems inside grain
depends on the relationship between the crystallographic orientation of grain and the
loading direction; for example, the slip system with the normal direction perpendicular to
the loading direction is easily activated [23]. In the process of tensile deformation, obvious
slip lines appear in both α and β phases. The basal slip systems and prismatic slip systems
are proved to be more easily activated due to their relatively small critical resolved shear
stresses (CRSS) and the high SF values [14,17,24]. In contrast, the <a> pyramidal slip
systems with high CRSS are usually difficult to activate unless there is a large angle rotation
of the αp grain in which the pyramidal slip is located [25]. However, the reality is that
some slip systems are still inactivated due to the inappropriate crystallographic orientation
of the αp grains even when these grains undergo severe plastic deformation. That is, the
crystallographic orientation of the equiaxed αp grains and its relationship to the stress axis
determine whether and which internal slip systems can be activated.
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Table 1. Activated slip systems in αp grains.

No. Euler Angle
(◦) SF θc

(◦)
θm
(◦)

Activated
Slip System

1# (82.3, 109.4, 6.1) 0.18 45 44
(
1101

)[
1120

]
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4.1.2. Deformation Characteristics

Figure 8 reveals some deformation characteristics in the microstructure of the Ti-54432
alloy in the in-situ tensile test. It can be seen that there are fewer dislocations in the
equiaxed αp grains and βt matrix of undeformed alloy, and the diffraction patterns prove
the existence of α and β phases. After tensile deformation, the equiaxed αp grains are
obviously elongated in the tensile direction, and there are many dislocations at the grain
boundaries. Although the βt matrix has more slip systems, the hindering effect of αs
phases on dislocation slip leads to the formation of many dislocation tangles in the βt
matrix. When the slip transfer between the αp grains and βt matrix is insufficient, the shear
bands are generated in the severely deformed αp grain, resulting in the fragmentation of αp
grains into smaller grains [26,27]. It can be inferred that although there are more potential
slip systems in the β phase than in the α phase, the αp grains are relatively softer and
more prone to the dislocation slip because the precipitation of the αs phase in the βt matrix
increases the strength of the βt matrix and inhibits the dislocation slip [10,28]. The above
reasoning can also be confirmed by the fact that the deformation of α accounts for most of
the total deformation of the alloy. However, for the two-phase titanium alloy TC21, the β

matrix is still relatively soft and deformed first, even if the αs phase precipitates on the β

matrix [29]. We believe that the hardness contrast and deformability difference between α

and β phases may depend on the degree of precipitation strengthening, that is, the size,
quantity and distribution of the αs phase.

To intuitively understand the morphologic evolution of grains and the slip transfer at
the grain boundary in the Ti-54432 alloy during tensile deformation, a schematic diagram
is drawn as shown in Figure 9. At the beginning of tensile deformation, single slip occurs
in the equiaxed αp grains, and the crystallographic orientation of the grains can satisfy the
deformation driven by a slight dislocation movement. Subsequently, further deformation
leads to the increase of slip lines and the activation of multiple slip systems, and the
deformation incompatibility between α and β phases forces the αp grains to rotate [30]. At
this time, the dislocation moving to the grain boundary and the change of grain orientation
realize the slip transfer from the α phase to β phase, so that the β grains also undergo
a dislocation slip-induced deformation [31,32]. Meanwhile, because the β phase has a
relatively large number of slip systems [33], some internal dislocations can pass through
the phase interface, realizing the slip transfer from the β phase to α phase, so that the
deformation incompatibility between two phases can be reduced. When the multiple
slips cannot meet the requirement of further deformation, the shear band is formed in the
severely deformed αp grain. To coordinate the overall deformation, both α and β grains
rotate and slide relative to each other, making that the microvoids are easy to nucleate at
the slip band, shear band, and grain boundary [34]. As the deformation continues, the slip
band and shear band extend, forming subgrain boundaries and finally splitting grains into
several small grains.
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4.2. Fracture Mechanism
4.2.1. Cause of Damage

Figure 10 displays the microstructure of the plastic deformation zone around the crack
tip of the Ti-54432 alloy in the in-situ tensile test. The crystallographic orientations of
the αp grains and βt matrix are analyzed by EBSD, and the deformation features of the
crack tip plastic zone is revealed in the inverse pole figure (IPF) map and Kernel average
misorientation (KAM) map. The corresponding KAM values near the crack tip are high,
especially at the αp/αp grain boundary, αp/βt phase interface, and αs/βt phase interface,
which indicate that there is obvious inhomogeneous deformation in this region [35]. In
contrast, the deformation of the region far from the crack tip is relatively small, and the cor-
responding KAM values are low. The stress state in the plastic deformation region around
the crack tip is different from that in other regions, namely that it is no longer simply a state
of uniaxial tensile stress, so severe inhomogeneous deformation and stress concentration
phenomena will occur, leading to the formation of microvoids and microcracks more easily
ahead of the crack tip.
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4.2.2. Fracture Characteristics

The morphology, crystallographic orientation, and internal activated slip systems of
the α and β phases in the equiaxed microstructure affect the crack propagation behavior,
and thus determine the fracture mode of the alloy, as shown in the SEM images in Figure 11.
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A schematic diagram is summarized to visually show the responses of crack to different
microstructures during propagation. The crack propagates from the V-notch to the middle
of the specimen along the direction at an angle of 45◦ with the tensile direction, namely
the maximum shear stress direction, and then along the direction almost perpendicular to
the tensile direction until the specimen fracture. The deflection of the crack propagation
direction is determined by the crystallographic orientation of grains along the propagation
path and the activated slip systems within the grains [7]. Dislocation accumulation at grain
boundaries of equiaxed αp grains promotes the activation of slip systems in the adjacent βt
matrix [36]. When there are activated slip systems in both αp and βt phases, the slip transfer
may occur between them. We propose that the slip transfer is an important mode of the
coordinated deformation of two phases, since the continuous slip lines are observed in the
equiaxed αp grains and adjacent βt matrix [37]. At the same time, because the potential path
of slip is extended, it may also become the path for transgranular crack propagation. In this
case, the crack does not deflect obviously and propagates rapidly when it passes through
the equiaxed αp grain and βt matrix. However, even though multiple slip systems are
activated in the βt matrix, it is difficult for slip transfer to occur between two adjacent grains
if the crystallography orientations of the αp and β grains are severely mismatched. In the
propagation process, the crack will turn to the grain with the more suitable crystallographic
orientation and activated slip systems. Predictably, once the well matching relationships of
the crystallography orientation between the grains in the crack propagation direction are
restored, the crack will continue to straight propagate rapidly. Besides the transgranular
propagation in the grains, the crack also propagates in the intergranular mode at the
interfaces with a large number of microvoids and microcracks, including the αp/αp grain
boundary, αp/βt phase interface, and αs/βt phase interface. For the same microvoids
coalescence fracture, the crack propagation may be only transgranular in the bimodal
microstructure [9], while it is usually a mixture of transgranular and intergranular in the
equiaxed microstructure.

4.3. Limitations and Implications
4.3.1. Limitations of the Work

At present, there are two limitations that need to be further considered. Firstly, the
in-situ study of deformation and fracture is incomplete. In-situ tensile tests are observed un-
der SEM and can monitor some phenomena related to fracture, such as damage generation
and development, crack initiation and propagation, and fracture morphology. However,
the microstructure responses related to deformation during tensile process, such as disloca-
tion multiplication and slip, mechanical twinning, shear band, and sub-grain formation,
are lacking in real time, which may require in-situ TEM characterization. Secondly, the
dependence of deformation and fracture on the stress state is unclear. In recent years, a
large number of studies have shown that the mechanical properties of titanium alloys under
tensile and compressive stresses are obviously different. However, the current in-situ tests
are carried out under tensile stress, and the deformation and fracture behaviors of alloys
under compressive stress are not well understood. Supplementing the in-situ studies under
compressive stress may be able to better explain the tension and compression asymmetry
of titanium alloys during deformation.

4.3.2. Implications for Future Research

In future, there are two implications that may be reflected in the following work.
Firstly, the universal mechanisms of deformation and fracture of metastable β titanium
alloys should be summarized and refined. Together with previous works, the deformation
and fracture mechanisms under several typical microstructures have been revealed. Among
them, some deformation modes and influencing factors are shared, such as the dislocation
slip and crystallographic orientation, which may be the decisive factors affecting the
mechanical properties of the alloys. For these, a targeted in-depth study may be closer
to the physical nature behind the phenomenon. Secondly, the quantitative study on the
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relationship between the microstructure characteristic parameters and the deformation and
fracture related performance indexes needs to be conducted. Just as there is a controversy
about which α phase or β phase is more difficult to deform, we hypothesize that the key
problem lies in the volume fraction of the αs phases precipitated on the β matrix. Due to
the difference in the number of potential slip systems, the pure β phase is bound to deform
more easily than the α phase. With the increase of the volume fraction of αs phases, the
precipitation strengthening effect on the β matrix is enhanced, and the strength of the β

phase increases, approaching or even surpassing the strength of the α phase. In addition
to the volume fraction, both the equiaxed α grains and α lamellae, their size is also a key
factor affecting the mechanical properties of alloys. Therefore, clarifying the quantitative
relationship is the premise of microstructure tailoring aimed at properties optimization.
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5. Conclusions

The tensile deformation and fracture mechanisms of a high strength metastable β

titanium alloy (Ti-54432) with equiaxed microstructure were investigated by in-situ tensile
tests. The microstructure responses during deformation, damage, and fracture were charac-
terized and analyzed, including the activation of slip systems, the deformation, sliding and
rotation of grains, the formation of shear band and sub-grain, the initiation and propagation
of crack, as well as the morphology and composition of the fracture. The main findings can
be drawn as follows:

1. The initial microstructure of the alloy before deformation is mainly composed of
equiaxed αp grains and βt matrix, and there is the short rod-like αs phase precipitated
in the βt matrix. Although the body-centered β phase has more potential slip systems
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than the hexagonal α phase, the precipitation strengthening of the αs phase makes
the βt matrix more difficult to deform. Therefore, the deformation of αp grains in the
main contribution to the overall deformation of the alloy, is mainly characterized by
elongation, rotation, and fragmentation.

2. The basal slip systems and prismatic slip systems are the main activated slip systems
in equiaxed αp grains. At the beginning of deformation, the original grain orienta-
tion and single slip can satisfy the deformation requirements. As the deformation
increases, the multiple slips are activated and the grains rotate and slide. The adjusted
crystallography orientation is helpful to the slip transfer between the two phases
and the coordination of the overall deformation. Under large deformation, the shear
bands are formed in α grains, and slip bands are formed in β grains, which develop
into sub-grain boundaries.

3. Under severe deformation, the stress concentration and inhomogeneous deformation
in the plastic deformation zone around the crack tip are the primary cause of damage.
The microvoids nucleate at the grain boundary, phase interface, slip band, and shear
band, and then grow and coalesce into microcracks, which then expand into a primary
crack. The crack propagates along the activated slip systems and shear bands in the
form of transgranular, and also along the grain boundaries and phase interfaces in the
form of intergranular. The conversion of the two forms depends on the orientation
relationship of the grains along the propagation path and the activation of slip systems
within the grains.
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