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Abstract: Enzymes are versatile biomolecules with broad applications. Since they are biological
molecules, they can be easily destabilized when placed in adverse environmental conditions, such
as variations in temperature, pH, or ionic strength. In this sense, the use of protective structures, as
polymeric capsules, has been an excellent approach to maintain the catalytic stability of enzymes
during their application. Thus, in this review, we report the use of polymeric materials as enzyme
encapsulation agents, recent technological developments related to this subject, and characterization
methodologies and possible applications of the formed bioactive structures. Our search detected that
the most explored methods for enzyme encapsulation are ionotropic gelation, spray drying, freeze-
drying, nanoprecipitation, and electrospinning. α-chymotrypsin, lysozyme, and β-galactosidase
were the most used enzymes in encapsulations, with chitosan and sodium alginate being the main
polymers. Furthermore, most studies reported high encapsulation efficiency, enzyme activity main-
tenance, and stability improvement at pH, temperature, and storage. Therefore, the information
presented here shows a direction for the development of encapsulation systems capable of stabilizing
different enzymes and obtaining better performance during application.

Keywords: polymers; encapsulation; enzymes; chitosan; sodium alginate

1. Introduction

Enzymes are valuable molecules for several reasons, including mild reaction condi-
tions, biodegradability, selectivity, high yields, and renewability. In this sense, industries
are increasingly demanding their use in quite a few products and processes, mainly in the
textile, detergent, starch, pharmaceutical, and fuel sectors [1].

The use of agro-industrial wastes [2,3], media optimization [4], and many modern
techniques, such as protein engineering [5] and directed evolution [6], has managed to
reduce enzyme production costs and provide many interesting new applications. Even so,
the immobilization of these biocatalysts is essential for industrial use because of operational
stability and reusability [7]. Besides, immobilization is also a crucial technique for the
controlled release of these catalytic proteins at specific locations (target site), at a specific
rate, or in response to environmental triggers, such as pH, ionic strength, temperature, or
enzymatic activity [8]. These features are important for pharmaceutical applications and
can improve the technical–functional performance of these molecules [9].

Numerous immobilization techniques have been studied and are still under investiga-
tion to obtain robust high activity biocatalysts, and they are divided into three categories:
adsorption on a carrier (support), encapsulation in a carrier (entrapment), and crosslinking
(carrier-free) [10]. Regardless of the immobilization strategy, polymers certainly play a
crucial role in this process: the use of synthetic, natural, inorganic, and smart polymers has
been reported so far [10].
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The entrapment of an enzyme in a polymer network allows substrates and products to
pass through while retaining the enzyme; it can also be designed to release the enzyme in a
controlled manner at the target site under specific conditions [11]. Usually, the enzyme does
not interact with the polymer, reducing problems of active site block which are faced by
adsorption techniques frequently used for industrial applications [12]. However, for these
uses, a disadvantage would be that physical restrictions do not prevent enzyme leakage.
Hence, some strategies to overcome this problem have been proposed, such as the addition
of a second polymer [13]. For controlled release, this characteristic is an advantage used
for enzyme delivery [14]. In the present review, we will focus on entrapment techniques
used to encapsulate enzymes using polymers.

Several enzyme entrapment methods are reported, and they generally involve mixing
the enzyme with a monomer solution, followed by polymerization [15]. Ionic gelation [13],
spray drying [16], freeze-drying [17], nanoprecipitation [18], and electrospinning [19] are
the latest, most used, and efficient methods to encapsulate enzymes.

The most important parameters to evaluate enzyme immobilization are immobiliza-
tion yield, global enzyme activity yield, expressed activity (recovered activity or activity
recovery), and enzyme loading [20]. Physical characterization of those biocatalysts gener-
ally involves particle size and density determination, hydrophobicity measurements, and
mechanical robustness evaluation [10]. All these parameters and the physical characteriza-
tion related to the encapsulation of enzymes by polymers will be addressed in the present
review.

Despite the numerous reviews related to enzyme immobilization found in the liter-
ature [7,10–12], none of them focus on the encapsulation procedures of these molecules.
Therefore, in the present review, we aimed at describing polymers as encapsulating agents
for enzymes, the recent technological developments related to this subject, and depicting
characterization methodologies and possible applications of these bioactive materials.

2. Polymeric Materials

Polymers are large molecules consisting of multiple repetitions of one or more units,
known as monomers, which react to form polymer chains by the process of polymerization
and can present peculiar properties [21]. These large molecules can be classified into three
categories according to their source: natural, synthetic, and semi-synthetic, and all of them
can be used as encapsulating material for a variety of biomolecules. An ideal material for
encapsulation requires good rheological properties, stabilization, non-reactivity with the
core material, solubility in non-toxic solvents, non-hygroscopicity, and the possibility of
releasing the core material under specific conditions [22].

Natural polymers, or biopolymers, are synthesized from plants, animals, and microor-
ganisms and are mainly composed of proteins (gelatin, collagen, and albumin), polysaccha-
rides (starch, cellulose, agarose, and chitosan), and lipids (paraffin, beeswax, and stearic
acid). Biopolymers are largely used in the food and medicine industries due to their
non-toxic character, biodegradability, and biocompatibility [23,24].

Although biopolymers generally display unchangeable properties, which may hinder
their interaction with various substances, these materials offer a large diversity as matrices
and are biodegradable, producing non-toxic by-products. In contrast, they can generate
immunogenic reactions and present an uncontrollable rate of degradation [25].

Synthetic polymers are laboratory synthesized molecules, which mainly include
polyamide, polyethylene glycol, poly (vinyl acetate), and polyethylene. This type of
polymer exhibits easily tailored properties, which enables their adaptation to several appli-
cations, and they also display an inert behavior under physiological conditions. Moreover,
synthetic polymers present mechanical and chemical stability and good reproducibility [26].

Tunable properties, endless forms, and established structures are some advantages of
synthetic polymers over natural ones. On the other hand, some synthetic substances can
be harmful to human beings, and are thus avoided by the food and drug industries [27].
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The semi-synthetic polymer is a combination of a synthetic and a natural substance,
or a blend, enhancing the best qualities and diminishing the undesirable characteristics of
each material [28].

Considering the polymer chain’s backbone type, polymers can also be divided into
organic polymers—carbon core—and inorganic polymers, constituted by elements other
than carbon. Inorganic polymers are amorphous substances formed by a chain of SiO4
and AlO4 tetrahedra, which share all oxygen atoms. This type of polymer displays good
physical and chemical properties, such as high compressive strength, thermal stability,
and low permeability [29]. In contrast, organic polymers exhibit a close analogy to the
environment predominant in homogeneous polymerization and do not require complex
pathways to be produced. Organic–inorganic polymer hybrids can also achieve unique
properties once organic compounds are frequently dispersed in an inorganic matrix at a
molecular level [30].

Another type of polymeric material is the smart polymer, a stimulus-responsive poly-
mer network that changes its conformation dramatically when slight variations occur in
the medium, such as in temperature, pH, or ionic strength [10]. Smart polymers undergo
large reversible, physical, or chemical changes and can reverse the transitions. Further-
more, smart polymers can be biocompatible, even though they can be hard to handle and
sterilize [31].

Polymers are applied mainly for biomolecule encapsulation and, depending on the
chosen material, variable properties can be obtained. Some substances can be more suitable
for encapsulating certain molecules than others, and costs, extrinsic and intrinsic factors,
and objectives must be considered in this choice. Polysaccharides, vegetable and animal
proteins, and gums are common natural encapsulating materials, but synthetic polymers
are also used to encapsulate active ingredients [10].

3. Most Used Polymers for Enzyme Encapsulation
3.1. Chitosan

Chitosan is a natural polycationic linear polysaccharide ((1→ 4)-β-linked 2-amino-2-
deoxy-D-glucose) derived from chitin. Chitin is an abundant renewable polymer, and
chitosan, its deacetylated derivative, is a widely used biopolymer [32]. Shrimps, crabs,
and other crustaceans’ shells have chitin (β-(1→ 4-N-acetyl-D-glucosamine) in their com-
position, which can react with alkaline sodium hydroxide, leading to an N-deacetylation
product, also called chitosan [33].

Electrostatic interactions with molecules containing negatively charged groups are
developed as the amino groups of chitosan and its protonation, which generates NH3+,
together with its linear chains, react. Furthermore, the presence of this functional group
and a hydroxyl on chitosan chains allows for chemical modifications [34].

Chitosan has many advantages for enzyme immobilization, such as biocompatibility,
non-toxicity, low allergenicity, and biodegradability. Moreover, antioxidant, antimicrobial,
and antitumor activities have been reported for this molecule, and these properties are
affected by its degree of deacetylation and its molecular weight [35]. Therefore, chitosan is
an important shell material to entrap enzymes that can be used for several applications in
different fields. As enzyme immobilization matrices, chitosan-based materials are used
primarily in the form of gels of different geometrical configurations, such as beads/spheres,
membranes, fibers, and sponges [36].

Different studies have proposed strategies to promote the chitosan transition into
sol-gel in recent years. Chitosan gels can essentially be formed in two ways: by “physical”
or “chemical” reticulation processes. In the latter case, permanent networks are formed
when covalent bonds among chains are exploited. Typically, glutaraldehyde, diglycidyl
ether, diacrylate, diisocyanate, or small molecules are used in the preparation of chemical
gels of chitosan. However, it is a concern that the toxicity of the majority of such molecules
could represent a risk to the environment and living beings [37].
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Due to its lower toxicity, physical chitosan gels are, perhaps, more suitable for use as
systems for enzyme entrapment. Moreover, the possibility of tuning extent and the rate of
gel swelling, mechanical behavior, and degradation are also appealing characteristics of
physical chitosan gels. By varying physical and chemical parameters—temperature, ionic
strength, and pH—or adding proper counterions, the physical gels are likely to transition
to sol-gel. Entangled networks are formed when hydrophobic interactions and electrostatic
and hydrogen bonds react. Ionic strength and pH, in relation to ionic interactions, are
crucial in gel formation [38].

Chitosan concentration exerts a strong influence on gel formation for enzyme retention
by the capsules/beads. According to Nunes et al. [3], when the chitosan concentration was
increased from 2 to 5% (w/v), the enzyme encapsulating efficiency increased significantly.

Some biopolymers, such as chitosan, alginate, and carrageenan, can be used in the
preparation of hybrid supports in order to entrap enzymes. Chitosan can play a key
role in the preparation of hybrid polymers, leading to polyelectrolyte complex products
formation when in the presence of natural polyanions. Chitosan–alginate hybrid gel is
formed when the amine groups of chitosan and the carboxyl groups of other polymers
interact electrostatically in a strong manner. As a consequence of being stronger than
pure chitosan, the complex shows a higher activity under extreme mechanical stirring and
temperature [39].

3.2. Alginate

Alginate is the most frequently used polymer for enzyme encapsulation [40]. It is a
naturally derived polymer primarily found as a structural component of marine brown
seaweed (Laminaria hyperborea and Macrocystis pyrifera) and as capsular polysaccharides in
some soil bacteria such as Pseudomonas and Azotobacter [41]. In general, alginate is a linear
polysaccharide copolymer composed of two C5 epimer repeating units, (1–4)-linked β-d-
mannuronic acid (M units) and α-l-guluronic acid (G units) monomers. Within the alginate
polymer, the M and G units are sequentially assembled in either repeating (-M-M- or
-G-G-) or alternating (-M-G-) blocks [42]. The amount and distribution of each unit depend
on the alginate source, and these blocks determine the polymer properties and behavior.
The ratio between M and G units significantly affects transmittance, viscoelasticity, and
swelling [43]. The carboxylic groups in alginate can form salts, such as sodium alginate, by
their attachment to the monovalent ions.

Alginate can be prepared in either neutral or charged form, and so it is compatible
with a broad variety of substances. Depending on media pH, alginate can form two types of
gel, an acid or an ionotropic gel, which provide many physicochemical properties [44,45].

An important feature of alginate and its derivatives is its gelation in the presence
of divalent cations such as calcium (Ca2+) through the ionic interaction between these
cations and the carboxyl groups located on the polymer backbone. The most widely used
cation for alginate hydrogels preparation is calcium, since it is an essential element for
humans and is easily accessed [46]. The alginate gelation by calcium ions is due mainly
to the ionic crosslinking between guluronic acid units located on adjacent alginate chains.
This solution-gel transition process is called crosslinking. The crosslinked hydrogel has an
“egg-box” structure.

Alginate hydrogels are nontoxic and immunologically inert materials with a high
level of biocompatibility and biodegradability. They can easily undergo gelation with
divalent cations under mild conditions suitable for the incorporation of biomacromolecules.
Alginate-based microencapsulation is currently a favored approach for enzyme encap-
sulation [47,48]. A relatively simple and safe technique to entrap enzymes is the use of
calcium alginate beads [49–51]. An aqueous solution of sodium alginate is mixed with the
enzyme when added drop-wise in a solution of Ca2+, the droplets can precipitate, and the
biocatalyst is entrapped [52]. In a 2% solution, calcium alginate beads are formed, resulting
in 80 to 100 Å of average pore diameter [53–55]. The carboxyl groups of alginate provide
multiple sites for ionic crosslinking with the positively charged amino acids present on
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enzymes structure. The enzyme and the support interact, improving the conformational
stability of the immobilized enzyme and then increasing the shelf life [56]. According to
Pereira et al. [57], sodium alginate titer can influence the enzyme entrapment immensely.
At low concentrations (<1%), the viscosity of this polymer is low, which can cause internal
mixing of the components during complexation, delaying the formation of a semiperme-
able surface that reduces enzyme retention. At higher concentrations (>1%) of this polymer,
the enzyme retention increases, but above 4% (w/v), a small reduction in immobilization
yield is observed, which is associated with viscosity increase. It is more difficult to extrude
through the syringe needle when the viscosity is high, and, consequently, the formation of
microcapsules is not uniform. Zusfahair et al. [58] studied the immobilization of amylase
from Aspergillus oryzae and observed a reduction in immobilization yield while increasing
alginate concentration. Conformational changes in the entrapped enzyme and limita-
tion of substrate mass transfer to the microcapsules can be caused by increasing sodium
alginate concentration.

Low mechanical strength, high leakage of the enzyme from beads, and large pore
size are some disadvantages [53,54,59] which may be reduced by blending alginate with
chitosan [57,60–63], kaolinite clay [64,65], gelatin [66,67], poly-L-lysine [68], and other
polymers. The crosslinking of anionic alginate with cationic compounds results in a more
controlled microcapsule pore size and stability improvement [67].

3.3. Carrageenan

Carrageenan is the name for a family of gel polysaccharides formed by a sulfated
polygalactan that contains ester sulfate at about 15–40%. It is formed by alternating units
of 3,6-anhydro-galactose and D-galactose, joined by β-1,4 and α-1,3 glycosidic linkage [69].
Carrageenan is extracted from red seaweed and can present various beneficial effects due
to the variability of its structure and properties. The number of sulfate ester groups in a
carrageenan molecule and its position, as well as the content of 3,6-anhydro-galactose, can
influence the properties of the biopolymer [70].

Carrageenan has been produced in six types (κ-, ι-, λ-, µ-, ν-, and θ-carrageenan)
based on their structures [71]. Due to its high gelling ability, κ-carrageenan is the most
produced polymer. The enormous number of –OH supports the formation of the helix
structure, forming many hydrogen bonds [72]. Gels produced with κ-carrageenan are
hard, strong, and brittle. According to Geonzon et al. [73], the generally accepted model
of the gelling process of carrageenan solutions involves the coil-to-helix transition, fol-
lowed, in the presence of certain cations, by the aggregation of double helices to form a
spanning network.

Zheng et al. [74] investigated the potential of carrageenan hydrogel beads for encapsu-
lating β-galactosidase. The hydrogel beads were formed by injecting a β-galactosidase/κ
-carrageenan solution into a potassium chloride hardening solution. The cationic potassium
ions (K+) promote gelation of the anionic κ-carrageenan molecules by acting as salt bridges.
In comparison with the free enzyme under certain thermal and pH conditions, the activity
of encapsulated β-galactosidase was raised. In a recent study, pectin, carrageenan, and
their hybrid hydrogels were investigated using the ionotropic gelation method for the
encapsulation of β-galactosidase. As a result, the carrageenan hydrogel presented the best
stability after three months, and its activity and release were considered better than that of
the pectin hydrogel [75].

Much research on enzyme entrapment uses a κ-carrageenan as a wall material, such
as for the entrapment of invertase [76], alpha-amylase [49], papain [50], urease [77], pancre-
atin [78], lactase [79], lipase [80,81], and glucoamylase [82].

3.4. Pectin

Pectin is a complex mixture of polysaccharides extracted from plant cell walls. Com-
mercially available pectins are almost totally derived from citrus peels or apple pomace,
which are by-products from the juice industry. Like the majority of other plant polysac-
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charides, it is polymolecular and polydisperse. In addition, its composition can vary
depending on the source and the conditions faced during isolation [83].

Pectin consists mainly of D-galacturonic acid units, joined in chains through α-(1-4)
glycosidic linkage. Pectin also has branch regions consisting of mono-sugars, such as
D-xylose, D-glucose, L-rhamnose, L-arabinose, or D-galactose [84]. Some of the carboxyl
groups of the uronic acids present in pectin chains are naturally present as methyl esters,
and others are commercially treated with ammonia to produce carboxamide groups. The
percentage of D-galacturonic acid esterified with methanol is denominated by the degree
of methoxylation. According to the degree of the methoxylation, pectin can be classified
into two groups: high methoxy pectin (HMD), with a degree of methylation > 50%, and
low methoxy pectin (LMD), with a DM <50% [85].

Pectin has been employed as a gelling agent, a thickening agent, and a colloidal stabi-
lizer for the last two centuries and is extensively applied in the food and pharmaceutical
industries [86]. Due to its excellent gelling properties, pectin has been employed as a
support material for enzyme entrapment. In an acidic environment (typically, pH ≤ 3) or
with a high concentration co-solute (e.g., sucrose, ≥ 65 wt%), the gelation of high methoxy
pectin occurs through crosslinking between the hydrophobic forces and methyl bonds [87].

Calcium dependent gelation is one of the most important functional properties of
pectin that allows for enzyme entrapment. In this case, low methoxy pectin forms a gel in
the presence of calcium ions. The gelation mechanisms of alginate and pectin, known as the
egg-box model, were believed to be similar because their Ca-binding sites show a mirror-
symmetric conformation. Nonetheless, the formation and the structure of egg-box dimmers
between alginate and pectin differs, as studies have found [85]. Molecular modeling
showed that the most well-disposed association of pectin chains should demonstrate a
better correlation if described by a “shifted” egg-box [88].

In general, in order to keep a biocatalyst entrapped inside the pectin hydrogel net-
work, pectins are used in the form of microbeads. The lipase encapsulation in pectin
gels crosslinked with calcium ions increased enzyme activity by three to four times in
water-miscible organic co-solvents compared with aqueous systems [89]. In another study,
two enzymes were immobilized in pectin, presenting greater thermal and pH stability
in comparison to the free enzyme system with the complete retention of original activi-
ties [90]. The bioactivity of the enzyme encapsulated depends on bead formulation and
process parameters. β-lactamases encapsulated in pectin beads mainly depend on for-
mulation parameters such as pectin type, CaCl2 concentration, and washing and drying
processes [91].

Different hybrid supports based on pectin were described for enzyme encapsulation,
such as a pectin/alginate [92–94], pectin/poly-vinyl alcohol [95], pectin/chitosan [96],
carrageenan/pectin [75], and pectin/pine fiber [97]. The pectin combination with other
polymers improves some key properties, such as mechanical and thermal resistances.

3.5. Agar–Agar and Agarose

Agar–agar is a natural polysaccharide obtained from the cell wall of Rhodophyta (red
algae), and its main components are neutral agarose and charged agaropectin [98]. Agarose,
the predominant component, is formed by agarobiose that consists of repeating units of
β-D-galactose and 3,6-anhydro-L-galactose linked by the α-(1→3) and β-(1→4) glycosidic
bond [99]. Agaropectin, a sulfated polysaccharide (3–10% sulfate), has the same repeating
unit, but about 8% of the 2- or 6-positions of the 3,6-anhydro-α-L-galactose residues can be
substituted by –OSO3, –OCH3, glucuronate, or pyruvate residues. The gelling potential of
the material is greatly affected by these substituents [100].

Agar–agar and agarose gels have been used as a wall material for enzyme encapsula-
tion because of some favorable functional properties [101–105]. Agarose, when in aqueous
media, is a typical strongly hydrophilic, inert, and lyophilic colloid. Moreover, the ability
of agar and agarose to form firm and stable gels is their most appealing characteristic [106].
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Due to its physico-chemical properties and molecular structure, agarose transits
into sol-gel after cooling and forms a three-dimensional network [107]. To form double
helices, the single chains first associate via hydrogen bonds during gelation under cooling
conditions. When the temperature drops even further, the double helices aggregate [108]. A
two-step gelation mechanism was proposed: firstly, the connection between the randomly
distributed coils by hydrogen bonds is formed, and a double-helical association is made;
then, the double helices aggregate, forming a tight, three-dimensional network [109].
Moreover, the coil-to-helix transition, which occurs while cooling, may be described by a
mean-field Zimm–Bragg approach [110].

The pore size of the gel matrix is regulated by the agarose concentration, which affects
the immobilization yield of the enzyme and its catalytic performance. A fragile gel matrix
with large pores is produced with a lower concentration, leading to the leaking of enzyme
molecules. In contrast, small pore size within the gel matrix is caused by high concentration,
creating hurdles in the penetration of high molecular weight substrates [111,112]. The
maximum immobilization yield (%) of the enzyme was achieved when 2.0% agarose was
used, according to Karim et al. [113]. Through an entrapment technique, these authors
encapsulated carboxymethyl cellulase from Bacillus licheniformis KIBGE-IB2 within the
agarose gel matrix. After it was immobilized, the enzyme’s activation energy (Ea) increased
from 16.38 to 44.08 kJ/mol. The immobilized enzyme exhibited higher catalytic activity
in a broad range of pH and temperature as compared to native enzymes. Furthermore,
the operational and storage stabilities were also found to be significantly higher when the
enzyme was immobilized.

The agar–agarose blend was used as a wall material for α-amylase entrapment [114].
Maximum immobilization yield (19.9%) was obtained with beads prepared with 1.0% (w/v)
agarose and 4.0% (w/v) agar. The immobilized enzyme had a hydrolytic activity nearly 25%
higher when compared to that of the free enzyme.

Serine protease produced by Aspergillus niger KIBGE-IB36 was encapsulated in agar–
agar hydrogel, and maximum enzymatic activity was attained when 3.0% agar–agar was
used. The immobilized protease exhibited a significant increase in the thermal stability and
retained approximately 68.0% of its residual activity at 60 ◦C. As the entrapped protease
showed enzymatic activity, storage stability increased up to 30 days compared to the
soluble enzyme. The enzyme was recycled up to eight cycles, presenting an exceptional
attribute for economic utility and the continuous recycling of protease [115].

3.6. Gelatin

Gelatin is a protein of animal origin that is derived from the chemical degradation
of collagen. Cattle bones, hides, pig skins, and fish are the main commercial sources of
gelatin and can be obtained inexpensively. It has a high molecular weight from 65,000 to
300,000 g/mol [116]. Chemically, gelatin comprises 18 varieties of complex amino acids,
with glycine, proline, and hydroxyproline as the major compounds, and other distinguished
amino acid families, such as glutamic acid, alanine arginine, and aspartic acid [117]. Due to
its excellent biodegradability, low cytotoxicity, and indefinite shelf life, gelatin has attracted
attention for enzyme immobilization [118].

Gelatin can form a heat-reversible gel in dilute aqueous solutions [119] and a hy-
drophilic, macroporous hydrogel containing hydroxyl groups as well as charged groups
(–NH2, –COOH). All these available groups on the molecular chains can be activated
and then covalently conjugated with polymeric gelatin chains by crosslinking agents
such as microbial transglutaminase [120]. Transglutaminase presents a singular abil-
ity of protein crosslinking, catalyzing acyl-transfer reactions between γ-carboxyamide
groups of glutamine residues and ε-amino groups of lysine residues [121]. According
to Labus et al. [67,122], gelatin-based hydrogels crosslinked with transglutaminase are
suitable to be used as matrices for invertase and β-galactosidase entrapment.

Physical, enzymatic, and chemical methods can be used to develop an efficient pro-
cedure to prepare gelatin hydrogels of appropriate strength and elastic properties for
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applications as enzyme carriers. Generally, gelatin microspheres are prepared primarily
using (1) spray-drying, (2) coacervation, (3) emulsion, or (4) membrane emulsification meth-
ods [118,123,124]. The immobilization of enzymes onto gelatin takes place via crosslinking
between the enzyme molecule with crosslinking agents and the free amino groups of the car-
rier, leading to the formation of a covalent bond, according to Ewadh and Al-Khafaji [125].
Gan et al. [126] elaborated a glucoamylase-immobilized system based on crosslinked
gelatin nanoparticles using the coacervation method. This system exhibited characteristics
of temperature-triggered phase transition, which could be used for enzyme immobilization
and release. The efficiency of the loadings of immobilized glucoamylase by entrapment
was 59.9%. The immobilized enzyme was released when the system temperature was
above 40 ◦C.

Gelatin behaves like an amphoteric electrolyte in solution (carrying a net positive
charge below its isoelectric pH). It is also known to interact via non-covalent interactions
with other hydrocolloids, including alginate, gellan, carrageenan, and konjac glucoman-
nan [127]. Efficient enzyme immobilization includes laccase [128], β-glucosidase [129],
α-amylase [130], and lipase [131] by using gelatin along with calcium alginate, polyester
films, and titanium species [132].

3.7. Polyethylene Glycol (PEG)

Polyethylene glycol (PEG) is a hydrophilic polymer composed of repeated ethylene
glycol units [–(CH2CH2O)n]. It can be synthesized by anionic polymerization of ethylene
oxide and a hydroxyl group (from water, ethylene glycol, or any diols). Ring-opening poly-
merization of epoxyethane is another way to produce PEG. Commercially available PEGs
are found with different degrees of polymerization and activated functional groups [133].

From the synthetic polymers, polyethylene glycol stands out as an encapsulating
material for enzyme systems because of its non-immunogenic, biocompatible, and flexible
nature [134]. The mechanical stability of PEG can be enhanced by mixing it with other
polymers, such as alginate, chitosan [135], and poly (lactic-co-glycolic acid) (PLGA) [136].

Wang et al. [135] showed that PEG added into sodium alginate-immobilized cellulase
increased the matrix porosity. The addition of chitosan reduced the disintegration of the
carrier to improve its stability. Cellulase immobilized in a sodium alginate–PEG–chitosan
matrix was used to hydrolyze microcrystalline cellulose with an overall yield 23% higher
than that of the free cellulase after reusing it for five cycles.

Labile hydrophilic enzymes for neurological disease applications can also be delivered
by polymeric particles made of PEG. PLGA copolymerized with PEG has been used to
protect catalase from degradative proteases [136]. Sonicated nanoparticles of PEG–PLGA
containing catalase increased the enzyme activity and showed great protection of the
enzyme in degradative conditions. The authors, however, were alert for possible toxicity
caused by the solvent used during sonication. Replacing dichloromethane with chloroform
resulted in biocompatible polymeric nanoparticle formulations [136].

PEG was also used to encapsulate laccase for bisphenol A removal from aqueous
solution [137]. The particles were prepared by encapsulating laccases into PEG hydrogel
via the UV-assisted emulsion polymerization method followed by cross linking with
glutaraldehyde. High enzyme entrapment efficiency and activity recovery were obtained,
resulting in successful bisphenol degradation for seven cycles.

4. Enzyme Encapsulation Methods

The selection of the encapsulating method is of great importance for the success of
micro or nanostructured systems for enzyme loading. In recent decades, several meth-
ods have been studied for this purpose, especially ionic gelation, spray drying [16,57],
freeze-drying [138,139], nanoprecipitation [18,140], and electrospinning [19,141]. A good
encapsulation method should enable high loading capacity, high encapsulation efficiency,
and high stability. The release and bioavailability characteristics of the capsule must also
be considered for enzyme delivery [142,143].
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Table 1 shows some recent studies of enzymatic encapsulation using polymers, and
the main results are reported.

Table 1. Recent research about the encapsulation of enzymes using polymeric matrices.

Encapsulation
Method Enzyme Encapsulating

Polymers Main Results Refs.

Liposome
entrapment Superoxide dismutase Polyacrylamide Good encapsulation efficiency (37%) and

maintenance of enzyme activity. [144]

Emulsion solvent
evaporation

α-chymotrypsin and
lysozyme

Poly (glycerol adipate-
co-o-pentadecalactone)
Poly (1,3-propanediol

adipate-co-o-
pentadecalactone)

Little difference in encapsulation was
observed between the different polymers;
Changes in polymer chemistry showed

greater effects.

[145]

Crosslinked
enzyme aggregates

Thioesterase,
galactosylceramidase,
α-glucosidase, and β-

glucosidase

Poly
(lactide-co-glycolide)

Excellent activity retention (usually
around 60%); enzymatic activity is fully
recovered in primary fibroblasts upon

treatment.

[146]

Solid-in-oil-in-
water α-chymotrypsin Poly (lactic-co-glycolic)

acid Maximum encapsulation efficiency of 61%. [147]

Precipitation-
dialysis α-chymotrypsin Poly (γ-glutamic acid)

Considerable amounts of α-chymotrypsin
were encapsulated (20–25%); the
encapsulation contributed to the

preservation of enzyme activity over time.

[148]

Adsorption Alcohol dehydrogenase Polyallylamine
Polystyrene sulfonate

The affinity of alcohol dehydrogenase to
the substrate was 1.7 times lower than

that of the native enzyme.
[149]

Polymerization Glucose oxidase - Thermal stability and tolerance to organic
solvents were significantly improved. [150]

Homogenization Naringinase Sodium alginate or
chitosan

The process improved the kinetics and
operational stability, so it could be useful

as a debittering agent for citrus juice
industries.

[151]

Electrospinning

Lysozyme Poly(vinylpyrrolidone)
and Eudragit RS100

High encapsulation efficiency and
preservation of enzyme activity were

achieved (93.4 ± 7.0% and 96.1 ± 3.3%,
respectively).

[19]

Fructosyltransferase
Group of

biodegradable
polymers

Good results have been obtained;
however, further research is needed to

reduce the leaching of the encapsulated
enzyme from electrophilized fibers.

[141]

β-galactosidase Polyvinylpyrrolidone

97% of the original activity was
maintained; there were no changes in pH

and temperature profiles; high storage
stability (β-galactosidase activity

decreased by only 4% after one year).

[152]

Electrospray Streptokinase Poly (lactic-co-glycolic
acid)

The method proved to be an interesting
approach to encapsulate enzymes; other

studies are necessary to ensure the
maintenance of enzyme activity after

electrospray.

[153]
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Table 1. Cont.

Encapsulation Method Enzyme Encapsulating
Polymers Main Results Refs.

Freeze-drying

Bromelain Chitosan
The freeze-dried method can

effectively improve the stability of
bromelain and nanoparticles.

[138]

Firefly luciferase Chitosan and xanthan
gum

Enzymatic activities of the
encapsulated and the released enzyme

were confirmed for over 30 days.
[139]

Nanoprecipitation

Lysozyme and
horseradish peroxidase

Poly (lactic acid)
Poly (ethylene glycol)

Lysozyme and horseradish peroxidase
were shown to retain 99% activity

after processing.
[18]

Asparaginase Polyglycerol

Enzymes were encapsulated with an
efficacy of 100% and, after release, full

enzyme activity and structural
integrity were retained.

[140]

Lysozyme and
α-chymotrypsin

Poly (lactic-co-glycolic)
acid

High encapsulation efficiencies (>70%)
and residual activity (>90%). [154]

Coacervation complex Lysozyme

Poly (acrylic acid)-block-
poly(acrylamide)

Poly(N,N-
dimethylaminoethyl

methacrylate)

The stability of the micelles containing
a larger fraction of lysozyme was

lower.
[155]

Extrusion α-amylase Gelatin and shellac
The enzyme showed good stability

after encapsulation and can be
recycled 10 times.

[132]

Thermal gelation L-phenylalanine
ammonia-lyase Plant hydrocolloids Good results were obtained; however,

new studies are necessary. [156]

Spray drying

β-galactosidase Chitosan

Encapsulation increased the
diffusional effect of the released
enzyme and reduced the initial

activity of the enzyme.

[157]

DNase I Poly (lactic-co-glycolic)
acid

High encapsulation efficiency (>80%);
microparticles loaded with DNase I
showed high inhalation rates and

increased mucolytic activity.

[16]

Double emulsion

Laccase Eudragitfi L 100-55 Increased stability of the enzyme at
acidic pHs (2.0–5.0). [158]

α-chymotrypsin

Poly (ethylene
glycol)-co-poly

(glycerol
adipate-co-Ñ-

pentadecalactone)

Good throughput and encapsulation
efficiency; encapsulation kept the
bioactivity of α-chymotrypsin and

protected it from adverse preparation
conditions.

[159]

Layer-by-layer

Catalase
Poly (allylamine

hydrochloride) dextran
sulfate

Catalase remained active inside the
polymer capsules; polymer capsules

showed potential to prevent oxidative
stress.

[160]

L-asparaginase Poly dextran/poly-L-
arginine

Encapsulation improved proteolytic
resistance and thermal inactivation of

L-asparaginase.
[161]
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Table 1. Cont.

Encapsulation Method Enzyme Encapsulating
Polymers Main Results Refs.

Ionic gelation

Human phenylalanine
hydroxylase Chitosan Effective in maintaining protein

stability and enzymatic function. [162]

Bromelain Chitosan High encapsulation efficiency (85.1%);
improved the stability of bromelain. [138]

Pectinase Sodium alginate

Pectinase can be used to hydrolyze
pectic substances in orange juice;
maintenance of enzyme stability

activity during recycles.

[163]

Lipase Sodium alginate and
Chitosan

High encapsulation yield (99.8%);
improvement of enzyme activity. [57]

As can be seen in Table 1, numerous techniques can be used in enzyme encap-
sulation, especially ionic gelation, spray drying, freeze-drying, nanoprecipitation, and
electrospinning. α-chymotrypsin, lysozyme, and β-galactosidase are the most used en-
zymes in encapsulation studies with polymeric matrices (Table 1). The most promi-
nent polymers are chitosan and sodium alginate, which may be related to the abun-
dance of these polymers in nature. Furthermore, most authors reported high encap-
sulation efficiency [16,19,57,138,140,152,154], improvement or maintenance of enzyme
activity [16,19,57,138,144,148,151,152,162], improved pH, temperature or storage stabil-
ity [150–152,158,161], and high reuse capacity [132,163]. The most widely used methods
for entrapping enzymes are described in the next sections.

4.1. Ionic Gelation

Ionic gelation is often used to prepare micro/nanoformulations for the controlled
release of enzymes. In this method, solutions of biopolymers (e.g., alginates, carboxymethyl-
cellulose, chitosan) are dripped/sprayed under constant agitation to solutions containing
divalent or trivalent cations (for example, Ca2+, Sr2+, Ba2+, Al3+), which induce gelation [14].
Encapsulation occurs by dissolving the enzyme in the polymeric solution before the mi-
croparticle formation process. Ionic gelation is a simple and easy method, does not require
specialized equipment, organic solvent, or high temperatures, and can be considered low
cost [164,165]. Figure 1a illustrates an example of enzyme encapsulation by the ionic
gelation method.

Studies carried out by Bahreini et al. described the immobilization of L-asparaginase
on chitosan nanoparticles by the ionotropic gelling method using tripolyphosphate as
anion [166]. The authors reported that the best chitosan/tripolyphosphate ratio was 4.2,
with an encapsulation efficiency of 76.2%. In addition, the immobilized enzyme showed
an increase in half-life of about 23 days in the low ionic strength solution compared to
the free enzyme. Vimal and Kumar [167] also immobilized L-asparaginase in chitosan
nanoparticles by the ionic gelling method and obtained an encapsulation efficiency and
loading capacity of 72% and 53%, respectively. Encapsulation of L-asparaginase inside the
nanocarrier improved its pH and thermal stability.
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Degradation studies of various textile dyes with horseradish peroxidase encapsulated
in chitosan granules were evaluated by Bilal et al. [168]. In this study, the horseradish
enzyme was effectively immobilized in chitosan granules (2.5% chitosan concentration)
with an immobilization yield of 92.54% using a simple entrapment method. The optimum
pH and temperature of the immobilized enzyme were 7.5 and 70 ◦C, respectively. The dye
discoloration potential by immobilized peroxidase was investigated in a fixed bed reactor
system for four different textile dyes, namely Remazol Brilliant Blue R (RBBR), Reactive
Black 5 (RB5), Congo Red (CR), and Crystal Violet (CV). Immobilized peroxidase resulted
in effective dye removal of RB5 (97.82%) followed by CR (94.35%), CV (87.43%), and RBBR
(82.17%). The immobilized peroxidase retained up to 64.9% of the residual activity after six
consecutive cycles of dye decolorization.

Jaiswal et al. [169] immobilized a purified papaya laccase on chitosan granules using
an entrapment approach. Papaya laccase was immobilized in chitosan granules with an
immobilization yield and loading efficiency of 98% and 100%, respectively. An increase in
laccase properties, such as optimal temperature (at 10 ◦C), thermostability (by 3 times), and
optimal pH (from 8.0 to 10.0), was observed after immobilization. Immobilization increased
enzyme tolerance to a range of metal ions (including heavy metals) and organic solvents,
namely, ethanol, isopropanol, methanol, benzene, and dimethylformamide (DMF).

4.2. Spray Drying

Spray drying is widely used to encapsulate active ingredients, such as flavonoids,
lipids, carotenoids, and enzymes [16,157,170]. Spray drying is a continuous process
that transforms various liquids (for example, solutions, emulsions, dispersions, slurries,
pastes, or even melts) into solid particles with adjustable size, distribution, shape, porosity,
density, and chemical composition [171]. In addition, it is a simple, fast, and relatively
low-cost process.

In the encapsulation using the spray drying technique, the feed material is atomized
inside the drying chamber, in which the water of the formed droplets is instantly evaporated
due to contact with the hot air inside the chamber. The formed microparticles are then
separated from the drying air using recovery cyclones [172]. The short contact time (a few
seconds) of the heat with the formed particles makes spray drying encapsulation quite
attractive for enzyme trapping. In addition, proteins and enzymes are more resistant to
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degradation by heat in conditions of low water content and are stabilized very quickly
during rapid evaporation [173]. Figure 1b shows a schematic of a traditional spray drying
system used in the production of microparticles.

Estevinho et al. [157] encapsulated β-galactosidase using the spray drying method
and chitosan as an encapsulating agent and observed an increase in the diffusional effect of
the released enzyme and also a reduction in the initial enzyme activity. Ataide et al. [138]
performed the encapsulation of bromelain in chitosan nanoparticles, aiming to reduce
degradation by protease, increasing its stability and efficiency. The chitosan–bromelain
nanoparticles were produced by ionic gelation/freeze-drying, and an encapsulation effi-
ciency of 85% and an enzymatic activity of 4.9 U/mL were observed.

4.3. Freeze-Drying

Freeze-drying is an appropriate and widely used technique for microencapsulation
of heat-sensitive compounds, as it removes water from microparticles by sublimation. It
is a multi-stage operation that is divided into three stages: freezing, sublimation, and
desorption. The freezing step converts most of the sample water to ice and then the ice
is removed by sublimation at a very low temperature and pressure (step 2). Finally, the
non-frozen water is desorbed to the desired moisture content [174].

The freeze-drying process alone is not capable of producing microparticles and, there-
fore, before this process, the enzyme needs to be encapsulated by another method that
can form droplets of the desired size (e.g., emulsification), which are subsequently dehy-
drated by lyophilization, forming micro- or nanocapsules. Figure 2a shows an example of
powdered nanocapsules containing enzymes produced using freeze-drying.
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Freeze-drying can also be applied as a complementary technique. Using the ionic
crosslinking technique, the encapsulation of bromelain in chitosan nanoparticles resulted
in high encapsulation yield and high enzymatic activity [138]. However, the particles were
unstable in aqueous media, and lyophilization of the formulation with glycine and maltose
as lyoprotectants was evaluated. The resulting microparticles showed short resuspension
time, little changed average size, and increased encapsulation rate compared to the liquid
form. Maltose has been identified as the best lyoprotectant for the maintenance of enzyme
activity, especially when stored under refrigeration [138].

Firefly luciferase was encapsulated in a freeze-dried hydrogel prepared from a col-
loidal suspension of chitosan and xanthan gum. The enzyme was successfully stabilized
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and released from the rehydrated samples at a moderate rate. Furthermore, the enzymatic
activities of the encapsulated and released enzyme were confirmed for more than 30 days,
which reinforces the potential of this technique for enzyme protection [139].

4.4. Nanoprecipitation

Nanoprecipitation is a simple and easy technique to reproduce, and it is commonly
used to prepare nanoparticles [176]. This method is based on the interfacial deposition of a
polymer following the displacement of a semi-polar solvent miscible with water from a
lipophilic solution [177]. The process consists, initially, of the preparation of the solvent
phase, normally composed of the film-forming polymer, one or more molecules to be en-
capsulated, a lipophilic surfactant, and one or more organic solvents, and the non-solvent
phase, usually consisting of water. Subsequently, the two phases are mixed under moderate
magnetic stirring, and the organic solvent is evaporated at room temperature or with a
rotary evaporator, resulting in the nanoparticles being in an aqueous suspension. The
water in the aqueous suspension containing the nanoparticles can be removed by ultra-
centrifugation or freeze-drying [176]. Figure 2b shows a scheme to produce nanocapsules
containing enzymes by the nanoprecipitation method.

Several polymers can be used in the encapsulation process by nanoprecipitation,
emphasizing biodegradable polyesters such as polylactide, polylactide-co-glycolide, and
poly-e-caprolactone. Likewise, several solvents have been used in this process, including
ethanol, acetone, hexane, methylene chloride, or dioxane [176].

Markwalter et al. developed polymeric nanocarriers composed of poly (lactic acid)
and poly (ethylene glycol) using the technique of inverse flash nanoprecipitation and
demonstrated the wide applicability of the process, a large load capacity, and high repro-
ducibility when encapsulating lysozyme and horseradish peroxidase [18]. Encapsulation
retained 99% of enzyme activity after processing. Asparaginase was also encapsulated
by nanoprecipitation in polyglycerol nanogels with an efficiency of almost 100% [140].
Furthermore, no structural changes were observed after exposure to an acid environment
to promote enzyme release, and the total enzymatic activity was maintained.

4.5. Electrospinning

Electrospinning is used to prepare continuous fibers on a sub-micron or nanometric
scale through the action of an external electric field [178,179]. This process is carried out
using a polymer or melted polymer solution, which is usually pumped using a syringe
needle, to which a high voltage is applied [180]. The applied voltage induces a charge
movement in the polymeric liquid, capable of stretching the droplet’s shape, which nor-
mally is a sphere formed by the surface tension [180]. Once the electrostatic repulsion
of the charged liquid polymer becomes greater than the surface tension, a conical shape
known as Taylor’s cone is formed, and the jet initiation begins at the tip of the cone [180].
If there is sufficient cohesive force in the polymer liquid, a stable stream is ejected from the
Taylor cone, allowing the polymer chains to stretch together and form a uniform filament,
which is deposited on a grounded metallic collector [180]. A typical electrospinning system
is shown schematically in Figure 3.

Gabrielczyk et al. [141] evaluated the encapsulation performance of Bacillus subtilis fructo-
syltransferase by coaxial electrospinning using a set of biodegradable polymers and obtained
an enzyme load of 68.1 mg/g and a specific enzyme activity of 5.5 U/mg. An electrospun
double-layer mucoadhesive patch was proposed by Edmans et al. [19] to deliver proteins to
the oral mucosa. Lysozyme was incorporated into poly (vinylpyrrolidone)/Eudragit RS100
polymer nanofibers using electrospinning. A high encapsulation efficiency and preservation
of enzyme activity were achieved (93.4% and 96.1%, respectively).
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5. Release Mechanisms for Encapsulated Enzymes

Delivery systems are designed to release the active ingredients at a given site of
action, at a controlled rate, or in response to a specific environmental trigger such as pH,
ionic strength, temperature, or enzyme activity [8]. In most applications of encapsulated
enzymes, controlled release is essential to obtain the desired effect, as it guarantees a
hydrolysis- or synthesis-controlled profile. Several release mechanisms have already been
studied, and the most common are discussed below and represented in Figure 4.

Diffusion is the dominant mechanism in delivery systems [8], which consists of the
random movement of the active molecules due to the existence of a chemical concentration
gradient [181]. The rate at which the active ingredient is released during the diffusive
process depends on many factors, including solute properties (such as molecular weight
and polarity), matrix properties (such as polarity, rheology, physical state, and interactions),
characteristics of the microparticle (such as size, shape, and structure), and the gradient of
solute concentration between the particle and the surrounding environment. Moreover,
the encapsulating system may be stable throughout diffusion or undergo changes due to
events of swelling, shrinkage, erosion, and fragmentation [8].
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Release by the swelling mechanism is also quite common. In this mechanism, the
active ingredient is released from the particles when they absorb the solvent from the
surrounding medium (usually water) and swell, increasing the pores’ size. The release rate
of the active ingredient will depend on the swelling rate and the time it takes the active
ingredients to diffuse through the swollen microparticle matrix. [8]. The swelling release
can be controlled by selecting the appropriate polymeric matrix, as well as the conditions
of the surrounding environment, including temperature and pH [9]. The release can also
occur by fragmentation, when the microstructure breaks due to external conditions, such as
mechanical pressure, shear, pH changes, and others [9]. The release rate in this mechanism
depends on the fracture properties of the particle and the size and shape of the fragments
formed. Normally, the release by this mechanism is rapid due to the increase in surface
area and the influence of other release mechanisms, such as diffusion, dissolution, and
erosion [8].

There are also encapsulation systems that use the dissolution release mechanism,
considered one of the simplest designs [182]. Release by this mechanism occurs when
the encapsulating system is placed under conditions that lead to the dissolution of the
microstructure. The microstructure can be completely constituted by the active molecule,
releasing the product as the particle dissolves, or it may consist of a polymeric matrix
containing the dispersed active material, in which the release occurs by the dissolution of
that matrix [8]. The release rate by this mechanism is directly correlated to the dissolution
rate, which depends on the microparticle’s composition and structure and external factors,
such as pH, solvent type, ionic strength, and temperature [8]. Finally, delivery can also
occur through the erosion mechanism, which consists of the erosion of the microparticle
matrix due to physical factors, such as temperature; chemicals, such as strong acids or bases;
and enzymes, such as lipases and amylases. The erosion process can occur superficially or
fully, and the release profile is directly related to the erosion rate. The greater the erosion,
the greater the release rates of the encapsulated molecules [8,9].

Babich et al. [156] evaluated the release of L-phenylalanine ammonia-lyase encapsu-
lated in simulated fluids and observed that, in distilled water, the degree of degradation
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of the capsules containing the enzyme reached 55–65% after 120 min. The maximum
degradations of the microcapsules (90–98%) occurred in a bio-relevant media model sim-
ulating intestinal juice. Osman et al. [16] evaluated the in vitro release of DNase I from a
microparticle system to treat cystic fibrosis via the pulmonary route and observed that for
microparticles without surface modification, about 24% of the enzyme was released during
the first 6 h. The inclusion of the hydrophilic surface modifiers increased this amount to
varying degrees, which corresponds to the DNase I located on the surface of the particles.

The release rate of firefly luciferase encapsulated in the freeze-dried hydrogel of
chitosan and xanthan gum was investigated using a standard leaching (erosion) test. The
enzyme release rate was higher at pH 6.0, and the addition of montmorillonite nanoclay
significantly reduced the rate of enzyme release due to the strong influence on the structural
modification of the bionanocomposites [139]. Anjani et al. [14] evaluated the in vitro release
rate of flavourzyme by the dissolution mechanism using a trisodium citrate buffer at
different concentrations (0.5–2.0%). The authors found that the release rate increased with
an increment in buffer concentration from 0.5 to 2.0%.

6. Characterization of Encapsulation Systems

The characterization of microparticles is crucial in the overall encapsulation process
because it provides important information for process optimization. The main techniques
used to characterize encapsulation systems developed for the trapping of enzymes are
usually aimed at evaluating the yield and efficiency of encapsulation, morphological
characteristics, and physical aspects [13].

Yield and efficiency encapsulation are variables that are related to the quantification
of the active molecule incorporated in the microstructures. These parameters can be es-
tablished by analytical methods, such as UV-visible spectrophotometry, high-performance
liquid chromatography (HPLC), or gas chromatography (GC) [177]. The determination of
yield and encapsulation efficiency is essential in enzyme trapping because the encapsula-
tion yield may not positively correlate with the encapsulation efficiency, that is, obtaining a
high encapsulation yield may not provide a high encapsulation efficiency. This is because
the encapsulation efficiency is linked to the concentration of active molecules after the
encapsulation process, which does not occur for the encapsulation yield, which is associ-
ated with the total concentration of the molecule (active or inactive). These facts can be
observed in the study developed by Pereira et al. [57]. They found a high encapsulation
yield for Yarrowia lipolytica lipase (>90%) in an alginate and chitosan matrix but noted that
the enzyme activity was low in some cases (low encapsulation efficiency).

The characterization of the particles produced in terms of surface size and morphol-
ogy is also quite relevant. Scanning electron microscopy (SEM), transmission electron
microscopy (TEM), and dynamic light scattering (DLS) are the techniques most used for
this purpose [183,184]. Pereira et al. [13] used SEM to evaluate the morphology of mi-
crocapsules containing Yarrowia lipolytica lipase obtained by the ion gelation technique
and observed a collapsed and heterogeneous surface after drying by freeze-drying. This
observation was necessary for the authors to understand the significant increase in enzyme
activity after the drying process was attributed to the increase in the surface area.

The evaluation of the physical characteristics of the microparticles are also crucial,
and the main ones are zeta potential, thermal gravimetric analysis (TGA), differential
thermal analysis (DTA), differential scanning calorimetry (DSC), Fourier transform infrared
spectroscopy (FTIR), and X-ray diffraction. Zeta potential determines the surface electrical
charge of the microparticles and is of great importance in assessing their stability and
behavior in a biological environment [13,177]. TGA, DTA, and DSC are thermodynamic
characterizations that provide important information about the properties of the chemical
compounds that form the microparticles. TGA uses heat to force reactions and physical
changes in materials and generate thermogravimetric curves that characterize specific
compounds due to the unique sequence of physical–chemical reactions. DTA is based on
the principle that the substance, when heated, undergoes reactions and phase changes that
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involve absorption or heat emission, with the identification of a substance being performed
by comparing the DTA curves obtained from the unknown substance with the DTA curves
that are provided by elements [177].

On the other hand, DSC is based on the release of heat from a chemical process,
which is determined by the variation of enthalpy [185]. Another important analysis in the
physical characterization of the microparticles is the FTIR. This analysis is used to evaluate
the possible chemical interactions between polymers and biomolecules. Finally, another
analysis of equal importance is X-ray diffraction, normally used to verify the crystalline
and amorphous regions of the microparticles [13].

7. Factors Influencing Active Molecules Encapsulation Efficiency

Different parameters can affect the rate of solidification of microparticles, directly in-
fluencing the encapsulation efficiency. The encapsulating system must ensure the delivery
of enzymes in their native folding state and structure so that their biological activity is
sustained [186]. Nevertheless, the encapsulating process’ success depends on the character-
istics of coating materials and the stability of active compounds in the core, along with the
adequacy of the delivery system for its application [187].

Encapsulation efficiency can increase as the polymer concentration rises once the high
concentration induces fast precipitation of the polymer on the surface of the dispersed
phase, retarding the active molecule diffusion. Moreover, when diffusional resistance to
encapsulated material from the organic phase to the aqueous phase is high, more active
molecules are entrapped, raising particle size [188]. The viscosity of the solution increases
when it is highly concentrated, also leading to encapsulating material dispersion delay. In
addition, high viscosity and rapid solidification of the dispersed phase can diminish the
microparticles’ porosity and consequently improve the encapsulating efficiency [189].

Srikar and Rani [17] indicated that the molecular weight of the polymer was directly
proportional to the entrapment efficiency. For polymers that display high viscosity, the
active molecule are encapsulated longer than in the presence of low molecular weight
polymers. Encapsulation efficiency can fall within a certain particle size range, and the
active molecule release rate can accelerate if the particle size is reduced. It was also
observed that particle size can decrease when the organic phase’s concentration increases
once the viscosity of the solution rises [189].

Polymer hydrophobicity can also influence the entrapment efficiency since the encap-
sulating material is highly hydrophobic; it hampers the encapsulated active molecule’s
escape to the aqueous phase, achieving a low efficiency [190]. The opposite is observed
when the entrapped molecule presents higher solubility in the continuous phase than in
the dispersed phase, leading to an easy diffusion and good encapsulation efficiency [189].

Another factor influencing the encapsulation efficiency is the ratio of dispersed phase
to continuous phase (D/C ratio). When the D/C ratio decreases, it was observed that
active molecule loading and encapsulation efficiency increased and the microsphere surface
was smoother, perhaps because of a faster solidification rate. The porosity in a system
of microspheres can be established during encapsulating polymer hardening when the
organic solvent evaporates during preparation. If a continuous phase contains a large
amount of water, the polymer will precipitate faster, and consequently, less porous spheres
will be formed. Additionally, it was reported that as the volume of the continuous phase
rises, the size of microspheres reduces, promoting a decrease in loading efficiency and a
faster molecule release [18].

Considering the interaction between polymer and active molecules, encapsulation
efficiency can increase when molecules as proteins interact with polymers carrying free car-
boxylic end groups compared to end-capped ones. This occurs if electrostatic interactions
are involved in the encapsulation process. However, protein release from the microparticles
can be limited if the interaction is too strong. As an alternative, a co-encapsulated excipient
can intermediate the interaction between the protein and polymer [186,189].
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8. Applications of Polymer Encapsulated Enzymes

Encapsulated enzymes can be used for several different purposes, and therefore
can find applications in a wide range of industrial sectors. Some examples that show
pharmaceutical, medical, and food applications are depicted in Table 2. Despite the recent
articles showing the use of encapsulating enzymes in biocatalysis [13,141], this use is not
so intense because of the low reuse efficiency and reduced mass transfer. Pereira et al. [13]
reported that p-nitrophenyl laurate hydrolysis by lipase encapsulated in chitosan–alginate
beads decreased by 52% in the second reaction cycle and indicated a reduction of reaction
rate, which might be due to substrate or product retained in the active site.

Table 2. Application of polymer encapsulated enzymes.

Enzyme Method Application Refs.

Lysozyme Electrospinning Drug delivery/delivery of
biopharmaceuticals to the oral mucosa. [19]

β-galactosidase Electrospinning Oral drug delivery. [152]
Fructosyltransferase Electrospinning Biocatalysts. [141]

Papain Electrospinning Wound debridement. [190]
Phosphatase Freeze-drying Reaction engineering. [17]

Bromelain Freeze-drying/ionic gelation Wound healing and blood circulation
improvement. [138]

L-asparaginase Ionic gelation Drug release. [167]
Pectinase Ionic gelation Clarifying orange juice. [163]

Flavourzyme Ionic gelation Cheese ripening. [14]

Aminopeptidase Ionic gelation Food industry: accelerating; cheddar cheese
ripening through peptide hydrolysis. [191]

Lysozyme;
α-chymotrypsin Nanoprecipitation Novel treatments in immunology, oncology,

or enzyme therapies. [154]

DNAse 1 Spray-drying Delivery of particulates carrying therapeutics
to patients with cystic fibrosis. [16]

Drug delivery strategies that can be achieved with encapsulating enzymes are sig-
nificantly advantageous for pharmaceutical and medical applications because they can
direct the enzyme to the right location. Edmans et al. [19] incorporated lysozyme into
poly (vinylpyrrolidone)/Eudragit RS100 polymer nanofibers using electrospinning from
an ethanol/water mixture as an antimicrobial protein to the oral mucosa. The resulting
fibrous membranes released the protein at a clinically desirable rate (90% cumulative
release after 2 h) and inhibited the growth of the oral bacterium Streptococcus ratti, showing
its potential to treat and prevent oral infections. Vimal and Kumar [167] reported that
the antimicrobial property of L-asparaginase increased when it was encapsulated inside a
chitosan nanoparticle, demonstrating that the enzyme nano-carrier has better therapeutic
potential as compared to the free enzyme. Osman et al. [16] tested various hydrophilic
excipients to produce controlled release microparticles by co-spray drying DNase I with
poly (lactic-co-glycolic) acid and 1,2-dipalmitoyl-Sn-phosphatidyl choline (biocompatible
surfactant). These microparticles prepared with dextran were biocompatible with lung
epithelial cells and showed a controlled release to reduce cystic fibrosis mucus viscosity.

The incorporation of enzymes into food products can also be achieved with encapsu-
lation strategies. Anjani et al. [14] used flavourzyme encapsulated with alginate for cheese
ripening. The enzyme leakage from capsules increased with an increase in the duration
of the simulated cheese press from 4 to 16 h, but the control of the amount of enzyme
leakage is still needed to direct the proteolysis required for optimal flavor development
in accelerated cheese ripening. Microbial pectinase encapsulated by sodium alginate was
used successfully by Mahmoud et al. [163] to eliminate pectin from orange juice, reducing
turbidity since the free enzyme cannot be used in this case due to the high acidity of
the juice.
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Another possible application of encapsulated enzymes is for polymerase chain reac-
tion (PCR), which is an extensively used technique to amplify DNA in vitro. Due to the
limitation of parallel reactions by the conventional methodology, major screening studies
are restricted. Mak et al. [192] proposed the use of diffusion controlled and temperature
stable microcapsule compartments to perform a high number of individual PCRs. The
authors demonstrated that a great number of individual PCRs confined in microcapsules
containing Taq DNA polymerase can occur in a single reaction tube since low molecular
reactants are allowed to diffuse in the permeability controlled capsules.

RNA is a biomolecule with a wide range of important cellular functions, such as
information storage, catalysis, and regulation, and can also benefit from encapsulation
considering its susceptibility to degradation. RNA was successfully synthesized and
internalized in polymer hydrogel capsules containing T7 RNA polymerase, leading to
minimization of molecule handling and bypassing isolation and purification paths [193,194].
Figure 5 illustrates some possible applications of encapsulated enzymes.
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9. Conclusions and Future Perspectives

When using enzymes, we are faced with one huge problem: their stability. The
stability of enzymes is linked to interactions formed in their structure, which can be
easily destabilized when placed in adverse environmental conditions, such as variations
in temperature, pH, or ionic strength. Therefore, delivery systems, such as encapsulation
with polymers, are an alternative way to protect the catalytic activity of enzymes until
they reach the target site, where they will be released, or during their use in a reaction
system. Ionic gelation, spray drying, freeze-drying, nanoprecipitation, and electrospinning
are the main techniques reported for the development of enzyme delivery systems. The
use of these transporters has shown great benefits in improving enzymatic stability, which
increases the possibility of using these biomolecules in industry. However, only a few
polymers have been tested so far, which shows that new options can be studied in future
research. Other methods such as coacervation, double emulsion, and polymerization have
been tested successfully in a few studies and should also be the targets of new insights.
The development of new polymeric structures for the encapsulation of enzymes, aiming at
their application and reuse in catalytic systems, should also be explored. The information
covered in this review provides guidance for the future development of more advanced
transport systems for application in enzyme encapsulation.
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