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Abstract.
Background: The classification of patients with primary progressive aphasia (PPA) into variants is time-consuming, costly,
and requires combined expertise by clinical neurologists, neuropsychologists, speech pathologists, and radiologists.
Objective: The aim of the present study is to determine whether acoustic and linguistic variables provide accurate classification
of PPA patients into one of three variants: nonfluent PPA, semantic PPA, and logopenic PPA.
Methods: In this paper, we present a machine learning model based on deep neural networks (DNN) for the subtyping of
patients with PPA into three main variants, using combined acoustic and linguistic information elicited automatically via
acoustic and linguistic analysis. The performance of the DNN was compared to the classification accuracy of Random Forests,
Support Vector Machines, and Decision Trees, as well as to expert clinicians’ classifications.
Results: The DNN model outperformed the other machine learning models as well as expert clinicians’ classifications
with 80% classification accuracy. Importantly, 90% of patients with nfvPPA and 95% of patients with lvPPA was identified
correctly, providing reliable subtyping of these patients into their corresponding PPA variants.
Conclusion: We show that the combined speech and language markers from connected speech productions can inform variant
subtyping in patients with PPA. The end-to-end automated machine learning approach we present can enable clinicians and
researchers to provide an easy, quick, and inexpensive classification of patients with PPA.
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INTRODUCTION

Primary progressive aphasia (PPA) is a progressive
neurological condition that is characterized by a grad-
ual deterioration of speech and language. In patients
with PPA, there is substantial symptom variability as
a result of neurodegeneration affecting different brain
areas. In an organized attempt to categorize speech
and language deficits in patients with PPA, a team of
experts put forth specific guidelines in a consensus
paper for the classification of patients with PPA into
three main variants: nonfluent variant PPA (nfvPPA),
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semantic variant PPA (svPPA), and logopenic variant
PPA (lvPPA) [1]. Patients with nfvPPA are charac-
terized by effortful speech with sound errors and
distortions and impaired comprehension and produ-
ction of syntactically complex sentences. Patients
with svPPA are characterized by difficulties in con-
frontation naming, single-word comprehension, and
impaired semantic memory of familiar objects that
often results in ‘empty speech’ (i.e., output without
meaning). Patients with lvPPA are characterized by
difficulties in word retrieval, repetition of long words
and phrases, and phonological errors.

Since patients with the same PPA variant share co-
mmon linguistic deficits, PPA variants can inform the
type of language therapy provided, such as targeting
word retrieval, sentence formulation strategies, and
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addressing oral apraxia. However, the task of sub-
typing patients with PPA into variants is time consu-
ming, arduous, and requires combining evaluations
by clinical neurologists, neuropsychologists, speech
pathologists, and radiologists. As insurance compa-
nies typically cover only limited therapy sessions,
and the condition is progressive, the decision
about the type of variant must be made quickly.
Therefore, there is a dire need for an easy, quick, and
accurate evaluation, consistent with the established
criteria and sensitive to the speech and language
deficits associated with each variant. An automatic
evaluation system based on machine learning has
the potential to save clinicians time and provide
important information with respect to a patient’s
PPA variant, that could guide clinical treatment, as
shown in our main trial results [2].

This study presents a machine learning model
based on Deep Artificial Neural Networks (DNNs)
that can subtype patients with PPA into variants
with high classification accuracy. This automated
approach offers diagnosis tailored to specific indi-
viduals, using information from connected speech
productions elicited from a picture description task—
a naturalistic task that takes fewer than two minutes
and it can be easy to administer, e.g., in the form of a
mobile phone or web application. The model has two
main advantages. First, information about the PPA
variant of a patient can enable clinicians to make bet-
ter decisions about tests and therapy batteries that
can elicit optimal therapy results for individuals with
PPA. Thus, knowledge about the PPA variant will
enable assessment and treatment that is tailored to
the specific individual with PPA [3]. Second, the
correct diagnosis would be crucial for a probabilis-
tic pathological diagnosis, which can complement
clinical diagnosis. By quantifying the PPA variant
classification, clinicians can share knowledge about
successful treatment solutions that target specific sub-
populations of individuals with PPA, which can be
comparable across individuals and clinics.

The machine learning model employs informa-
tion from connected speech productions, which are
readily available through a simple picture descrip-
tion task [4]. Connected speech can convey a striking
amount of information about PPA variants. It can
inform patterns of articulation (e.g., vowel produc-
tion), prosody, and grammar (e.g., morphology and
syntax). Using parts of speech features earlier stud-
ies were able to develop machine learning models for
classifying patients with different types of demen-
tia [5–7]. For example, earlier studies showed that

the relative vowel duration from a polysyllabic word
repetition task can distinguish patients with nfvPPA
and lvPPA [8]. Independent evidence on the role of
vowels in PPA-variant classification comes from
studies of paraphasias [9] and from cross-sectional
studies accompanied by lesion-symptom mapping
[10]. Patients with svPPA use more pronouns than no-
uns [5]. Patients with nfvPPA are characterized by
impaired production of grammatical words, such as
articles, pronouns, etc., but have fewer difficulties
using words with lexical content than individuals with
svPPA [1]. The use of linguistic features has also been
shown to distinguish patients with nfvPPA from AD
and healthy individuals [6]. Other measures that can
be elicited from connected speech, such as the noun-
verb ratio can reveal whether an individual with PPA
shows preference towards nouns or verbs; this infor-
mation may help to subtype nfvPPA from patients
with svPPA [5, 6]. Similarly, as patients with svPPA
are impaired in noun naming, the noun-pronoun ratio
can distinguish patients with svPPA from patients
with another variant [5].

The aim of this study is twofold: 1) to provide a
machine learning model that can automatically sub-
type PPA and offer diagnosis tailored to specific ind-
ividuals, using information from connected speech
productions elicited by a simple picture description
task that takes fewer than two minutes to adminis-
ter, and 2) to contribute to our current understanding
of PPA variants and their differences in speech and
language characteristics.

MATERIALS AND METHODS

Figure 1 shows a process diagram that illustrates
the process for subtyping of patients with PPA into
variants from speech recordings. We employed data
from connected speech productions via a simple
and widely used picture description task: the Cookie
Theft description from the Boston Diagnostic Apha-
sia Examination [11]. The task was administered to
participants with PPA as part of a large clinical
trial (NCT:02606422) during baseline evaluation
sessions. Picture description productions were auto-
matically transcribed and segmented into words,
vowels, and consonants. Acoustic features were then
extracted from vowel productions. We have excluded
consonants, as they require a different type of feature
analysis depending on their manner of articulation
(stops, fricatives, sonorants, etc.) and may have an
additional computational cost (e.g., dimensionality,
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Fig. 1. Process diagram of model development. The audio recordings from the picture description task are automatically analyzed acoustically
and transcribed (Pipeline 1). Then, formant frequencies, the duration of vowels, tonal measures, pauses, and voice quality measurements
are estimated from the processed recordings (Pipeline 2). The ratio of characters, words, characters per word and the noun-verb ratio, noun-
adjective ratio, noun-adverb ratio, noun-pronoun ratio, verb-adjective ratio, verb-adverb ratio, verb-pronoun ratio, adjective-adverb ratio,
adjective-pronoun ratio, and adverb-pronoun ratio are estimated from the analyzed text transcripts (Pipeline 3). The model optimization and
parameter tuning are followed by model comparison and evaluation with cross-validation.

longer processing and extraction). The whole text
from transcribed picture descriptions of participants
with PPA was analyzed using automatic morphosyn-
tactic analysis that provides the part of speech (POS)
for each word in the text. Acoustic and linguistic mea-
surements were combined to provide the predictors
for the machine learning analysis. To achieve the sub-
typing of PPA variants, we developed DNN architec-
tures that were trained on the combined set of acoustic
and linguistic measurements. Results for the model
comparison of DNNs with Support Vector Machines
(SVMs) [12], Random Forests (RF) [13, 14], and
Decision Trees (DTs) are also reported as these are
often used in medical studies [15]. The methodol-
ogy part details the complex procedure of designing
and evaluating an end-to-end machine learning model
based on neural networks. However, we need to stress
out that this process is conducted only once. The
potential users of the model, speech/language thera-
pists, clinicians, etc. will not need to train or evaluate
the machine learning model again but by uploading a
recording of the cookie-theft picture description into
the system, the model will provide the PPA variant
automatically.

Data collection

Trained clinicians or clinician assistants recorded
44 individuals with PPA during baseline evaluation

Table 1
Demographic information of the participants for each PPA vari-
ant (for age, education, onset of the condition in years, language
severity, and total severity, the mean and the standard deviation in
parenthesis is provided; language severity and total severity cor-
respond to the Behavior-Comportment-Personality and Language

domains of the FTLD-CDR [16]

Variant svPPA lvPPA nfvPPA

Female 5 8 7
Male 4 8 12
Total patients 9 16 19
Age 66.59 (6.06) 67.93 (7.55) 69.07 (5.57)
Education 16.30 (1.92) 16.92 (2.24) 16.42 (1.37)
Onset years 6.48 (2.31) 3.88 (3.23) 3.49 (1.80)
Language severity 2.27 (0.56) 1.39 (0.75) 1.77 (0.48)
Total severity 7.75 (4.36) 4.98 (2.82) 6.04 (3.10)
Total words 1265 2529 826
Mean number 84(57) 141(133) 75(52)
of words

sessions (Table 1). All participants had a diagnosis
of PPA from an experienced neurologist, a history of
at least two years of progressive language deficits
with no other etiology (e.g., stroke, tumors, etc.).
Participants were also right-handed and native speak-
ers of English. Differential diagnosis and subtyping
of patients with PPA was conducted by experienced
neurologists based on magnetic resonance imag-
ing (MRI) results, clinical and neuropsychological
examination, and speech and language evaluations
following the consensus criteria by Gorno-Tempini
et al. [1].
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Specifically, 9 participants were subtyped as sv
PPA, 16 as lvPPA, and 19 as nfvPPA. Table 1 provides
biographical demographic information of the partici-
pants for each PPA variant. Kruskal-Wallis chi square
tests showed that there were no significant diffe-
rences between variants for word produced by
gender (χ2(2)=4.571, p = 0.101), age (χ2(2)=0.52,
p = 0.77) education (χ2(2)=0.11393, p = 0.945), lan-
guage severity (χ2(2)=0.441, p = 0.802), total sever-
ity (χ2(2)=1.771, p = 0.413), and number of words
(χ2(2)=1.97, p = 0.373). We used the revised Fron-
totemporal Dementia Clinical Dementia Rating
(FTD-CDR) scale to rate severity of PPA [16]. Sever-
ity was calculated by three independent raters who
scored each item for each participant based on face-
to-face interaction with the participant and family,
along with language and cognitive evaluations. Total
severity and language severity scores were the result
of the consensus between the three raters. Data col-
lection was conducted as part of a clinical trial on
Transcranial Direct Current Stimulation for Primary
Progressive Aphasia at Johns Hopkins University
(NCT:02606422). All participants provided informed
consent.

Data preprocessing

Recordings from the Cookie Theft picture descrip-
tion task were saved in mono waveform audio file
format (wav files) at a 16000 Hz sampling frequency.
The following three preprocessing pipelines were
developed to analyze the acoustic and linguistic prop-
erties and generate the classification data.

Pipeline 1: Audio transcription and segmentation
The sounds were processed using Themis, a python

program developed in-house that provides a text
file with the audio transcription of each word and
segment—vowel, consonant, pause—and a table that
contains the times (onset time and offset time) of each
word and segment [5, 17]. The table was converted
into Praat TextGrid files for processing in Praat auto-
matically [18] pause duration was calculated during
segmentation from the automatic alignment system.

Pipeline 2: Audio processing
A second pipeline in Praat, a software for speech

analysis, enabled the extraction of acoustic infor-
mation for the segmented vowels. Specifically, the
following acoustic properties were measured:

i. Vowel formants. Formant frequencies from first
formant frequency to the fifth formant frequency were

measured at the 25%, 50%, and 75% mark of vowel
duration.

ii. Vowel duration. Vowel duration was measured
from the onset to the offset of the first and second
formant frequencies.

iii. Fundamental frequency. (F0). We calculated
the mean F0, minimum F0, and maximum F0 for
each vowel production. F0 calculation was conducted
using the autocorrelation method.

iv. H1–H2, H1–A1, H1–A2, H1–A3. Harmonic and
spectral amplitude measures were extracted from the
vowels using Praat.

Overall, we employed the following 40 predict-
ors: vowel duration, pause duration, and the first
five formant frequencies measured at three locations
inside the vowel at the 25%, 50%, and 75% of the
vowel duration, voice quality features (H1-H2, H1-
A1, H1-A2, H1-A3), measures of F0 (Minimum
F0, Mean F0, Maximum F0), and POS ratios and
means (noun/verb ratio, noun/adjective ratio, noun/
adverb ratio, noun/pronoun ratio, verb/adjective ra-
tio, verb/adverb ratio, verb/pronoun ratio, adjective/
adverb ratio, adjective/pronoun ratio, adverb/pro-
noun ratio, mean noun, mean pronoun, mean verbs,
mean adjective, mean adverb).

Pipeline 3: Morphosyntactic analysis
A third pipeline processed transcripts morphosyn-

tactically. It conducted an automatic morphosyntactic
analysis using the TextBlob python library [19].
Measurements of characters, words, characters per
word, etc., were calculated from the tokenized and
parsed output, and the ratio of each part of speech per
total number of words and the ratio between two
part of speech categories, i.e., the noun-verb ra-
tio, noun-adjective ratio, noun-adverb ratio, noun-
pronoun ratio, verb-adjective ratio, verb-adverb
ratio, verb-pronoun ratio, adjective-adverb ratio, adj-
ective-pronoun ratio, and adverb-pronoun ratio were
calculated. The outputs of the three pipelines were
combined into a single comma-separated values
(CSV) file, which consisted of 25,413 data series and
was employed as an input for the machine learning
models.

Neural network architecture

This section provides a description of the archi-
tecture of the neural network and the design of the
system. Providing the appropriate details on the archi-
tecture and implementation of neural networks nec-
essitates some use of jargon to allow the comparison
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of our approach to other modeling work. We limit
the use of such jargon to the paragraphs that follow
and cite the necessary related works that clarify this
technical jargon.

The data were randomized and transformed using
Standard Scaling, which standardizes measurements
by removing the mean and scaling to unit variance
using (1):

y = (x − μ)
/
σ (1)

where � is the mean of the training samples; σ is
the standard deviation of the training samples. Stan-
dard scaling was conducted using the StandardScaler
function from scikit-learn [20]. Note that we do not
conduct Standard Scaling on the whole dataset at once
but in two phases. The scaling model is fitted on the
training data. Then, the fitted model is used to trans-
form the training and test sets separately to ensure
that there is no information (such as effects on the
total mean and standard deviation) from the test set
on the training set. This can occur when data are trans-
formed using information from the test and training
set combined.

Figure 2 shows the design of the neural network
employed in this study. It is a feed-forward neural net-
work (DNN), that conducts multiclass classification.
This type of neural network processes data sequen-
tially from the input layer, which is the first layer
of the model, to the hidden layers, which are the
intermediate layers of the model. It is designed for
a multiclass classification as the output classes of the
network are three, namely the three PPA variants (an
alternative type is the binary classification).

The prediction of the variant is provided by the last
layer, a.k.a. output layer. All layers in our model con-
tain units or nodes that are interconnected. The input
layer consists of 350 dense units. A Rectified Linear
Unit (ReLu) was selected as the activation function
of the input and the hidden layers. A ReLu is a math-
ematical function that returns 0 if it gets any negative
input but if it gets a positive value, it will return that
value back, f (x) = max (0, x). ReLu activations
have the advantage that they compute and converge
faster than other activation functions [21]. The out-
put layer contains a softmax activation function that
provides an output, which is either 0 or 1 to facilitate
the three-class classification of the PPA variants [22].

We compiled the model using a Root Mean
Square Propagation (RMSProp) optimizer [23]. The
RMSProp optimizer is a mathematical function that
adapts the learning rate for each of the parameters.

Fig. 2. Neural network architecture. Structure of the neural net-
work designed for the study and feature properties, including the
number of input features employed, the type and number of units
and activation functions for the input, hidden, and output layer.
The first layer on top is the input layer and consists of 350 units;
8 layers in the middle containing 350 units are hidden layers, and
the final layer contains only three units; here with different colors,
when the green is activated it corresponds to the svPPA variant,
when the red is activated it corresponds to the lvPPA variant, and
when the yellow unit is activated it corresponds to the nfvPPA
variant.

The learning rate is the step size made towards
minimizing the loss function of the network. The
RMSProp divides the learning rate for a weight by a
running average of the magnitudes of recent gradients
for that weight (i.e., mean square). The advantage of
RMSProp is that it displays an outstanding adaptation
of the learning rate. The loss function we employed
was set to categorical cross-entropy, which is most
suitable for multiclass classification. A higher value
for the loss function implies a greater error for the pre-
dictions of the model. We fitted the network batch size
set to 32. The model was trained and evaluated eight
times, in an 8-fold cross-validation task (see the sec-
tion on Model comparison and evaluation). In each
fold of the crossvalidation, the neural net was trained
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and evaluated for 30 epochs (an epoch is a single eval-
uation of the data from the neural network), using an
80% versus 20% validation split that divides data into
an 80% training set and a 20% evaluation set. This
evaluation demonstrates the learning progress of the
neural network.

Model comparison and evaluation

To estimate how well the model performs and
how it generalizes on unknown data, we employed
established evaluation methods that select data from
a set of participants that were subtyped by clini-
cians manually to train the model and a different
set of participants to evaluate the model. During the
training phase the input of the model are the mea-
surements from the cookie theft picture description
task produced by a certain patient. The model is tra-
ined multiple times on the measurements to iden-
tify the patterns that correspond to the PPA variant
of that patient, as was estimated from the clinical
neuropsychological assessment, MRI scans, etc. In
other words, the goal of the training phase is to find
speech and language patterns from the input mea-
surements that characterize the provide PPA variant
of the patient. The training phase is followed by
the evaluation phase of neural network model. For
the evaluation, the input of the model are data from
patients that were not employed during the training
phase, the PPA variant of these new patients is not pr-
ovided to the model but it is withheld to evaluate the
model predictions. Based on its training and using
the new input, the neural network predicts the PPA
variant of the new patient. For example, if the neu-
ral network predicts, based on the input data, that
a patient corresponds to the lvPPA variant and that
patient has been classified during neuropsychological
assessment as lvPPA, then the assessment is scored
as being correct; if it is incorrect, then the prediction
is evaluated as incorrect. The accuracy of the model
is based on the count of correct predictions, true pos-
itives, true negatives, and incorrect predictions, false
positive and false negatives. The true positive and true
negative are the outcomes where the machine learn-
ing model correctly predicts the positive and negative
class correspondingly. Furthermore, a false positive
or a false negative is an outcome where the model
predicts the positive and negative classes incorrectly.

To make the best use of our collected data, we
employed an eight-fold group cross-validation met-
hod that allows us to use all the data as training
data and all the data as test data but at different 8

different training/evaluation phases, so that we are
always employing data from different patients to train
the model and data from different patients to evalu-
ate the model. The eight-fold group cross-validation
method splits the randomized data into eight folds
and trains and evaluates the machine learning models
eight times. During each training session, seven folds
are employed for training and one-fold, which con-
tains data from participants that are not in the training
folds, is employed as an evaluation set. Therefore,
the machine learning models were trained on dif-
ferent folds of data in the training set and evaluated
on different test data from unknown participants dur-
ing evaluation. This evaluation ensures that data are
randomized for splitting and that there are always
different participants in the training and test sets.

To evaluate the models, we employed the following
metrics: accuracy, precision, and recall. Accuracy is
the total sum of correct predictions divided by the
total number of both correct and incorrect predic-
tions:
Accuracy =

true positive + true negative

true positive + true negative + false positive + false negative

(2)

Precision is the result of division of the true positives
with the sum of true positives and false positives (see
Formula 3). Recall (a.k.a., sensitivity) is the result
of dividing the true positives with the sum of true
positives and false negatives (see Formula 4).

Precision = true positive

true positive + false positive
(3)

Recall = true positive

true positive + false negative
(4)

Finally, the F1 score is the weighted average of the
precision and recall, and ranges between 0 and 1 (see
Formula 5). The F1 score can offer a more balanced
estimate of the outcome than the accuracy.

F1 score = 2 × (precision × recall)

(precision + recall)
(5)

All models were implemented in Keras [24] run-
ning on top of TensorFlow [25] in Python 3.6.1.

Model optimization and hyperparameter tuning

For the selection of the final neural network
architecture, we tested several neural network archi-
tectures by varying both the number of hidden layers
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(starting with minimal architectures with one hidden
layer and adding hidden layers incrementally), the
number of units per layer, the dropout [26], the acti-
vation methods, and the batch size. DT models are
provided here as a comparison model and their output
is reported without optimizations. We evaluated the
SVM models with both linear and non-linear kernels
and optimized the models for the number of kernels
by running the SVM models with 1 – 300 kernels. The
SVM model contains 14 non-linear kernels, which
provided the best results in SVM optimization. We
evaluated the RF models by optimizing for the num-
ber of trees from 1 – 300 trees. The best RF model
was the one with 14 trees. Note that the minimum split
number was set to two. In the following, we discuss
the model comparison process and the evaluation.

Comparing the performance of neural networks
to other machine learning models

To estimate the performance of the DNN, we show
how three machine learning models are compared to
the DNN model. We employed SVMs [12], RFs [13,
14], and DT as these are often used in medical studies
[15].

i. DTs provide a multiclass classification of patients
with three PPA variants by splitting the data using
the measurement that best explains the variabil-
ity of the data. For example, if the ratio of nouns
explains most of the variation, the decision tree
will split the data in two branches based on the
ratio of nouns and will repeat the process multiple
times exhaustingly, i.e., up to the point there are no
data. One major advantage of DTs is that trees can
be visualized and can provide an understanding of
the structure of the data and the exact decisions
that the model made for the classification. Nev-
ertheless, DTs are often prone to overfitting, as
they create long and complicated trees that may
not generalize very well to unknown data. Even
though there are methods to control overfitting,
such as by pruning the lower branches of the tree
that explain very little of the remaining variation,
these methods are not always optimal.

ii. SVMs classify multidimensional data, using a
separating hyperplane that organizes the data
points into classes. The data points that delimit
the hyperplane are called support vectors and the
separating hyperplane is considered a classifica-
tion machine. One advantage of SVMs is that they
can provide good classification results. One dis-
advantage of SVMs is that the optimization of

their tuning parameters (a.k.a., hyperparameters)
can be complex and time consuming.

iii. RFs are like DTs, but, unlike DTs, they are ensem-
ble models, i.e., they fit several decision trees on
the measurements collected and combine them
using an ensemble measures such as the mean,
to improve the accuracy of the model. RFs can
address the overfitting that often takes place in
the case of DTs.

Comparison to human raters
Three trained speech-language pathologists, who

were not involved in data collection, provided a clas-
sification of nine patients by listening to Cookie Theft
recordings; the nine participants were employed for
the training of this model (three participants from
each variant). Their responses were evaluated using
the information that was provided by the combined
neuro-psychological examination, MRI, etc.

RESULTS

The Cookie Theft picture description recordings
were analyzed to elicit measures of speech and lan-
guage from patients with PPA. These measures were
then employed to train a DNN, along with three
other machine learning models, namely a RF, a SVM,
and a DT, to provide comparative results for esti-
mating the performance of the DNN. All machine
learning models were trained and evaluated using an
8-fold cross-validation method. “True class” variant
diagnoses were given by experienced neurologists.
Table 2 shows the results from the 8-fold cross-
validation method. Overall, the DNN provided 80%
classification accuracy and outperformed the other
three machine learning methods. The SVMs had the
worst performance in the cross-validation task with
45% classification accuracy (Table 4a). RFs provided
a 58% classification accuracy (Table 4b), followed by
the DT with 57% classification accuracy (Table 4c).

Table 2
Results from eight-fold cross-validation for the deep neural net-
work (DNN), support vector machines (SVM), random forest (RF),
and decision tree (DT). Shown is the mean cross-validation accu-
racy, the 95% confidence intervals (95% CI) and the standard error

(SE)

Model Mean 95% CI SE

DNN 80 [53, 100] 11
SVM 45 [31, 59] 5
RF 58 [43, 73] 8
DT 57 [38, 75] 8
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Table 3
Normalized confusion matrix created from the output of the deep
neural network. The confusion matrix provides the sum of scores

from the 8-fold cross-validation test

Predicted class

True class svPPA lvPPA nfvPPA

svPPA 64 30 6
lvPPA – 95 5
nfvPPA 10 – 90

Table 4
Normalized confusion matrix created from the output of the SVM
(a), RF (b), and DT (c). matrices show the predicted versus actual

values from the evaluation

Predicted class

True class svPPA lvPPA nfvPPA

(a) SVM
svPPA 28 55 17
lvPPA 42 39 19
nfvPPA 24 31 45
(b) RF
svPPA 54 37 9
lvPPA 38 38 24
nfvPPA 8 34 58
(c) DT
svPPA 50 47 3
lvPPA 35 35 30
nfvPPA 3 31 66

The confusion matrix shown in Tables 3 and 4
was calculated by summing the 8 confusion matrices
produced during cross-validation for the DNN. The
DNN provided improved identification of patients
with lvPPA and nfvPPA with respect to svPPA.
Patients with lvPPA were identified 95% correctly;
5% of patients with lvPPA were identified as nfvPPA.
Patients with svPPA were correctly identified in 65%
of the cases; 30% of patients with svPPA were mis-
classified as lvPPA, and 6% as nfvPPA; 90% of
patients with nfvPPA were correctly identified and
10% were classified as svPPA.

To estimate the performance of the DNN, we also
compared its accuracy with the classification perfor-
mance of three trained speech-language pathologists
(SLPs) who did not work with the patients who par-
ticipated in the study. The SLPs’ classifications were
based solely on the two-minute Cookie Theft sam-
ples. Their responses were compared to the gold
standard combined subtyping that employs neuropsy-
chological tests, imaging, language evaluation, etc.
The three SLPs displayed substantial variation in their
classification scores of patients’ variants with mean
classification accuracy 67% (SD = 11). One SLP’s co-
rrect identification of the PPA variant of patients

was just above average (5/9) 56%, followed by one
who had (6/9) 66%, classification accuracy, and the
highest classification accuracy reached (7/9) 77.77%.
Overall, using the same evaluation data, the DNN pro-
vided higher accuracy in classification than SLPs and
at a much faster rate.

DISCUSSION

Manual subtyping of patients with PPA is time-
consuming and requires substantial expertise on the
classification criteria, costly scans, and lengthy eval-
uations. This study built upon the hypothesis that
if there are considerable differences in the language
production between individuals with nfvPPA, svPPA,
and lvPPA, DNNs will identify the speech and lan-
guage patterns that characterize the PPA variant of
the patient and provide an accurate classification of
patients. For the current study, DNNs were trained
on acoustic and linguistic predictors derived from
descriptive-speech samples. All models were trained
eight times in an eight-fold cross-validation evalua-
tion method, following established consensus criteria
[1]. The DNN outperformed the other methods,
including SVMs, RFs, and DTs [27, 28] in the clas-
sification problem, suggesting that DNNs are more
suitable models for this classification task.

Given the challenging nature of the classifica-
tion of language in neurodegenerative conditions, the
findings were revealing. The DNN achieved a high
classification accuracy, namely 80%, by identifying
complex patterns in the acoustic and morphosyntactic
data that characterize patients with nfvPPA, svPPA,
and lvPPA. Pattern recognition is what enables the
DNN to model complex multifactorial problems in
several domains, such as natural language processing,
speech recognition, image recognition, and machine
translation [29]. Studies that employ combined data
from MR imaging and batteries of neurophysiolog-
ical tests provide the same accuracy as the DNN,
which does not employ such complex tests. For exa-
mple, a recent study following the consensus crite-
ria for PPA subtyping [1], classified 80% of patients
using standardized tests and explicit cut-off scores
[3]. These results highlight three important concl-
usions: (a) a minimal amount of acoustic and lin-
guistic information from connected speech has great
discriminatory ability, providing an identification fin-
gerprint of patients with nfvPPA, svPPA, and lvPPA
when used in a DNN model, (b) the DNN can simul-
taneously perform classification of all three PPA
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variants, and (c) the present automated end-to-end
program may assist considerably both the expert clin-
ician by confirming the variant diagnosis, as well as
the novice or less experienced clinician by guiding
the variant diagnosis.

Patients with nfvPPA and patients with lvPPA had
a high identification profile. 90% of patients with
nfvPPA was identified correctly and 95% of patients
with lvPPA. In fact, the DNN model performed bet-
ter than other machine learning models for subtyping
patients with lvPPA [30, 31]. For example, Hoff-
man et al. [30] employed unsupervised classification
methods and analyzed results from linguistic (e.g.,
hesitations, phonological errors, picture-naming sc-
ores, single-word comprehension, category fluency
scores, written competence) and non-linguistic (cube
analysis, paired associate learning, etc.) neuropsy-
chological evaluations. They found that participants
with lvPPA were not identified as a separate group
but were mixed with other participants in both lin-
guistic and non-linguistic tasks [30]. Another study
by Maruta et al. [31] using a combination of measures
from language and neurophysiological assessments
in Portuguese discriminates individuals with svPPA
from nfvPPA but not individuals with nfvPPA and
svPPA from lvPPA [31]. Unlike these studies, the
DNN model by combining acoustics and grammar
provided an improved classification of patients with
lvPPA.

However, some patients with svPPA were misclas-
sified as lvPPA. The limited amount of data employed
constitutes a main limitation of our study. Although
44 patients with PPA is a very substantial number
for a rare syndrome such as PPA, machine learning
requires more training and evaluation data. In fact,
during the evaluation of machine learning models, it
became evident that the amount of data in the train-
ing set had a significant impact on model accuracy
of patients with svPPA. By increasing the overall
data sample and obtaining data from more patients,
the detection of patients with svPPA is expected
to improve substantially. The Cookie Theft picture
description task provides a second limitation. The
task constrains connected speech production, e.g.,
patients provide primarily declarative intonational
patterns, whereas questions, commands, etc. are not
elicited. Also, picture-description tasks tend to elicit
actions in the present tense, and sentences with factual
content rather than wishes, commands, embedded
sentences, and other more complex structures. By
contrast, other tasks, such as personal story telling
or naturalistic conversation, can have the potential to

provide more informative speech and language output
and enable the model to distinguish between svPPA
and other variants.

Future classification work is likely to benefit from
machine learning models trained on simultaneous
classification of PPA variants using multifactorial
predictors from a variety of discourse settings and co-
nversations. We will be looking into employing the
DNN model to inform rehabilitation. For example, it
can enable multiple evaluations of the same patient
over time and estimate the stability of symptoms,
considering objective assessments of memory and
functionality [32]. A modification of the network will
make it easier to score the symptoms of the partici-
pant by showing the degree of change (positive or
negative) due to therapy or due to the progression
of the condition. Also, we plan to develop neural
network models that distinguish patients with PPA
from healthy controls (see for example [17]). A
machine learning model trained on healthy controls
that can distinguish patients with PPA from individ-
uals with similar sociolinguistic characteristics (e.g.,
age, education, etc.) without PPA can complement the
subtyping process. DNN models open new opportu-
nities in the evaluation and prognosis of PPA and can
ultimately enable better treatment solutions.
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