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ABSTRACT: It has been proposed that human telomerase RNA (hTR) interacts with dyskerin, prior to
assembly of the telomerase holoenzyme. The direct interaction of dyskerin and hTR has not been
demonstrated and is an experimentally challenging research problem because of difficulties in expressing
and purifying dyskerin in quantities that are useful for biophysical analysis. By orthogonally labeling dyskerin
and hTR, we have been able to employ single-molecule two-color coincidence detection (TCCD) to observe
directly the formation of a dyskerin-hTR complex. By systematic deletion of hTR subdomains, we have
gained insights into the RNA sites required for interaction with dyskerin. We then investigated mutated forms
of hTR and dyskerin that are associated with dyskeratosis congenita (DC), on the basis of clinical genetics
studies, for their effects on the dyskerin-hTR interaction. Dyskerin mutations associated with X-linked DC
resulted in significant impairment of the dyskerin-hTR interaction, whereas mutations in hTR associated
with autosomal dominant (AD) DC did not affect the interaction. We propose that disruption of the
dyskerin-hTR interaction may contribute to X-linked DC.

Dyskerin is a putative pseudouridine synthase that is expressed
constitutively and is required for correct modification of riboso-
mal and small nuclear RNA precursors (/). A complex capable of
pseudouridylation is formed by dyskerin and three other pro-
teins, NOP10, NHP2, and GARI, in association with a specific
guide RNA containing the box H/ACA sequence motif (2, 3).
The presence of this motif in the 3" half of the RNA component of
human telomerase (hTR)' has been proposed to provide a
discrete binding site for dyskerin within the telomerase com-
plex (2, 4). hTR provides the template for telomere synthesis by
human telomerase reverse transcriptase ('\TERT) and acts as a
protein-binding scaffold for telomerase holoenzyme assembly (5).
Recently, the protein dyskerin has been identified as a component
of active human telomerase purified from cells (6, 7) in addition
to hTERT and hTR. It has been hypothesized that dyskerin is
linked in a spatiotemporal manner to the biogenesis of the pre-
telomerase RNP (7) and/or the stabilization of hTR within the

"This work was supported by the BBSRC, the Wellcome Trust (Grant
069399/7/02), and the MRC (Grant G0400534). A.O. thanks the Marie
Curie IEF of the sixth EU Framework for financial support.

*To whom correspondence should be addressed. (S. B.) Telephone: +44
(0) 1223 336347. Fax: +44 (0) 1223 336913. E-mail: sb10031@cam.ac.uk.
(D,K.) Telephone: +44 (0) 1223 336481. E-mail: dk10012@cam.ac.uk.

Abbreviations: DC, dyskeratosis congenita; AD DC, autosomal
dominant dyskeratosis congenita; hTR, human telomerase RNA;
hTERT, human telomerase reverse transcriptase; TCCD, two-color
coincidence detection; YFP, yellow fluorescent protein; 647N—RNA,
RNA molecule conjugated to the maleimide derivative of ATTO-TEC
647N fluorescent dye; PUA, pseudouridine and archaeosine trans-
glycosylase; PCR, polymerase chain reaction; RNP, ribonucleoprotein.

pubs.acs.org/Biochemistry Published on Web 10/17/2009

telomerase complex, but there has been no explicit physical
evidence of a direct interaction between hTR and dyskerin.

Dyskeratosis congenita (8, 9) is thought to be the first primary
telomere maintenance disorder to be identified in humans. It is a
premature aging syndrome that can lead to a triad of muco-
cutaneous features, namely, abnormal skin pigmentation, nail
dystrophy, and mucosal leukoplakia (/0). DC adversely affects
highly proliferative tissues, with bone marrow failure being the
major cause of death (/7). Cells from patients with this disease
generally display short telomeres, and the lack of efficient telomere
maintenance has been attributed to reduced levels of active
telomerase enzyme. DC is a genetically diverse condition and
arises from three possible inheritance patterns. The most common
is the X-linked form, which is associated with mutations in the
DKCI gene that encodes dyskerin (72, 13). Patients with
X-linked DC, mainly young males, go on to develop bone marrow
failure before the age of 30 (/4) and have an increased risk of
cancer, which is thought to arise because shortened telomeres
promote genomic instability. More recently, an autosomal domi-
nant form of the disease has been characterized, in which patients
generally display milder symptoms that present later in life.
A major subset of cases, demonstrating a clinically heterogeneous
phenotype, are associated with mutations in hTR (75).

Physical analysis of the components of the telomerase complex
has been hampered by technical challenges because of low natural
abundance, poor expression, and inefficient in vitro assembly
of the recombinant enzyme. In our hands, human dyskerin
has proven to be similarly difficult to express at high levels
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(greater than picomoles) in vitro, which precludes the use of most
classical biophysical methods that require at least 1000-fold greater
sample quantities for effective analysis. Our single-molecule
fluorescence approach two-color coincidence detection (TCCD)
can overcome such limitations as it requires a minimal quantity
(less than femtomoles) of labeled com-
ponents. Furthermore, it can be used to characterize a
partially purified complex of orthogonally labeled species in the
presence of a high background of labeled, unassociated
molecules (/6—18). The advantage of TCCD compared to other
single-molecule techniques, such as FRET, is that the fluorophore
label can be placed at any convenient position on the molecule,
and that no prior knowledge of the complex structure is required.
Furthermore, the cross-talk between channels is weak, making the
method significantly more sensitive to low concentrations of
associated molecules.

Herein, we describe the use of single-molecule TCCD to detect
and study the dyskerin-hTR complex. In particular, we evaluated
the dependence of this protein-RNA interaction on subdo-
mains of hTR and on mutations associated with the rare
human disease DC.

MATERIALS AND METHODS

Construction of the pET28a-3XFLAG-YFP-DKCI
Plasmid. The DKCI coding sequence had previously been
cloned from human ¢cDNA and inserted into the pEF1 plasmid
vector (Invitrogen, Paisley, U.K.). The sequence was subse-
quently amplified by PCR using the forward primer 5-CTT
AGT GCT AGC ATG GCG GAT GCG GAA GTAATT ATT
TTG C-3, containing the Nhel restriction site, and the reverse
primer 5-AGA TCT GAA TTC CTA CTC AGA AAC CAA
TTC TAC C-3, containing the EcoRI restriction site. The DKC1
PCR product was subjected to double-restriction endonuclease
digestion with enzymes Nhel and EcoRI and subcloned into a
pET28a vector containing the 3XxFLAG coding sequence to
produce pET28a-3x FLAG-DKCI. The YFP coding sequence
was amplified by PCR from plasmid pET28a-3x FLAG-YFP-
hTERT using the forward primer 5-TAT ACA GCT AGC GTG
AGC AAG GGC GAG GAG C-3 and the reverse primer
5-AGA TCT GCT AGC CTT GTA CAG CTC GTC CAT
GCC-3', both containing the Nhel restriction site. The YFP PCR
product was subjected to restriction endonuclease digestion
with Nhel and subcloned into the pET28a-3x FLAG-DKCI
plasmid to produce pET28a-3x FLAG-YFP-DKCI. The final
construct was verified by DNA sequencing (Cogenics Lark,
Takeley, U.K.).

Construction of the pIRES2-3xFLAG-YFP-DKCI-
EGFP Plasmid. The pET28a-3x FLAG-YFP-DKC1 plasmid
was subjected to double-restriction endonuclease digestion with
enzymes Bgll and EcoRI, and the insert 3x FLAG-YFP-DKCI
was subjected to gel purification on a preparative agarose gel.
The gel-purified DNA fragment was subcloned into the pIRES2-
EGFP vector (BD Biosciences, Oxford, U.K.) to produce
pIRES2-3xFLAG-YFP-DKCI-EGFP. The final construct
was verified by DNA sequencing (Cogenics Lark).

Functional Analysis of the 3X FLAG-YFP-DKCI Pro-
tein. HEK 293 cells were seeded at a density of 4 x 10° cells/well
in a six-well plate in DMEM-F12 with 10% fetal calf serum
(Lonza, Wokingham, U.K.). After 24 h, cells were cotransfected
with 1 mg of pIRES2-EGFP (empty vector) or pIRES2-
3XFLAG-YFP-DKCI-EGFP and 1 mg of the anti-dyskerin
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shRNA SHCLNG-NM_001363, TRCN0000039738 (Sigma-Al-
drich, Gillingham, U.K.), using Lipofectamine LTX (Invitrogen)
according to the manufacturer’s protocol. A knockdown negative
control consisted of transfection of 2 mg of pIRES2-EGFP alone.
Cells were cultured at 37 °C for 72 h before being harvested by
trypsinization. Successfully transfected, GFP-positive cells were
selected using a BD FACSAria cell sorter (BD Biosciences) and
separated into two aliquots for further analysis.

Telomerase enzyme activity was measured using the telomer-
ase repeat amplification protocol (TRAP) assay (19) using the
TRAPeze RT Telomerase Detection Kit (Millipore, Watford,
U.K.) according to the manufacturer’s protocol. Briefly, lysates
0f 3,000 cells were incubated at 30 °C for 30 min in the presence of
a substrate oligonucleotide for the addition of telomeric repeats.
The products of this incubation were amplified by real-time
quantitative PCR, and the fluorescein-labeled products were
detected on an ABI 7500 Real-Time PCR System (Applied
Biosystems, Warrington, U.K.).

To determine cellular hTR levels, RNA was prepared from
50,000 cells using the RNeasy Mini Kit (Qiagen, Crawley, U.K.).
Random hexamers (Qiagen) and M-MLYV reverse transcriptase
(Invitrogen) were used to synthesize first-strand cDNA according
to the manufacturer’s protocol. Absolute RNA expression of the
hTR gene and the ABLI housckeeping gene was assessed by
quantitative real-time PCR on an ABI 7500 Real-Time PCR
System (Applied Biosystems) as described previously (20). hTR
gene transcript levels were normalized to the level of ABLI
expression to compensate for loading variation.

Fluorescence Properties of the Two Fluorophores. YFP
has a fluorescence excitation maximum at 514 nm and a
fluorescence emission maximum at 527 nm, whereas the red
maleimide dye ATTO 647N (ATTO-TEC GmbH, Siegen,
Germany) has a fluorescence excitation maximum at 644 nm
and a fluorescence emission maximum at 669 nm. A 488 nm laser
line was used to selectively excite YFP, whereas a 633 nm laser
line was used to selectively excite ATTO 647N.

Mutagenesis of pET28a-3xFLAG-YFP-DKCI1 and
pUCI8-hTR Plasmids. pET28a-3x FLAG-YFP-DKCI plas-
mid constructs containing one of the dyskeratosis congenita
point mutations (C146T, C1058T, or G1205A) and pUCI8-
hTR plasmid constructs containing one of the dyskeratosis
congenita point mutations (G309T, C408G, or G450A) were
prepared using the QuikChange II site-directed mutagenesis kit
(Stratagene, La Jolla, CA) following the manufacturer’s proto-
col. The PCR primers used are detailed in Table S1 of the
Supporting Information. Each of the final constructs was verified
by DNA sequencing (Cogenics Lark).

Preparation of Fluorescently Labeled hTR Fragment
Constructs. DNA templates suitable for runoff in vitro tran-
scription of full-length hTR, hTR(1-354), and hTR(1-208)
were generated by restriction endonuclease digestion of plasmid
pUCI8-hTR with BamHI, Stul, and PpuMI, respectively. The
sequence encoding hTR nucleotides 353—451 was amplified by
PCR using the forward primer 5-TAC TGT AAG CTT TAA
TAC GAC TCA CTA TAG GCC TTT CAG GCC GCA GGA
AG-3, designed to include the 17-nucleotide T7 promoter and
the HindIII restriction site, the reverse primer 5-TAC TGT
GGA TCC GCA TGT GTG AGC CGA GTC CTG G-3,
designed to include the BamHI restriction site, and plasmid
pUCI8-hTR as a template. The PCR product of nucleotides
353—451 of hTR was subjected to double-restriction endonu-
clease digestion with enzymes HindIIT and BamHI and subcloned
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into the pUCI8 vector to produce pUCI18-hTR(353—451). The
final construct was verified by DNA sequencing (Cogenics Lark).
A DNA template suitable for runoff in vitro transcription
of hTR(353—451) was generated by restriction endonuclease
digestion of plasmid pUCI18-hTR(353—451) with BamHI. The
RNA-y-S molecules hTR-y-S, hTR(1—354)-y-S, hTR(1—208)-
y-S, and hTR(353—451)-y-S, containing a unique sulfur atom
modification at the y-phosphate of the 5’ end nucleotide, were
generated by runoff in vitro transcription using T7 RNA poly-
merase in the presence of guanosine-5-0-(3-thiotriphosphate),
GTP-y-S. They were subsequently reacted with the C, maleimide
derivative of ATTO 647N to produce 647N—hTR, 647N—hTR-
(1—354), 647N—hTR(1-208), and 647N—hTR(353—451).

Protein Expression and Reconstitution with Human
Telomerase RNA. Dyskerin, labeled at the N-terminus with
yellow fluorescent protein (YFP) and a 3xFLAG tag, was
generated by coupled transcription and translation in a rabbit
reticulocyte lysate cell-free TNT T7 Quick Coupled Tran-
scription/Translation System (Promega, Southampton, U.K.)
in the presence of 647N—hTR to produce YFP—dyskerin:
647N—hTR. Briefly, 8 ug of pET28a-3x FLAG-YFP-DKCI
plasmid, 20 pmol of 647N—hTR, and 4 nmol of methionine
were added to 200 uL of TNT Quick Master Mix. The expression
mixture was incubated at 30 °C for 90 min. This type of in
vitro expression approach has been frequently used for the
assembly of active human telomerase from recombinant hTR
and hTERT (2)).

Affinity-Based Purification of Dyskerin-hTR RNP. The
YFP—dyskerin-647N—hTR RNP complex formed during
coupled in vitro transcription and translation was purified via
the integral N-terminal 3Xx FLAG tag. All steps of the purifica-
tion were performed at 4 °C. A 1.7 mL microcentrifuge tube was
loaded with 50 uL of anti-FLAG M2 affinity gel suspension
(Sigma-Aldrich) and centrifuged at 706g for 1 min. The super-
natant was removed, and 500 uL of wash buffer A [25 mM Tris-
HCI (pH 7.4), 50 mM KCI, 5 mM MgCl,, 1 mM EDTA, 10%
(v/v) glycerol, and 0.1% (v/v) Nonidet P40 Substitute] was
added. The tube was inverted by hand 10 times and centrifuged
at 706g for 1 min, and the supernatant was removed. The gel was
washed two additional times according to the same protocol;
500 uL of blocking buffer A [25 mM Tris-HCI (pH 7.4),
50 mM KCl, 5 mM MgCl,, | mM EDTA, 10% (v/v) glycerol,
0.1% (v/v) Nonidet P40 Substitute, 0.5 mg/mL BSA, and 0.1 mg/
mL yeast tRNA] was added and the microcentrifuge tube
inverted at 12 rpm on a rotator for 30 min. The tube was
centrifuged at 706g for 1 min, and the supernatant was removed.
The gel was blocked a second time for 30 min according to the
same protocol. In parallel, after the protein expression and
RNP complex reconstitution, 400 uL of blocking buffer B
[25 mM Tris-HCI (pH 7.4), 50 mM KCI, 5 mM MgCl,, | mM
EDTA, 20% (v/v) glycerol, 0.2% (v/v) Nonidet P40 Substitute,
1 mg/mL BSA, and 0.2 mg/mL yeast tRNA] was added to the
expression mixture, the microcentrifuge tube inverted five times,
and the blocking mixture centrifuged at 16,708g for 20 min. The
supernatant was removed from any precipitated material and
applied to the blocked anti-FLAG affinity gel. The tube contain-
ing the gel was inverted at 12 rpm on a rotator overnight. The
following day, the gel was washed six times with 500 uL of
blocking buffer A according to the same protocol used during
gel preparation; 150 uL of elution buffer A [25 mM Tris-HCI
(pH 7.4), 50 mM KCl, 5 mM MgCl,, 1 mM EDTA, 10% (v/v)
glycerol, 0.1% (v/v) Nonidet P40 Substitute, 0.3 mg/mL
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3XFLAG peptide (Sigma-Aldrich), and 0.1 mg/mL BSA] was
added to the gel and the tube inverted at 12 rpm on a rotator for
60 min. The tube was centrifuged at 706g for 1 min, and the
supernatant was removed and divided into 5 x 30 uL aliquots.
The aliquots were snap-frozen and stored at —80 °C.

Two-Color Coincidence Detection of the Dual-Labeled
Dyskerin-hTR Complex. The purified YFP—dyskerin-
647N—hTR sample was subjected to single-molecule TCCD
analysis. The apparatus and experimental method have been
detailed in previous studies (16, 17, 2I). Experiments were
performed on a home-built two-color confocal inverted micro-
scope setup, which incorporated a diode laser (488 nm, model
Cyan CDRH, Newport Spectra-Physics, Didcot, U.K.) and a
cylindrical helium/neon laser (633 nm, model 25 LHP 151-230,
Melles Griot, Cambridge, U.K.). The two Gaussian laser beams
were overlapped and directed to the back port of an inverted
microscope (model Eclipse TE2000-U, Nikon, Kingston upon
Thames, U.K.). The laser beams were focused 6 um into the
sample solution through a high-numerical aperture oil immersion
objective lens (NA 1.40, model Apochromat 60x, Nikon).
Fluorescent light emitted by the sample was collected back
through the objective lens and directed to a 50 um pinhole
(Melles Griot). The pinhole rejected out of focus fluorescent and
other background light and defined the probe volume within the
sample solution from which a fluorescence signal was recorded.
The remaining light was separated according to wavelength by a
dichroic mirror (model 58SDRLP, Omega Optical, Brattleboro,
VT) and focused onto two avalanche photodiodes (SPCM AQR-
14, Perkin-Elmer Optoelectronics, Cambridge, U.K.). The signal
from each avalanche photodiode was processed using a separate
multichannel scalar, MCS, card, integrating fluorescence signal
in 1 ms time bins. The sample to be analyzed was thawed and
immediately diluted on the microscope stage to an approximate
dyskerin concentration of 10 pM in dilution buffer [25 mM Tris-
HCI (pH 7.4), 50 mM KCI, 5 mM MgCl,, | mM EDTA, 20 ug/
mL BSA, and 10 ug/mL yeast tRNA] in a total volume of 1 mL in
a Lab-TeK chambered coverglass (Scientific Laboratory Sup-
plies, Hessle, U.K.). The laser powers were 220 and 60 uW for 488
and 633 nm excitation, respectively. Data were collected at 20 °C,
and fluorescence bursts in both channels were then subjected to
background and cross-talk correction, thresholding, and analysis
for coincidence.

Two-Color Coincidence Detection Data Analysis. The
coincidence value or association quotient, Q, is defined as the
ratio of the rate of significant coincident events, r,, to the sum of
the rate of all events in blue and red channels, ry,. and rq,
respectively, with a correction to avoid double counting of
coincident events (eq 1).

0= rsig/("blue + I'ted _rsig)
= ("coin _"exp)/[rblue + Fred _(rcoin _"exp)] (1)

The significant coincident event rate is obtained by subtraction
of the expected rate of coincident events due to chance, rexp.
from the observed rate of coincident events, r..,. Coincident
events due to chance arise from noninteracting molecules labeled
with different fluorophores that happen to be in the confocal
excitation volume simultaneously. The expected rate of these
events is determined on the basis of probabilistic calculations and
described in detail by Orte and co-workers (/7). In our measure-
ments, between 25 and 50% of the coincident events were due
to chance because of the low concentration of fully assembled
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complex, but their contribution was effectively removed by
desynchronizing in time the traces from the blue versus the
red channel, giving rise to only chance coincidence that is
subtracted from the total coincidence and the total TCCD
histogram (/7). The association quotient, Q, is linearly related
to the mole fraction of species containing both fluorescent labels,
according to the detection efficiency of the instrument. This was
determined by analysis of a model DNA control sample consist-
ing of a duplex in which each strand was labeled with one or other
of the red and blue fluorophores and which was taken to be 100%
dual-labeled.

Stoichiometric information relating to a coincident species
was extracted through analysis of the coincidence histogram.
The function Z = In(leq/lpe) Was plotted, where I..4 and
Iye are the intensities of coincident events in the red and blue
channels, respectively, after background and cross-talk correc-
tion. The resulting frequency distribution was fitted with one
or more normal distribution functions. Each function has a
peak center, (Z), and width, o, related to the mean fluoro-
phore brightness values ([ q)r and (Iye)r according to eqs 2
and 3.

(Z) ~ In(nlrea)s /mToiue)r) (2)

0= (K/n<1red>f+K/m<[blue>f)l/2 (3)

The inclusion of an extra Gaussian function in the fitting
process was justified by a decrease in the fitting parameter
% of >20%, and by F tests.

RESULTS AND DISCUSSION

To study the interaction between dyskerin and hTR, we
labeled each component with fluorophores that could be excited
independently. hTR, containing a single 5'-thiophosphate func-
tionality, was generated by in vitro transcription prior to reac-
tion with the maleimide derivative of the fluorophore ATTO
647N (ATTO-TEC GmbH) to produce 647N—hTR, which
we have previously demonstrated does not impair telomerase
catalytic activity (27). Dyskerin was labeled at the N-terminus
with yellow fluorescent protein (YFP) and a 3xFLAG tag to
produce the YFP—dyskerin protein. To verify that N-terminal
modification had not impaired dyskerin function with respect
to telomerase, the YFP—dyskerin fusion protein was “knocked-
in” to HEK 293 cells by cotransfection of a plasmid encoding
the modified dyskerin gene and an anti-“endogenous dyskerin”
small hairpin RNA (shRNA) plasmid. The shRNA plasmid
was either transfected alone, as a negative control, or co-
transfected with the construct pIRES2-3xFLAG-YFP-DKCl1-
EGFP. The standard markers of normal dyskerin func-
tion related to telomerase within the cell, hTR levels and
telomerase activity, were recorded. Transfection of HEK
293 cells with the shRNA plasmid alone led to a reduction of
hTR levels to 42.2 4+ 6.2% and telomerase activity to 15.2 £ 1.0%
relative to those of cells transfected with the empty pIRES2-
EGFP vector alone (Figure 1A,B). Cotransfection of the shRNA
plasmid and the construct pIRES2-3xFLAG-YFP-DKCI-
EGFP afforded hTR levels of 86.7 + 12.0% and a telomerase
activity of 58.5 + 12.6% relative to those of cells transfected
with the empty pIRES2-EGFP vector alone. We have there-
fore shown that N-terminally modified dyskerin rescued the
reduction of hTR levels and telomerase enzyme activity seen in
shRNA-only transfected cells, confirming that YFP—dyskerin
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FIGURE 1: Function of N-terminally tagged dyskerin in HEK
293 cells: (A) hTR levels and (B) telomerase activity.

protein supports normal cellular function with respect to
the telomerase complex and in particular the accumulation
of hTR.

YFP—dyskerin protein was prepared by coupled transcription
and translation in a rabbit reticulocyte lysate cell-free system, in
the presence of 647N—hTR. Purification of YFP—dyskerin
protein and any associated RNA was achieved by immunopre-
cipitation using an anti-FLAG antibody. Such an in vitro
expression—purification approach has been used routinely for
the assembly of active human telomerase from recombinant hTR
and hTERT (21). The purified YFP—dyskerin-647N—hTR sam-
ple was subjected to single-molecule TCCD analysis (Figure 2A)
at a concentration around 10 pM. We observed a direct interac-
tion between Y FP—dyskerin protein (blue) and 647N—hTR (red)
by TCCD, by detecting coincident fluorescent bursts in both
channels from associated YFP—dyskerin:-647N—hTR com-
plexes (Figure 2B). The detected coincidence levels corresponded
to 4.8 £ 1.1% of the total labeled molecules present being
involved in complexes containing at least one YFP—dyskerin
and one 647N—hTR component. A coincidence histogram
(Figure 2C) of the data was constructed as a function of
In(Zieq/Tpte), Where Ioq and Iy are the red and blue fluorescence
intensities of each coincident event, respectively, to elucidate the
stoichiometry of complexes present (/7, 21). The normal dis-
tribution centered closest to zero corresponds to a complex
containing an equal number of YFP—dyskerin and 647N—
hTR molecules. More detailed analysis of the intensities of
the fluorescent bursts showed that this distribution is
mainly (>75%) composed of a 1:1 dyskerin-hTR complex
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FIGURE 2: (A) Schematic of the single-molecule TCCD system. The
green ellipse is a dyskerin molecule and the blue curved line an hTR
molecule, and the blue and red filled circles are the fluorophores
attached to the two species under investigation. The large light blue
and red ellipses represent excitation volumes for the blue and red
lasers, respectively, and the large purple ellipse is the overlap volume
where both red and blue lasers can simultaneously excite blue and red
fluorophores. (B) Example of a TCCD fluorescence trajectory show-
ing traces simultaneously acquired from both red and blue detection
channels. Coincidence events, arising from species including both
fluorophores, are marked with asterisks. (C) Coincidence histogram
of the YFP—dyskerin-647N—hTR sample: total fit, blue; 1:1 dysker-
in-hTR complex, red; 1:2 dyskerin-hTR complex, orange; 2:1 dys-
kerin-hTR complex, green.

(see Figure S1 of the Supporting Information). We have esti-
mated a Ky value of 0.81 £ 0.17 nM for the dyskerin-hTR
complex, on the basis of the following assumptions: (a) we
corrected for different diffusion times (based on molecular
weights), (b) we assumed a 1:1 interaction, (c) we assumed the
complex was at equilibrium (no dissociation was observed over
7 h) (see the Supporting Information for a full analysis of
the calculation). Our observation that the majority of the
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dyskerin-hTR complex is 1:1 is consistent with the view that
dyskerin contains a single RNA binding domain PUA (22),
which could interact with either of the two stems present in the
3" half of hTR. Furthermore, the archael orthologue of dyskerin
has been cocrystallized with a single hairpin H/ACA RNA in a
1:1 arrangement (23). The presence of a minor (<20%) 1:2
dyskerin-hTR complex subpopulation is consistent with the
ability of hTR to dimerize via a palindromic sequence in loop
J7b/8a, which we have previously observed under similar condi-
tions (24). The observation of a minor ( < 10%) proportion of the
2:1 dyskerin-hTR complex is consistent with the proposal that
one copy of each of the four H/ACA RNP proteins can bind to
each stem of an H/ACA RNA (3).

To characterize more fully the RNA site dependencies of the
dyskerin-hTR interaction, we prepared three 5'-end-labeled hTR
fragments (Figure 3A) to assess changes in the interaction with
dyskerin as measured by changes in TCCD coincidence levels.
YFP—dyskerin protein was expressed in the presence of each of
the three fragments in turn, and the resulting samples were
purified and analyzed by TCCD, as per the wild-type hTR
experiments described earlier. The first fragment, 647N—hTR-
(353—451), comprised the box H/ACA domain, which consists of
a box H consensus sequence (5-ANANNA-3') and a box ACA
sequence (5-ACA-3) on either side of a stem—loop structure at
the hTR 3’ end. Previous work using an in vitro reconstitution
system has indicated that the hTR box H/ACA domain, speci-
fically nucleotides 379—451, is the sole requirement for assembly
of an RNP with the four H/ACA RNP proteins (25). In our
hands, fragment hTR(353—451) showed a reduction in the
fraction of dyskerin-RNA complexes formed to 0.38 + 0.15,
relative to wild-type hTR (Figure 3B). This indicates that the
hTR box H/ACA domain alone is not sufficient for full recon-
stitution of the dyskerin-hTR interaction. The second hTR
fragment we studied, 647N—hTR(1—354), was complementary
to the first in that it comprised the whole of hTR without the box
H/ACA domain. In this case, we observed a reduction in
coincidence to 0.72 £ 0.19, which suggests that residues outside
the box H/ACA domain are indeed important for proper
dyskerin-hTR association. The third hTR fragment, 647N—
hTR(1-208), comprised the template/pseudoknot domain alone.
This construct demonstrated a reduction in the level of dysk-
erin- RNA complex formation to 0.29 £+ 0.04, which shows
that the 5" half of hTR is capable of an interaction with dy-
skerin in the absence of both the CR4/CRS and box H/ACA
domains. It is important here to note that in each case we re-
cover similar amounts of dyskerin protein but a smaller fraction
of associated complex so that we can directly compare the level
of coincidence for each new construct (and later on for mutants)
by this method. If the box H/ACA domain were the domi-
nant requirement for dyskerin-hTR interaction, fragments
hTR(1-208) and hTR(1—354) would not have exhibited sig-
nificant complex formation with dyskerin, whereas hTR-
(353—451) would have interacted to the same extent as full-
length hTR. The data rather indicate that the box H/ACA motif
is not the unique dyskerin-binding element within hTR and
suggest that binding outside the 3’ terminal 100 nucleotides is also
possible.

We next studied the physical consequence of DC-associated
mutations in dyskerin and hTR, which have been identified
in patients enrolled in a dyskeratosis congenita registry con-
sisting of 328 affected families. In this study, we have chosen
three mutations in DKCI associated with X-linked DC
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independent experiments, and error bars for each fragment are the standard deviation of the normalized mean (except for wild-type hTR, for
which error bars represent the standard error of the coincidence values).

to explore whether they affect the interaction with hTR
(Figure 4A).

We observed that for each of the DC-associated single-amino
acid substitutions in dyskerin that we studied, there was a notable
reduction in the fraction of dyskerin-hTR complexes formed
(Figure 4B). The coincidence dropped to 0.19 + 0.03 relative to
wild-type dyskerin for the Ala353Val mutation, which is found in
40% of characterized X-linked sufferers and is one of the most
prevalent mutations in DC as a whole and a recurrent cause of
classical DC as well as some severe phenotypes. A decrease in the
normalized coincidence level to 0.39 4 0.02 was observed for the
Gly402Glu mutant, which was found in the first large DC family.
The Thr49Met mutation is associated with a severe DC pheno-
type and has been found in four unrelated cases. This mutation
exhibited a smaller but substantial reduction in the fraction of
complexes to 0.61 £ 0.02, relative to wild-type dyskerin. Overall,
these observations demonstrate that the physical interaction
between hTR and dyskerin is disrupted when known dyskerin
mutations associated with X-linked DC are employed in our
system. Notwithstanding a clear decrease in the fraction of

complex formed with the dyskerin mutants, in every case
evidence of stoichiometric heterogeneity was detected (see Figure
S2A of the Supporting Information). However, in all cases, the
dominant contribution remains that of the 1:1 dyskerin-hTR

complex.

It has been reported in the literature that patient-derived cells
expressing two of these dyskerin mutants (either Ala353Val or
Gly402Glu) demonstrated a substantial reduction in hTR levels
compared to cells expressing wild-type dyskerin® (20). In our
experiments, mutations Ala353Val and Gly402Glu each caused a
substantial reduction in dyskerin-hTR coincidence to below 50%
of that of the wild type. The correlation between our biophysical
data and the cell biology data reported previously suggests that
the dyskerin-hTR interaction is important for the maintenance
of appropriate hTR levels in the cell and is consistent with the
view that dyskerin binds to hTR to direct proper processing of the
primary RNA polymerase II transcript and/or to direct sub-
nuclear localization (2, 4).

There are no in vivo data available yet for the Thr49Met mutant.
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FiGURE 4: (A) Schematic of the DKC1 protein sequence showing the
positions of the three selected dyskerin mutations: Thr49Met,
Ala353Val, and Gly402Glu. (B) Fraction of complex formed between
dyskerin mutants and wild-type hTR, normalized relative to wild-
type dyskerin (dark blue). Values represent averages over at least
three independent experiments, and error bars are the standard
deviation of the normalized mean (except for wild-type dyskerin,
for which error bars represent the standard error of the coincidence
values).

There are a number of mutations in hTR that are associated
with the autosomal dominant form of dyskeratosis congenita. In
this part of the study, we set out to probe whether this genetic
subtype of the disease is also a consequence of a reduced level of
binding between hTR and dyskerin, as we had found in the
X-linked form of the disease. The majority of hTR mutations
associated with DC are localized in the template/pseudoknot
domain, with a smaller number present in the 3’ half of hnTR. We
elected to investigate three mutations (Figure 5A) that occur in
regions of hTR we have now shown to be important for the
interaction of hTR with dyskerin, namely, the CR4/CRS5 and box
H/ACA domains. First, we selected C408G, a mutation found in
one of the original DC families with hTR mutations that showed
a 75% decrease in levels of observed telomerase catalytic
activity (26). Second, we selected G450A, found in sporadic
cases of DC with normal telomere lengths, which showed
catalytic activity indistinguishable from that of wild-type
hTR (27, 28). The third mutation, C309T, was chosen as it is
located in the CR4/CR5 domain and enabled us to target
mutations in two different stem—loop structures found to be
important for binding to dyskerin (29).

YFP—dyskerin protein was expressed in the presence of the
labeled hTR mutants, and the resulting samples were subjected to
single-molecule TCCD analysis. We found the fraction of
dyskerin-hTR complexes formed for all three hTR mutant
complexes to be essentially indistinguishable from the level of
the wild-type complex: 1.18 & 0.10 for G309T, 1.10 £ 0.08 for
C408G, and 1.29 £ 0.09 for G450A (Figure 5B). For all three
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FIGURE 5: (A) Location of the hTR mutations in the 3’ half of the
RNA. (B) Fraction of complex formed between hTR mutants and
wild-type dyskerin, normalized relative to wild-type hTR (dark blue).
Values represent averages over at least three independent experi-
ments, and error bars are the standard deviation of the normalized
mean (except for wild-type hTR, for which error bars represent the
standard error of the coincidence values).

cases studied, we therefore could not link the associated disease
phenotype to a decrease in the degree of interaction between
dyskerin and hTR, or to changes in the stoichiometry of the
interaction (see Figure S2B of the Supporting Information). This
suggests that the molecular mechanism leading to suboptimal
telomere maintenance may be distinct for the X-linked and
autosomal dominant forms of DC for the mutations we have
studied.

CONCLUSIONS

We have provided the first evidence of a direct physical
interaction between dyskerin and hTR. Using single-molecule
TCCD, we observed dyskerin-hTR complex formation com-
posed mainly of the 1:1 dyskerin-hTR complex, with minor
contributions of 1:2 dyskerin-hTR and 2:1 dyskerin-hTR com-
plexes. The higher-order species may arise if hTR is able to
dimerize in the presence of dyskerin or if one dyskerin is able to
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bind to each of the two hTR box H/ACA stems. By deleting
selected domains in hTR, we have shown that the hTR box
H/ACA domain alone is not sufficient to promote optimal
dyskerin-hTR binding, and that in fact dyskerin is able to bind
to other regions of hTR outside the 3’ terminal 100 nucleotides.

We have related the dyskerin-hTR interaction to human
disease by evaluating dyskerin mutations associated with the
X-linked form of dyskeratosis congenita. Our study revealed
a significant impairment in formation of the dyskerin-hTR
complex for each mutant dyskerin. The first mutation, Ala353-
Val, is in the so-called pseudouridine and archaeosine transgly-
cosylase (PUA) domain, which has been proposed as an RNA
binding domain, by analogy with the archael and Escherichia coli
homologues, Cbf5 and TruB, respectively. According to a
predicted folded structure of dyskerin, based on the structure
of the archael Cbf5, the other two mutations result in amino acid
changes close in space to the PUA domain (22). The observed
decrease in coincidence, for each of the dyskerin mutants,
supports a telomerase biogenesis mechanism in which dys-
kerin-hTR RNP complex formation is important. Efficient
dyskerin-hTR RNP complex formation may be a necessity for
normal hTR levels within the cell, pointing to a role for dyskerin
at an early stage of telomerase biogenesis prior to hTERT
binding. Thus, we propose that mutations in dyskerin may lead
directly to X-linked DC by disruption of the dyskerin-hTR
interaction. In contrast, we observed no change in dyskerin-hTR
complex formation for the autosomal dominant DC hTR
mutants we studied [G309T, C408G, and G450A (Figure 5A)],
suggesting that such mutations probably act via a distinct
mechanism at the molecular level.

The single-molecule TCCD approach has enabled the bio-
physical exploration of an important biomolecular interac-
tion that was, in our hands, inaccessible by classical physical
methods. The data have provided insights into what might
contribute to the molecular basis of clinically relevant muta-
tions, which may inspire a consideration of therapeutics
that compensate for the effects of these mutants and restore
normal dyskerin-hTR interaction and proper functioning of the
system.

SUPPORTING INFORMATION AVAILABLE

Data to support the observed stoichiometry of the
YFP—dyskerin:647N—hTR complex where both wild-type and
mutated components are detailed. This material is available free
of charge via the Internet at http://pubs.acs.org.
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