
Brain and Behavior. 2020;10:e01879.	 		 	 | 	1 of 15
https://doi.org/10.1002/brb3.1879

wileyonlinelibrary.com/journal/brb3

 

Received:	18	June	2020  |  Revised:	28	August	2020  |  Accepted:	18	September	2020
DOI: 10.1002/brb3.1879  

5 O R I G I N A L  R E S E A R C H

Identifying functionally relevant candidate genes for inflexible 
ethanol intake in mice and humans using a guilt-by-association 
approach

Luana Martins de Carvalho1,2,3  |   Pablo A. S. Fonseca4,5 |   Isadora M. Paiva1 |   
Samara Damasceno1 |   Agatha S. B. Pedersen1 |   Daniel da Silva e Silva6 |    
Corinde E. Wiers2 |   Nora D. Volkow2,7 |   Ana L. Brunialti Godard1

1Laboratório	de	Genética	Animal	e	Humana,	Departamento	de	Genética,	Universidade	Federal	de	Minas	Gerais	(UFMG),	Belo	Horizonte,	Brazil
2Laboratory	of	Neuroimaging,	National	Institute	on	Alcohol	Abuse	and	Alcoholism,	National	Institutes	of	Health,	Bethesda,	USA
3Center	for	Alcohol	Research	in	Epigenetics,	Department	of	Psychiatry,	University	of	Illinois	at	Chicago,	Chicago,	IL,	USA
4Laboratório	de	Genética	Humana	e	Médica,	Departamento	de	Genética,	Universidade	Federal	de	Minas	Gerais	(UFMG),	Belo	Horizonte,	Brazil
5University	of	Guelph,	Department	of	Animal	Biosciences,	Centre	for	Genetic	Improvement	of	Livestock,	Guelph,	Ontario,	Canada
6Laboratory	on	the	Neurobiology	of	Compulsive	Behavior,	National	Institute	on	Alcohol	Abuse	and	Alcoholism,	National	Institutes	of	Health,	Bethesda,	MD,	
USA
7National	Institute	on	Drug	Abuse,	Bethesda,	National	Institute	of	Health,	Bethesda,	MD,	USA

This	is	an	open	access	article	under	the	terms	of	the	Creative	Commons	Attribution	License,	which	permits	use,	distribution	and	reproduction	in	any	medium,	
provided	the	original	work	is	properly	cited.
©	2020	The	Authors. Brain and Behavior	published	by	Wiley	Periodicals	LLC.

Luana	Martins	de	Carvalho	and	Pablo	Augusto	de	Souza	Fonseca	are	contributed	equally	to	this	work.	

Correspondence
Ana	Lúcia	Brunialti	Godard,	Laboratório	de	
Genética	Animal	e	Humana,	Departamento	
de	Genética,	Ecologia	e	Evolução,	
Universidade	Federal	de	Minas	Gerais	
(UFMG),	Belo	Horizonte,	Brazil.
Email:	brunialt@ufmg.br

Funding information
This	work	was	supported	by	the	National	
Institutes	of	Health	Intramural	Research	
Program	(Y1AA-3009	to	NDV),	by	Fundação	
de	Amparo	a	Pesquisa	do	Estado	de	Minas	
Gerais	(FAPEMIG:	APQ-02285–14)	and	by	
PNPD/CAPES	(23038.005051/2012–48).	
Brain	tissues	were	received	from	the	New	
South	Wales	Brain	Tissue	Resource	Centre	
(NSWBTRC)	at	the	University	of	Sydney	
which	is	supported	by	NIAAA	under	Award	
Number	R28AA012725	and	Neuroscience	
Research	Australia.

Abstract
Gene	prioritization	approaches	are	useful	tools	to	explore	and	select	candidate	genes	
in transcriptome studies. Knowing the importance of processes such as neuronal ac-
tivity,	intracellular	signal	transduction,	and	synapse	plasticity	to	the	development	and	
maintenance	of	compulsive	ethanol	drinking,	the	aim	of	the	present	study	was	to	ex-
plore and identify functional candidate genes associated with these processes in an 
animal	model	of	inflexible	pattern	of	ethanol	intake.	To	do	this,	we	applied	a	guilt-by-
association	approach,	using	the	GUILDify	and	ToppGene	software,	in	our	previously	
published	microarray	data	from	the	prefrontal	cortex	(PFC)	and	striatum	of	inflexible	
drinker	mice.	We	 then	 tested	some	of	 the	prioritized	genes	 that	 showed	a	 tissue-
specific	pattern	in	postmortem	brain	tissue	(PFC	and	nucleus	accumbens	(NAc))	from	
humans	with	alcohol	use	disorder	(AUD).	In	the	mouse	brain,	we	prioritized	44	genes	
in	PFC	and	26	 in	striatum,	which	showed	opposite	 regulation	patterns	 in	PFC	and	
striatum.	The	most	prioritized	of	them	(i.e.,	Plcb1 and Prkcb	 in	PFC,	and	Dnm2 and 
Lrrk2	 in	striatum)	were	associated	with	synaptic	neuroplasticity,	a	neuroadaptation	
associated	with	excessive	ethanol	drinking.	The	identification	of	transcription	factors	
among	the	prioritized	genes	suggests	a	crucial	role	for	Irf4 in the pattern of regulation 
observed	between	PFC	and	striatum.	Lastly,	the	differential	transcription	of	IRF4 and 
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1  | INTRODUC TION

Alcoholism	 is	 a	 chronic	 disorder	 characterized	 by	 compulsive	 eth-
anol	 seeking	 and	 intake	 despite	 negative	 consequences	 (Koob	 &	
Volkow,	 2016).	 Among	 the	 brain	 regions	 altered	 by	 chronic	 eth-
anol	 intake,	 the	 striatum	and	 the	prefrontal	 cortex	 (PFC)	 are	 con-
sidered	central	to	reinforcement	and	decision-making	over	ethanol	
consumption	 (Koob	&	Volkow,	 2010).	 Recently,	 studies	 have	been	
showing	 the	different	pattern	of	gene	expression	among	brain	 re-
gions in both human and animal models of chronic alcohol admin-
istration	(Bogenpohl	et	al.,	2019;	Farris	et	al.,	2015).	 It	 is	proposed	
that	changes	in	the	regulation	of	gene	expression	contribute	to	the	
long-lasting	changes	in	chronic	ethanol-induced	neuronal	plasticity	
resulting	in	inflexible	changes	in	behavior	(Nestler,	2001).

We	published	two	transcriptional	studies,	in	the	PFC	and	stria-
tum,	that	compared	inflexible drinker	mice	(consume	ethanol	despite	
negative	 consequences,	 akin	 to	 human	 alcohol	 addiction)	 to	 light 
drinker	mice	(mice	who	preferred	water	before	and	after	withdrawal	
and	after	ethanol	adulteration	with	quinine)	(da	Silva	E	de	Paiva	Lima	
et	al.,	2017;	Silva	et	al.,	2016).	The	transcriptional	analysis	revealed	
that the Lrrk2,	Camk2a,	Camk2n1,	Pkp2, and Gja1 genes were dif-
ferentially regulated in inflexible drinkers compared to light drinkers,	
implicating them in the loss of control over ethanol consumption 
(da	Silva	E	de	Paiva	Lima	et	al.,	2017;	Silva	et	al.,	2016).	However,	
there	were	many	 other	 genes	 differentially	 expressed	 in	 PFC	 and	
striatum	 that	 remained	unexplored.	 In	 this	 regard,	 gene	prioritiza-
tion	approach	emerges	as	an	extremely	useful	 tool	 to	explore	and	
select remaining candidate genes from transcriptome studies that 
could	be	 associated	with	 a	 specific	 disease	or	 condition	 (Albert	&	
Lemonde,	 2004;	 Kominakis	 et	 al.,	 2017;	 Tian	 et	 al.,	 2008).	 The	
“guilt-by-association	approach”	is	one	type	of	network-based	prior-
itization	tools,	which	principle	suggests	that	the	genes	whose	prod-
ucts	 (proteins)	 interact	with	 the	products	of	known	disease	genes	
are	more	likely	to	be	disease	genes	(Guney	et	al.,	2014).

The goal of the present study was to identify functional candi-
date	 genes	 associated	with	 the	 regulation	 of	 dopamine	 pathways,	
neuronal	 activity,	 intracellular	 signal	 transduction,	 synapse	 plas-
ticity,	 and	 behaviors,	 due	 to	 the	 relevance	 of	 these	 processes	 for	
the	control	of	ethanol	 intake.	To	explore	the	genes	on	microarrays	
and	identify	possible	candidate	genes,	we	used	a	guilt-by-association	
approach	that	took	into	consideration	the	ethanol-induced	neurobi-
ological process already described in the literature. We then tested 
some	of	the	prioritized	genes	that	showed	a	tissue-specific	pattern	

in	postmortem	brain	tissue	(PFC	and	nucleus	accumbens	(NAc))	from	
humans	with	alcohol	use	disorder	 (AUD).	This	preclinical	postmor-
tem translational study allowed us to corroborate functional can-
didate	genes	 in	PFC	and	 striatum	of	 an	animal	model	of	 inflexible	
drinking	to	that	from	expression	patterns	in	postmortem	brain	sam-
ples	of	individuals	with	AUD.

2  | METHODS

2.1 | Extended chronic ethanol intake

The	 present	 study	 was	 performed	 with	 striatum	 and	 PFC	 micro-
array	 data	 previously	 published	 by	 our	 group	 (da	 Silva	 E	 de	Paiva	
Lima	 et	 al.,	 2017;	 Silva	 et	 al.,	 2016).	 These	 studies	 used	 samples	
from	the	animal	model	reported	by	Ribeiro	and	colleagues	(Ribeiro	
et	al.,	2012),	and	a	detailed	description	of	experimental	design,	etha-
nol	 consumption,	 and	 blood	 ethanol	 concentration	 is	 published	 in	
(Ribeiro	et	al.,	2012).

In	short,	Swiss	male	mice	were	subjected	to	a	three-bottle	free-
choice	treatment:	a	10%	and	a	5%	(v/v)	ethanol	solution,	and	water.	
Only male mice were used to avoid interference of hormonal fluc-
tuation,	 since	we	know	that	estrogen	can	enhance	 the	 reinforcing	
and	rewarding	effects	of	alcohol,	contributing	to	the	increase	of	al-
cohol	intake	in	female	mice	(Hilderbrand	&	Lasek,	2018;	Vandegrift	
et	 al.,	 2017).	 The	 experimental	 design	 consisted	 of	 four	 steps:	 (1)	
acquisition/free-choice	(AC:	10	weeks)	with	simultaneous	access	to	
water	and	ethanol	solutions	5	and	10%	(v/v);	(2)	withdrawal	of	eth-
anol	solutions	(2	weeks);	(3)	reinstatement	of	ethanol	solutions	(RE:	
2	weeks);	and	 (4)	adulteration	of	ethanol	solutions	with	0.005	g/L	
quinine	(AD:	2	weeks).	The	control	group	had	access	to	water	only	
throughout	the	experiment	(Ribeiro	et	al.,	2012).	The	Swiss	mice	are	
an outbred strain and were chosen for this model in order to ac-
cesses	the	phenotypic	variability	in	the	pattern	of	alcohol	intake	that	
could	reflect	the	genotypic	variability,	thus	representing	better	what	
is observed in the human.

At	the	end	of	the	three-bottle	free-choice	paradigm,	mice	were	
classified based on their ethanol consumption and preference: 
“light	drinkers”	 (significant	higher	water	 than	ethanol	consumption	
throughout	all	experiment	phases);	“heavy	drinkers”	(higher	ethanol	
consumption	than	water	with	significant	reduction	of	ethanol	intake	
after	adulteration	with	quinine);	and	“inflexible	drinkers”	(higher	eth-
anol	 than	water	consumption	 throughout	 the	experiment,	without	

LRRK2	in	PFC	and	nucleus	accumbens	in	postmortem	brains	from	AUD	compared	to	
control	highlights	 their	 involvement	 in	 compulsive	ethanol	drinking	 in	humans	and	
mice.

K E Y W O R D S
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significant	 reduction	 in	 ethanol	 intake	after	 adulteration	with	qui-
nine).	The	individual	ethanol	consumption	profile	is	shown	in	Table	
S1.	Animals	that	did	not	meet	any	of	the	classification	criteria	were	
excluded.	At	the	end	of	the	AD	phase,	mice	from	Inflexible,	Heavy,	
and	Light	groups	were	exposed	to	the	same	free-choice	task	for	an	
extra	week,	allowing	them	to	return	to	their	previous	ethanol	intake	
patterns.

Inflexible	drinkers	showed	high	and	stable	ethanol	consumption	
even	under	an	aversive	condition	generated	by	quinine,	a	nonpalat-
able	compound.	Quinine	adulteration	is	a	well-established	approach	
that	can	be	used	to	model	compulsive	drinking	in	animals	and	is	a	suit-
able mode to demonstrate aversion resistance that has face validity 
for	human	alcoholism	(Blegen	et	al.,	2018;	H.	Chen	&	Lasek,	2019;	
Hopf	&	Lesscher,	2014).	 In	addition,	 this	group	 (113	±	11.3	mg/dl)	
along	with	the	heavy	drinker	mice	(79	±	19.8	mg/dl)	presented	intox-
ication	levels	of	BEC	that	were	significantly	higher	than	those	in	the	
light	drinkers	(48	±	13.3	mg/dl)	(Ribeiro	et	al.,	2012).

2.2 | Microarray analysis

The	 gene	 expression	 of	 bilateral	 striatum	 (dorsal	 and	 ventral)	 and	
PFC	was	analyzed	using	an	Affymetrix	GeneChip®	Mouse	Genome	
430	2.0	Array	(Affymetrix,	São	Paulo,	Brazil).	For	light	and	inflexible	
drinkers,	a	pooled	sample	of	4	animals	of	each	group	was	hybridized	
in	triplicates,	totalizing	6	chips.	The	evaluation	of	the	two	extreme	
ethanol	drinking	groups	allowed	us	to	find	possible	genes	related	to	
the	compulsive	drinking	phenotype	while	controlling	for	the	chronic	
presence	of	alcohol	even	though	BEC	levels	differed	(da	Silva	E	de	
Paiva	 Lima	 et	 al.,	 2017;	 Silva	 et	 al.,	 2016).	 The	 fragmentation	 and	
hybridization	 steps	were	performed	 in	 accordance	with	GeneChip	
3’IVT	Express	Kit	 (Affymetrix,	São	Paulo,	Brazil)	manual.	The	fluo-
rescent	scanning	step	was	performed	using	the	GeneChip®	Scanner	
3,000	(Affymetrix,	São	Paulo,	Brazil).	The	array	data	were	normal-
ized	using	the	RMA	(Robust	Multi-array	Average)	method	using	the	
package	“affy”	in	the	R	environment.	Differentially	expressed	genes	
(DEGs)	were	identified	using	the	RankProd	algorithm	with	a	signifi-
cance	 level	 set	at	99%	 (p <	 .01).	After	 the	acquisition	of	DEG	 list,	
the	R	package	mouse4302.db	(version	3.2.2)	was	used	to	retrieve	im-
portant	information	such	as	gene	name,	chromosome	loci,	and	func-
tion for each array probe. The volcano plot and heatmap clustering 
analysis	showing	the	differentially	expressed	genes	can	be	found	in	
(da	Silva	E	Silva	et	al.,	2016).	The	microarray	data	are	available	on	the	
Gene	Expression	Omnibus	(GEO),	NCBI,	and	can	be	assessed	using	
the	following	ID:	GSE12	3114.

For	 the	present	 study,	we	used	 the	DEG	 list	 generated	by	 the	
analysis	described	above.	As	we	choose	to	apply	a	guilt-by-associa-
tion	approach	to	prioritize	those	genes,	we	considered	the	module	
fold	change	(FC)	values	>1.3 to do the first gene selection. This value 
reflects	at	least	a	30%	expression	difference	(either	for	up	or	down-
regulated)	in	the	Inflexible	drinkers	versus	light	drinkers,	given	us	a	
higher number of genes to start the analysis. The value of >1.3 has 
been	used	by	others	[17,	18,19],	and	it	is	an	effect	size	large	enough	

to assess the relationship between two variables and determine 
their biological relevance.

2.3 | Functional prioritization of differentially 
expressed genes

The	prioritization	of	DEG	followed	three	steps:	 (1)	DEG	 in	 the	mi-
croarray	 analysis	 for	 PFC	 and	 striatum	 were	 selected	 based	 on	
fold	change	value	to	generate	the	statistical	candidate	gene	list;	(2)	
GUILDify	software	was	used	to	retrieve	well-established	functional	
candidate	genes	(trained	list)	for	the	neurobiological	process	already	
known	to	be	triggered	by	alcohol	to	induces	its	effects,	through	key-
words	selection;	and	 (3)	ToppGene	software	was	used	 to	perform	
a	candidate	gene	prioritization	using	simultaneously	the	trained	list	
and	the	statistical	candidate	gene	list.	The	workflow	is	represented	
in	Figure	1.

In	 the	 first	 step,	 DEGs	 from	 the	microarray	 data	 for	 PFC	 and	
Striatum	(da	Silva	E	de	Paiva	Lima	et	al.,	2017;	Silva	et	al.,	2016)	were	
selected	 based	 on	 FC	>	 1.3,	 to	 generate	 the	 statistical	 candidate	
gene	list.	In	the	second	step,	the	GUILDify	database	(BIANA	knowl-
edge	base)	was	used	to	link	genes	and	phenotypes	in	animal	models	
(Mus musculus).	GUILDify	uses	keywords	chosen	by	users	to	search	
in	UniProt,	OMIM,	and	GO	databases,	and	products	of	genes	(pro-
teins)	that	match	these	keywords.	GUILDify	maps	the	selected	pro-
teins	onto	a	genome-wide	protein	interaction	network	(PPI)	and	runs	
the	global	topology-based	prioritization	algorithm	(NetScore).	As	an	
output,	GUILDify	provides	a	likelihood	score	(GUILDify	score)	asso-
ciating the gene product with the phenotype for each gene product 
in	the	PPI	network	(Guney	et	al.,	2014).

To	obtain	the	“trained	list”	of	candidate	genes,	we	used	keywords	
that	describe	neurobiological	process	already	known	to	be	induced	
by	 ethanol	 such	 as	 alterations	 in	 intracellular	 signal	 transduction,	
neuronal	 activity,	 and	 inflexible	 changes	 in	 behavior.	 Together,	 all	
these	 processes	 contribute	 to	 the	 long-lasting	 changes	 in	 chronic	
ethanol-induced	neuronal	plasticity	and	consequently	to	the	perpet-
uation	of	addiction	cycle.	Consequently,	using	the	guilt-by-associa-
tion	 approach,	we	aimed	 to	 identify	putative	 functional	 candidate	
genes	for	these	relevant	processes.	The	selected	keywords	were	as	
follows:	 "Nicotinic	 acetylcholine",	 "Inhibits	 ionotropic	 glutamate",	
"Inhibition	 NMDA",	 "BK",	 "GIRK",	 "SK2",	 "Mesolimbic	 dopamine",	
"Firing	 midbrain	 dopamine",	 "Dopamine	 neuron	 fire",	 "dopamine",	
"kappa	 opiate",	 "striatal	 D2	 dopamine",	 "midbrain	 GABAergic",	
"GABAA	 potentiation",	 "Glutamatergic	 transmission",	 "Glutamate	
reuptake",	 "Long-term	 depression",	 "Long	 -term	 potentiation",	
"Ethanol-binding",	"Ethanol-sensitive",	"ethanol	potentiation",	"Long-
term	 ethanol	 exposure",	 "motor	 impulsivity",	 "Ethanol-receptor",	
"Ethanol-associated	behaviors",	"Large	conductance	Ca2+-activated	
K+",	 "addiction"	 "compulsion",	 "craving".	 Only	 those	 genes	 with	 a	
GUILDify	score	>0.1	were	retained	in	the	final	“trained	list”	(Table	
S2).

In	the	third	step,	ToppGene	was	used	to	perform	a	candidate	gene	
prioritization	using	the	trained	list	(obtained	with	GUILDify)	and	the	

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE123114
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candidate	gene	list	(FC	>	1.3)	simultaneously.	Briefly,	ToppGene	per-
forms	an	annotation-based	prioritization	analysis	 through	a	 fuzzy-
based multivariate approach to compute the similarity between any 

two genes based on semantic annotations. The similarity scores 
from individual features are combined into an overall score using 
a	 statistical	meta-analysis.	 A	 p-value	 of	 each	 annotation	 of	 a	 test	
gene	is	derived	by	random	sampling	of	the	whole	genome	(J.	Chen	
et	al.,	2009).

In	 our	 study,	 the	 functional	 information	 shared	 between	 the	
“trained”	 gene	 list	 and	 the	 candidate	 genes	 was	 used	 to	 perform	
the multivariate analysis. The following sources were used to re-
trieve the functional information for the genes in both lists: Gene 
Ontology	(GO)	terms	for	molecular	function	(MF),	biological	process	
(BP),	and	cellular	component	 (CC);	human	and	mouse	phenotypes;	
metabolic	 pathways;	 PubMed	 publications;	 coexpression	 pattern;	
and	diseases.	Finally,	p-values	were	obtained	using	a	statistical	me-
ta-analysis,	where	a	random	sampling	of	5,000	genes	from	the	whole	
genome for each annotation information was combined to estimate 
an	 overall	 p-value.	 Subsequently,	 a	 false	 discovery	 rate	 (FDR)	 of	
5%	multiple	 correction	 (p-value	≤	10e-4)	was	 applied	 and	 the	 sig-
nificant	prioritized	genes	were	selected.	It	is	important	to	highlight	
that those genes that were present in both the trained and candidate 
gene	 lists	were	 automatically	 selected	 as	 prioritized	 genes.	 These	
analyses were performed independently for the candidate genes 
identified	in	striatum	and	PFC.

2.4 | Gene Ontology and metabolic pathway 
enrichment analyses

The WebGestalt application was used to perform the Gene Ontology 
(GO)	and	metabolic	pathway	enrichment	analyses	for	the	prioritized	
genes	 in	striatum	and	PFC,	 independently	 (Zhang	et	al.,	2005).	An	
overrepresentation	 enrichment	 analysis	 (ORA)	was	 performed	 for	
each	GO	term	category	(biological	process	(BP),	molecular	function	
(MF),	and	cellular	component	(CC))	using	a	nonredundant	database.	
The	ORA	was	also	performed	for	 the	metabolic	pathways	present	
in	the	Kyoto	Encyclopedia	of	Genes	and	Genomes	(KEGG).	For	both	
analyses,	 the	 terms	 analyzed	 were	 annotated	 specifically	 for	 the	
Mus musculus genome. Terms were considered enriched with a p-
value <	.05	and	FDR	5%	multiple	correction	testing	and	visualization	
of	results	was	performed	using	the	GOplot	package	on	R	statistical	
software	(R	Core	Team,	2013;	Walter	et	al.,	2015).	These	analyses	
were performed independently for the candidate genes identified 
in	striatum	and	PFC.	To	evaluate	the	fold	change	profile	in	each	en-
riched	term,	a	z-score	was	calculated	using	the	following	formula:

where	up	is	the	number	of	genes	with	positive	fold	change,	down	is	
the	number	of	genes	with	negative	fold	change,	and	count	is	the	total	
number of genes related to the enriched term.

To	evaluate	the	functional	similarity	of	the	prioritized	genes,	the	
enriched terms associated with the selected processes used during 
the	guilty-by-association	approach	were	selected	and	the	hamming	

z−score=
(up−down)

�����

F I G U R E  1  Workflow	of	gene	prioritization	on	the	microarrays	
analysis	in	Prefrontal	cortex	(PFC)	and	striatum	of	inflexible	drinker	
mice.	Using	keywords	that	describe	the	biological	process	that	
underlies	addiction	and	compulsive	ethanol	intake,	GUILDify	
generated a list of genes associated with these phenotypes 
(trained	list).	ToppGene	related	the	functional	information	of	
the trained list genes with candidate genes of the microarray of 
each	structure	separately	through	a	fuzzy-based	multivariate	
analysis,	which	generated	a	list	of	prioritized	genes.	WebGestalt	
was used to perform Gene Ontology and metabolic pathway 
enrichment	analyses	for	the	prioritized	genes	in	PFC	and	striatum	
with assistance of an overrepresentation enrichment analysis. 
Subsequently,	the	most	functional	relevant	enriched	terms	
were	selected	and	the	Hamming	distance	among	the	genes	was	
estimated	using	an	incidence	matrix	composed	of	the	genes	and	the	
terms.	Subsequently,	the	Hamming	distance	was	used	to	calculate	
the	Euclidian	distance	and	the	prioritized	genes	were	clustered.	
Finally,	NetworkAnalyst	was	used	to	identify	potential	transcription	
factors	with	higher	regulatory	potential	for	the	prioritized	genes	in	
PFC	and	striatum.	The	microarray	data	are	available	on	the	Gene	
Expression	Omnibus	(GEO),	NCBI,	and	can	be	assessed	using	the	
following	ID:	GSE12	3114

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE123114
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distance	among	the	genes	was	estimated	using	the	incidence	matrix	
composed by the genes and the enriched terms. The hamming dis-
tance	matrix	was	used	to	compute	the	number	of	differences	among	
the	DEG	regarding	the	enriched	terms	(obtained	from	BP,	MF,	CC,	
and	KEGG	terms).	 In	other	words,	 all	 the	pairs	of	DEG	were	com-
pared	using	an	incidence	matrix	to	account	the	number	of	enriched	
processes were annotated to the first gene of the pair but not the 
second	gene	from	the	pair	and	vice	versa.	Consequently,	the	ham-
ming	 distance	matrix,	 obtained	 from	 the	 original	 incidence	matrix	
(composed	by	genes	and	enriched	terms),	was	used	to	calculate	the	
Euclidian	distance	between	the	pairs	of	genes,	resulting	in	a	similar-
ity	matrix.	Once	the	Euclidean	distance	was	calculated,	the	similarity	
matrix	was	used	as	input	of	the	multidimensional	scaling	analysis	in	
order to create a map of the distances among the genes using two 
dimensions.	Subsequently,	the	proportion	of	the	variance	explained	
by the two dimensions used to create the distance map among the 
genes was calculated.

2.5 | Identification of potential transcription factor 
for the best functional candidate genes

The	prioritized	genes	identified	in	the	striatum	and	PFC	were	sub-
jected	 to	 a	 gene	 network	 analysis	 in	 order	 to	 identify	 potential	
transcription	 factors	 (TFs)	 using	 the	 NetworkAnalyst	 applica-
tion	 (Xia	et	al.,	2015).	The	potential	TFs	were	obtained	from	the	
ENCODE	ChIP-seq	data	using	only	peak	intensity	signal	<500 and 
the predicted regulatory potential score <1	(using	BETA	Minus	al-
gorithm).	Subsequently,	a	“regulatory	network”	was	created	using	
the	 interactions	between	the	prioritized	genes	and	the	potential	
TFs,	where	the	nodes	represent	either	the	genes	or	the	TF	(circles	
and	squares,	respectively),	and	the	edges	represent	the	predicted	
interaction	between	them.	The	centrality	metrics	(degree	and	be-
tweenness)	for	each	network	were	analyzed	to	identify	those	TFs	
that	 explain	most	 of	 the	 network	 topology.	Consequently,	 using	
this	methodology,	 it	 is	possible	to	 identify	those	TFs	that	have	a	
higher	regulatory	potential	for	the	functionally	prioritized	genes.	
To	 evaluate	 the	 relationship	 between	 the	 potential	 TFs	 and	 the	
prioritized	 genes	 between	 and	 within	 tissues,	 we	 used	 a	 Venn	
diagram.

2.6 | Postmortem Human Brain: subjects, clinical 
assessment, behavioral measures, and real-time PCR

Human	postmortem	brain	tissue	was	obtained	from	the	New	South	
Wales	 Tissue	 Resource	 Centre	 (NSWBTRC)	 at	 the	 University	 of	
Sydney,	Australia.	PFC	and	nucleus	accumbens	(NAc)	were	analyzed	
from	males	with	severe	AUD	(PFC:	n =	10	and	NAc:	n =	8)	and	from	
male	 controls	 (PFC:	n =	 13	 and	NAc:	n =	 12)	 that	 consumed	 less	
than	20	g	of	absolute	alcohol	per	day	 (Sutherland	et	al.,	2016).	All	
AUD	subjects	had	alcohol	detected	 in	blood	at	 the	 time	of	death.	
The numbers for the brain regions differed due to tissue availability.

Clinical	 characteristics	 of	 AUD	 and	 control	 subjects	 were	 ret-
rospectively	 assessed	 through	 extensive	 review	 of	 all	 available	
medical files followed by a confirmation through donor history 
questionnaires	from	the	donor's	next	of	kin.	Clinical	characterization	
of	alcohol	use	was	based	on	Diagnostic	Criteria	for	Alcohol-Related	
Disorders-Alcohol	 Dependence	 (DSM-IV).	 Alcohol	 use	 disorders	
identification	 test	 (AUDIT)	 was	 used	 to	 assess	 alcohol	 consump-
tion,	 drinking	 behaviors,	 and	 alcohol-related	 problems.	 The	 num-
ber	of	standard	drinks	per	week	and	per	day	was	calculated	based	
on	an	Australian	standard	drink	that	contains	10	grams	of	alcohol.	
Quantity	 and	 frequency	 of	 smoking	were	 also	 retrospectively	 as-
sessed,	and	pack-years	of	smoking	were	calculated.	All	details	about	
how	NSWBTRC	collects	demographic,	social,	medical,	pathological,	
cognitive,	psychiatric	medication	and	 lifestyle	factor	data	are	pub-
lished	in	(Sutherland	et	al.,	2016).

Total	mRNA	was	extracted	 from	PFC	and	NAc,	 (superior	 fron-
tal	 Brodmann	 areas	 8	 and	 9)	 using	 the	 RNeasy	 Lipid	 Tissue	Mini	
Kit	 (Qiagen)	 in	 accordance	 with	 the	 manufacturer's	 instructions.	
Samples	were	quantified	using	an	Agilent	2,100	Bioanalyzer	and	an	
RNA	6,000	Nano	Kit	 and	 stored	at	−80°C.	For	each	 sample,	1	μg 
of	total	RNA	was	used	to	make	complementary	DNA	(cDNA)	using	
SuperScript®	 III	 First-Strand	 Synthesis	 SuperMix	 for	 qRT-PCR	 kit	
(Invitrogen)	in	accordance	with	the	manufacturer's	instructions.

The	expression	levels	of	target	genes	were	measured	using	ViiA™	
7	 Real-Time	 PCR	 System	 (Thermo	 Fisher).	 The	 following	 TaqMan	
Gene	 Expression	 Assays	 were	 used:	 leucine-rich	 repeat	 kinase	 2	
(LRRK2)	 Hs01115057_m1,	 interferon	 regulatory	 factor	 4	 (IRF4)	
Hs00180031_m1,	dynamin	2	(DNM2)	Hs00974698_m1,	protein	ki-
nase	C	beta	(PRKCB)	Hs00176998_m1,	and	phospholipase	C	beta	1	
(PLCB1)	Hs01001930_m1.

Real-time	PCR	reactions	for	each	gene	were	performed	using	10	
µl	of	TaqMan™	Universal	PCR	Master	Mix	(Thermo	Fisher),	0.5	µl of 
TaqMan	assay,	and	3.5	µl	of	ultra-pure	water.	For	all	reactions,	a	neg-
ative	control	without	cDNA	template	(NTC)	was	tested,	and	the	final	
reaction	volume	was	kept	at	10	µl.	The	relative	quantities	of	the	tran-
scripts	were	calculated	by	the	delta–delta	Ct	method	(Pfaffl,	2001)	
using	 the	 GADPH	 gene	 as	 a	 endogenous	 control	 according	 to	
Vandesompele	et	 al.	 (2002).	Data	were	 analyzed	 for	 the	Gaussian	
distribution	 using	 the	 Shapiro–Wilk	 and	 Anderson–Darling	 nor-
mality	tests.	ROUT	method	was	used	to	identify	outliers	(Q	=	1%).	
Independent t	tests	were	used	to	calculate	differences	in	gene	ex-
pression	 between	 AUD	 and	 controls	 for	 IRF4	 and	 DNM2	 in	 NAc	
and	for	IRF4	and	PRKCB	in	PFC.	The	Mann–Whitney	test	was	used	
for	LRRK2	in	NAc	and	PLCB1	in	PFC.	We	report	both	uncorrected	
(p <	.05)	and	corrected	false	discovery	rate	5%	(FDR)	corrected	(de-
scribed	 as	 q	 value)	 results.	 Statistical	 tests	were	 performed	 using	
GraphPad	Prism	version	7.01	and	R	software.

2.7 | Ethics statement

Animal	experimentation	was	carried	out	in	compliance	with	institu-
tional	guidelines	and	approved	by	the	Ethics	Committee	for	Animal	
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Experimentation	of	the	Universidade	Federal	de	Minas	Gerais	(pro-
tocol	 number	 159/2007)	 and	 the	Universidade	 Federal	 do	 Paraná	
(Protocol	Number:	281)	(Ribeiro	et	al.,	2012).

The use of human postmortem brain tissue was reviewed and 
approved	by	a	National	Institute	on	Alcohol	Abuse	and	Alcoholism	
(NIAAA)	 Scientific	 Advisory	 Board,	 and	 the	 project	 was	 also	 re-
viewed	by	the	National	Institutes	of	Health	(NIH)	Office	of	Human	
Subjects	Research	Protections	and	determined	exempt	from	review	
by	the	NIH	Institutional	Review	Board.

3  | RESULTS

3.1 | Prioritized genes

Analyses	started	with	1674	and	917	DEGs	in	PFC	and	striatum,	re-
spectively,	obtained	 from	the	microarray	data	 (da	Silva	E	de	Paiva	
Lima	et	al.,	2017;	Silva	et	al.,	2016).	The	microarray	data	are	avail-
able	on	the	Gene	Expression	Omnibus	(GEO),	NCBI,	and	can	be	as-
sessed	using	the	following	ID:	GSE12	3114.	After	screening	for	the	
threshold >	 1.3-fold	 change,	 1,550	 and	 820	 DE	 genes	 from	 PFC	
and	striatum,	respectively,	were	selected,	giving	rise	to	the	statisti-
cal	 candidate	 gene	 list.	 In	 the	 second	 step,	GUILDify	 generated	 a	
trained	 list	with	3,946	genes	associated	with	 the	preselected	key-
words.	At	 the	final	step,	44	and	26	functional	candidate	genes	 (p-
value	after	FDR	5%<0.05),	in	PFC	and	striatum,	respectively	(Table	1	
and	Table	2	and	Table	S4),	were	selected	in	the	functional	prioritiza-
tion	analysis	performed	by	the	ToppGene	software,	using	both	the	
statistical	candidate	gene	 list	and	 the	 trained	 list.	 Interestingly,	10	
prioritized	genes	were	shared	between	both	tissues,	where	5	genes	
(Atp1a3, Camk2a, Dnm1, Gabrb3, and Gria1)	were	directly	 selected	
from the overlapping between the statistical candidate gene list and 
trained	 list	 obtained	with	GUILDify	 and	 the	 other	 5	 (Kcnma1, Lct, 
Meis2, Palm, and Slc17a7)	were	 selected	 through	 the	 prioritization	
performed by ToppGene software.

3.2 | Enrichment analyses for prioritized genes

Figure	 2	 shows	 the	 enrichment	 analyses	 for	 the	 prioritized	 genes	
in	PFC	and	striatum,	 independently.	Circle	plots	 represent	 the	en-
riched terms associated with the candidate processes used during 
the	 guilty-by-association	 analysis	 for	 PFC	 and	 striatum,	 indicating	
the	relationship	between	the	enriched	terms	and	the	gene	expres-
sion	profile	for	BP	and	KEGG	pathways.	To	facilitate	the	visualization	
and	reduce	the	“noise”	 in	the	enrichment	analyses,	 the	most	func-
tional relevant terms were depicted in the barplot for the enriched 
GO	 and	 KEGG	 terms	 (see	 Table	 S3).	 Several	 terms	 related	 to	 the	
regulation	 of	 the	 nervous	 system	 (i.e.,	 synaptic	 transmission,	 syn-
aptic	vesicle	cycle,	regulation	of	membrane	potential),	behavior,	and	
response to stimulus were identified as enriched in both functional 
candidate	genes’	 list.	These	results	reinforce	the	potential	of	guilt-
by-association	 approaches	 to	 identify	 candidate	 genes	 associated	

with target phenotypes among a new list of candidate genes using 
the functional profile of previously reported candidate genes. Tables 
S5	and	S6	present	all	the	enriched	terms	for	GO	and	KEGG	analyses.	
Figure	S1	presents	the	classification	outcomes	for	molecular	func-
tions and cellular components obtained with GO.

The	 fold	 change	 profile,	 accessed	 by	 the	 z-score	 of	 up-	 and	
downregulated	 prioritized	 genes	 in	 each	 enriched	 term,	 provided	
the	 following	pattern	between	PFC	and	striatum:	 in	almost	all	 the	
cases,	 the	 enriched	 terms	 in	 the	 PFC	were	 composed	 by	 a	 set	 of	
upregulated	genes,	while	in	striatum	they	were	composed	mostly	by	
a	different	set	of	downregulated	genes	(Figure	2).

Interestingly,	when	the	z-score	is	calculated	for	all	the	DEGs	and	
the	prioritized	genes	in	PFC	and	striatum,	the	observed	pattern	is	the	
opposite.	Prioritized	DEGs	were	mostly	upregulated	in	PFC	(1.77	and	
0.5,	respectively),	while	they	were	mostly	downregulated	in	striatum	
(−2.25	and	−1.20,	respectively).	These	results	indicate	that	DEG	and	
the genes functionally relevant in enriched terms are differentially 
regulated	in	PFC	than	in	striatum.

The	chord	plots	for	KEGG	(Figure	S2	and	S3)	and	GO	(Figures	S4	
and	S5)	enriched	terms	allowed	the	analysis	of	the	number	of	terms	
associated with each functional candidate gene. It was possible to 
note that while some genes were associated with several enriched 
terms	(e.g.,	Pink1,	Bdnf,	Gria1),	other	genes	were	associated	with	just	
one	or	few	terms	(e.g.,	Il1rap,	Scn1a,	Cep97).

3.3 | Potential transcription factors

Figure	3	depicts	the	TF-target	gene	network	for	PFC	(3A)	and	stria-
tum	 (3B).	Each	node	 in	 this	network	 represents	a	gene	 (circles)	or	
a	TF	 (squares),	and	each	edge	between	two	nodes	 represents	evi-
dence	of	regulatory	interaction.	Table	3	shows	the	10	TFs	with	the	
highest	 centrality	metric	 in	each	network,	 as	well	 as	 the	potential	
target genes. The centrality metrics for all the nodes presented in 
Figure	4	are	 listed	Table	S7.	The	 interferon	regulatory	 factor	gene	
(Irf4),	prioritized	in	the	striatum,	was	identified	as	one	of	the	TFs	with	
the	highest	centrality	metric	in	the	PFC	network	(Figure	5).

The	PCA	plot	in	Figure	5	was	created	using	the	first	two	princi-
pal	 components	of	 a	multidimensional	 scaling	 (MDS)	 analysis.	 The	
components	were	obtained	using	 the	Euclidean	distance	between	
each	pair	of	genes	 in	the	dataset.	The	Euclidian	distance	was	esti-
mated	 from	a	nongeometric	distance	 (Hamming	distance)	 in	order	
to	 avoid	 geometric	 approximations.	 In	 summary,	 the	 MDS	 analy-
sis is the final step for the functional similarity analysis among the 
genes.	After	some	transformations	the	incidence	matrix	composed	
by	the	DEG	and	enriched	terms	(BP,	MF,	CC,	and	KEGG)	are	repre-
sented	in	a	two-dimensional	map.	The	first	and	second	components	
explain	79.77%	and	6.93%	of	 the	 variance,	 respectively.	 Together,	
both	components	explain	more	 than	86%	of	 the	 total	 variance	on	
the	difference	between	genes,	 regarding	 the	 functional	 profile.	 In	
sum,	Figure	5	reflects	the	results	of	a	functional	clustering	analysis	
performed	using	the	all	the	GO	terms	associated	(filtering	was	not	
applied	based	on	p-value)	with	the	prioritized	genes.	Additionally,	it	

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE123114
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TA B L E  1  Prioritized	genes	in	prefrontal	cortex.	ToppGene	related	the	functional	information	(retrieved	from	Gene	Ontology;	PubMed	
publications;	coexpression	pattern;	and	diseases)	of	the	trained	list	genes	with	candidate	genes	of	the	microarray	of	each	structure	
separately	through	a	fuzzy-based	multivariate	analyze,	which	generated	a	list	of	prioritized	genes.	*Genes	were	prioritized	in	both	prefrontal	
cortex	and	striatum.	The	microarray	data	are	available	on	the	Gene	Expression	Omnibus	(GEO),	NCBI,	and	can	be	assessed	using	the	
following	ID:	GSE12	3114

Prefrontal Cortex

Gene Symbol Gene ID Description p-value

Anxa1 301 Annexin	A1 1,44E−04

Apc 324 APC	regulator	of	WNT	signaling	pathway 5,21E−05

*Atp1a3 478 Atpase	Na+/K + transporting subunit alpha 3 5,67E−05

B2m 567 Beta−2	microglobulin 1,18E−04

Cacna1g 8,913 Calcium	voltage-gated	channel	subunit	alpha1	G 1,68E−04

*Camk2a 815 Calcium/calmodulin-dependent	protein	kinase	II	alpha 7,83E−05

Camk2b 816 Calcium/calmodulin-dependent	protein	kinase	II,	beta 1,28E−04

Cask 8,573 Calcium/calmodulin-dependent	serine	protein	kinase 1,74E−04

Cdh1 999 Cadherin 1 6,79E−05

Cdkn1a 1,026 Cyclin-dependent	kinase	inhibitor	1A 1,72E−04

Cxcl12 6,387 Chemokine	ligand	12 4,12E−05

Ddc 1644 Dopa	decarboxylase 2,29E−04

*Dnm1 1759 Dynamin 1 6,97E−05

Drd2 1813 Dopamine receptor D2 1,16E−04

Erbb3 2065 Erb-b2	receptor	tyrosine	kinase	3 4,43E−05

Fn1 2,335 Fibronectin	1 5,25E−05

Fos 2,353 FBJ	osteosarcoma	oncogene 8,11E−05

Gabra2 2,555 GABA	A	receptor,	subunit	alpha	2 1,85E−04

*Gabrb3 2,562 GABA	A	receptor,	subunit	beta	3 4,30E−05

Gnai2 2,771 G-protein	subunit	alpha	i2 1,47E−04

*Gria1 2,890 Glutamate	ionotropic	receptor	AMPA	type	subunit	1 9,54E−05

Hla-Dqb1 3,119 Major	histocompatibility	complex,	class	II,	DQ	beta	1 3,15E−05

Igf1 3,479 Insulin-like	growth	factor	1 6,79E−05

Jun 3,725 Jun	proto-oncogene 1,23E−04

Kcnq2 3,785 Potassium	voltage-gated	channel	subfamily	Q	member	2 8,24E−05

Kit 3,815 KIT	proto-oncogene	receptor	tyrosine	kinase 2,45E−05

Limk1 3,984 LIM	domain-containing,	protein	kinase 1,40E−04

Lrp1 4,035 Low-density	lipoprotein	receptor-related	protein	1 2,19E−04

Mapt 4,137 Microtubule-associated	protein	tau 5,15E−07

Mef2c 4,208 Myocyte	enhancer	factor	2C 8,03E−05

Nrp1 8,829 Neuropilin 1 2,19E−04

Pdgfb 5,155 Platelet	derived	growth	factor,	B	polypeptide 3,17E−05

Plcb1 23,236 Phospholipase	C,	beta	1 7,44E−05

Plcb4 5,332 Phospholipase	C,	beta	4 1,24E−04

Prkar1b 5,575 Protein	kinase,	camp-dependent	regulatory,	type	I	beta 2,15E−04

Prkcd 5,580 Protein	kinase	C,	delta 9,55E−05

Slc1a1 6,505 Solute	carrier	family,	member	1 2,19E−04

Stat1 6,772 Signal	transducer	and	activator	of	transcription	1 1,88E−04

Stx1a 6,804 Syntaxin	1A 7,43E−05

Tgfb2 7,042 Transforming	growth	factor,	beta	2 6,95E−05

Tgfb3 7,043 Transforming	growth	factor,	beta	3 1,73E−04

(Continues)

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE123114
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was	possible	to	identify	interesting	clustering	patterns	from	the	PCA	
analysis.	Most	part	of	the	PFC	genes	are	mapped	in	the	negative	side	
of	the	first	component	(explaining	79.77%	of	the	total	variance)	and	
in	the	positive	side	of	the	second	component	 (explaining	6.93%	of	
the	total	variance).	On	the	other	hand,	most	of	the	striatum	genes	are	
mapped	in	the	opposite	coordinates,	positive	side	of	the	first	com-
ponent,	 and	positive	 side	of	 the	 second	 component.	 Interestingly,	
genes	expressed	in	both	structures	clustered	in	intermediary	areas	
in	the	PCA.	Despite	the	PCA	does	not	use	the	expression	values	to	
perform	the	cluster	analysis	(the	functional	annotation	was	used	as	
input	for	this	analysis),	the	results	suggest	a	possible	specialization	
of	 the	genes	expressed	 in	each	region.	Figure	5	 indicates	 that	 Irf4 
has	a	more	similar	functional	pattern	than	the	PFC-prioritized	genes	
(red	circle).	 In	addition,	 the	cluster	analysis	 (Figure	5)	 showed	that	
in the striatum Dnm2,	Lrrk2, and Drd2 are the genes with the larg-
est	weight	in	the	first,	which	explains	around	80%	of	variance,	and	
second	components	(along	with	BDNF).	Furthermore,	these	striatal	
genes along with Plcb1 and Prkcb,	in	PFC,	appeared	detached	from	
the	other	genes	within	and	between	the	tissues,	suggestive	of	a	tis-
sue-specific	functional	pattern.

3.4 | Postmortem human brain qPCR results

Table	4	summarizes	the	demographic	and	clinical	characteristics	of	
AUD	and	control	subjects.	Compared	to	controls,	the	AUD	subjects	
had	higher	BMI,	daily	 alcohol	 intake,	drinks	per	week,	blood	alco-
hol	 concentration	 (BAC)	 at	 time	 of	 death,	 higher	 pack-years	 ciga-
rettes,	and	younger	drinking	initiation,	but	they	did	not	differ	in	age.	
Moreover,	AUD	subjects	had	a	lower	brain	weight	and	smaller	brain	
volumes than controls.

Exploratory	 correlations	 between	 mRNA	 levels	 and	 drinking,	
smoking,	and	demographics	 (age	and	BMI)	 for	the	AUD	group	and	
controls	 are	 shown	 in	 Tables	 S8	 and	 S9.	 The	 correlation	 analyses	
showed a positive correlation between the levels of IRF4	in	the	NAc	
with	BAC	 (r =	 .670,	p =	 .034)	 and	pack-years	 cigarettes	 (r =	 .611,	
p =	 .046)	 just	 in	 the	 control	 groups.	 For	 the	AUD	group,	 positive	
correlations	were	observed	between	the	DNM2	mRNA	levels	in	NAc	
and	BAC	(r =	.721,	p =	.043),	and	between	the	PLCB1	levels	in	PFC	
and	daily	alcohol	 intake	(r =	 .641,	p =	 .046).	Correlations	between	
demographic	(age	and	BMI)	data	and	mRNA	levels	of	all	genes	eval-
uated	in	NAc	and	PFC	were	not	significant	in	both	AUD	and	control	
groups.

The	 cluster	 analysis	 for	 the	 prioritized	 genes	 (Figure	 5)	 sug-
gested	 a	 tissue-specific	 functional	 pattern	 for	 Irf4,	 Dnm2, Lrrk2, 
Prkcb, and Plcb1	genes	in	the	context	of	compulsive	ethanol	drinking.	
Postmortem	human	brain	 from	 individuals	with	AUD	was	 used	 to	
test	whether	those	prioritized	genes	in	our	animal	model	that	pres-
ent face validity for human alcohol addiction would also be found 
dysregulated	 in	 humans	 with	 AUD.	 Therefore,	 we	 analyzed	 their	
transcriptional	regulation	in	the	PFC	and	NAc.	The	q	values	repre-
sent	 the	p-value	correct	by	 the	FDR	5%.	No	differences	were	ob-
served for PLCB1	(U	=	38,	p =	.101,	q	=	0.121)	and	PRKCB	(t	=	0.776,	
df =	21,	p =	.445,	p =	.066)	in	PFC	(Figure	6b	and	6c),	or	for	DNM2 
(t	=	0.674,	df =	18,	p =	.508,	q	=	0.508)	in	NAc	(Figure	6f).	For	IRF4 
in	PFC,	ROUT	method	identified	one	outlier	in	the	AUD	group.	IRF4 
was	upregulated	in	both	PFC	(t	=	2.33,	df =	20,	p =	.030,	q	=	0.066),	
and	NAc	(t	=	2.292,	df =	18,	p =	 .034,	q	=	0.066)	in	AUD	subjects	
when	 compared	 with	 controls	 (Figure	 6a,d).	 For	 LRRK2,	 ROUT	
method identified one outlier in the control group. LRRK2 was down-
regulated	(U	=	11,	p =	.005,	q	=	0.030)	in	NAc	of	AUD	compared	to	
controls	(Figure	6e).	Just	LRRK2	in	NAc	was	significant	after	the	FDR	
5% correction.

4  | DISCUSSION

In	the	present	study,	using	a	guilt-by-association	approach	in	micro-
array	data	from	an	animal	model	of	inflexible	ethanol	consumption	
(da	Silva	E	Ribeiro	et	al.,	2012;	Silva	et	al.,	2016),	we	prioritized	44	
DEGs	 in	PFC	and	26	 in	striatum.	Among	those	genes,	 the	 Irf4 and 
Lrrk2	in	addition	to	presenting	a	tissue-specific	pattern	of	regulation	
in	the	inflexible	drinker	mice	were	also	differentially	regulated	in	the	
PFC	and	NAc	of	postmortem	brain	from	AUD	subjects.	These	results	
suggest a crucial role for Irf4 and Lrrk2	in	the	context	of	compulsive	
ethanol	intake	in	mice	and	humans.

The	 guilt-by-association	 heuristic	 has	 led	 to	 the	 identification	
of	genes	that	are	believed	to	be	associated	with	a	specific	disease,	
phenotype,	or	common	cellular	 function.	Although	the	guilt-by-as-
sociation	approach	is	widely	applied	in	studies	aiming	to	scrutinize	
the	 biological	 processes	 associated	 with	 complex	 traits	 (Albert	
&	 Lemonde,	 2004;	 Altshuler	 et	 al.,	 2000;	 Bowcock,	 2007;	 Guo	
et	al.,	2013;	Stuckenholz	et	al.,	1999;	Ziganshin	&	Elefteriades,	2016),	
the	combination	of	GUILDify	and	ToppGene	 in	a	 single	analysis	 is	
a	new	approach	in	the	literature	regarding	functional	prioritization	
(Pas	et	al.,	2018;	Kominakis	et	al.,	2017).

Prefrontal Cortex

Gene Symbol Gene ID Description p-value

Th 7,054 Tyrosine	hydroxylase 7,06E−05

Wnt5a 7,474 Wnt	family	member	5A 1,55E−04

Ywhaz 7,534 Tyrosine	3-monooxygenase/tryptophan	5-monooxygenase	
activation	protein	zeta

1,29E−04

TA B L E  1   (Continued)
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The selection of terms and biological processes to build the 
trained	 list,	 using	 the	 GUILDify,	 can	 be	 considered	 a	 biased	 ap-
proach.	However,	 this	 bias	 is	 consciously	 introduced	 in	 the	 anal-
ysis due to the functional relevance of the processes to the target 
phenotype.	 In	 our	 specific	 case,	 our	 phenotype	 is	 the	 inflexible	
pattern	of	ethanol	intake	that	includes	characteristics	such	as	long-
term	 high	 ethanol	 intake,	 heightened	 anxiety	 during	withdrawal,	
and	 persistent	 intake	 despite	 ethanol	 adulteration	 with	 quinine.	
Those	behaviors	can	be	resultants	both	from	pre-existing	genetic	
differences and from persistent changes in neuronal process in-
duced by ethanol that are already described in the literature and 
can	be	represented	by	the	keywords	chosen	here	(e.g.,	"Firing	mid-
brain	 dopamine";	 "Long	 -term	 potentiation";	 "Inhibition	 NMDA").	
The	 ToppGene	will	 not	 use	 these	 keywords	 to	 select	 our	 genes;	
instead,	the	software	uses	the	similarities	between	the	functional	

patterns of the genes presented in the candidate gene list and the 
trained	gene	list.	Therefore,	the	prioritized	genes	presented	in	this	
study can be interpreted as a statistical measure of how much the 
functional profile of each candidate gene is similar with the whole 
functional	 profile	 of	 the	 trained	 list	 (GUILDify)	 that	 reflects	 the	
process	behind	the	alcohol	addiction.	Consequently,	even	if	some	
of the genes in our initial list of candidate genes were not previ-
ously	 assigned	 to	our	 selected	 terms,	we	were	 able	 to	 identify	 a	
possible function of these genes in our candidate processes due to 
the	functional	similarity.	However,	it	is	important	to	highlight	that	
it	is	not	our	goal,	and	neither	is	possible	to	detect	all	genes	that	are	
associated	with	the	inflexible	pattern	of	ethanol	intake.	Our	goal	is	
to find and select genes with higher evidence of association with 
the process that are crucial to the development and maintenance 
of	the	inflexible	phenotype	observed	in	mice.

TA B L E  2  Prioritized	genes	in	striatum.	ToppGene	related	the	functional	information	(retrieved	from	Gene	Ontology;	PubMed	
publications;	coexpression	pattern;	and	diseases)	of	the	trained	list	genes	with	candidate	genes	of	the	microarray	of	each	structure	
separately	through	a	fuzzy-based	multivariate	analysis,	which	generated	a	list	of	prioritized	genes.	*Genes	were	prioritized	in	both	prefrontal	
cortex	and	striatum.	The	microarray	data	are	available	on	the	Gene	Expression	Omnibus	(GEO),	NCBI,	and	can	be	assessed	using	the	
following	ID:	GSE12	3114

Striatum

Gene	Symbol Gene ID Description p-value

*Atp1a3 478 Atpase	Na+/K + transporting subunit alpha 3 1,83E−05

Atxn2 6,311 Ataxin	2 4,33E−05

Bmpr2 659 Bone	morphogenetic	protein	receptor,	type	II 1,88E−04

Braf 673 Braf	transforming	gene 4,08E−05

Cacna2d1 781 Calcium	channel,	voltage-dependent,	alpha2/delta	subunit	1 1,88E−04

*Camk2a 815 Calcium/calmodulin-dependent	protein	kinase	II	alpha 3,83E−05

Cdkn1b 1,027 Cyclin-dependent	kinase	inhibitor	1B 1,06E−04

*Dnm1 1759 Dynamin 1 3,08E−05

Dnm2 1785 Dynamin 2 6,12E−05

Drd2 1813 Dopamine receptor D2 4,73E−05

*Gabrb3 2,562 GABA	A	receptor,	subunit	beta	3 1,34E−05

*Gria1 2,890 Glutamate	receptor,	ionotropic,	AMPA1	(alpha	1) 2,80E−05

Hbegf 1839 Heparin-binding	EGF-like	growth	factor 1,86E−04

Hspa8 3,312 Heat	shock	protein	8 1,99E−04

Irf4 3,662 Interferon regulatory factor 4 7,62E−05

Kalrn 8,997 Kalirin,	rhogef	kinase 2,20E−04

Kcnj6 3,763 Potassium	inwardly	rectifying	channel	subfamily	J	member	6 1,00E−04

Kif1b 23,095 Kinesin	family	member	1B 2,12E−04

Mapk8 5,599 Mitogen-activated	protein	kinase	8 2,13E−04

Mef2c 4,208 Myocyte	enhancer	factor	2C 1,39E−04

Pafah1b1 5,048 Platelet-activating	factor	acetylhydrolase,	isoform	1b,	subunit	1 1,11E−04

Prkar2b 5,577 Protein	kinase,	camp-dependent	regulatory,	type	II	beta 1,08E−04

Scn1a 6,323 Sodium	channel,	voltage-gated,	type	I,	alpha 7,14E−05

Scn1b 6,324 Sodium	channel,	voltage-gated,	type	I,	beta 8,34E−05

Slc1a2 6,506 Solute	carrier	family	1,	member	2 1,18E−04

Syn1 6,853 Synapsin	I 1,94E−04

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE123114
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Among	the	prioritized	genes	in	PFC	and	striatum,	we	observed	
several direct and indirect molecular targets for ethanol. The direct 
targets comprised Drd2,	Gria1,	Grik2,	Grin2b,	Chrna7, and Gabrb3, 
and the protein products of these genes are affected by acute and 
chronic	 ethanol	 (Abrahao	 et	 al.,	 2017).	 The	 indirect	 targets	 com-
prised genes encoding proteins for which there is no evidence of an 
ethanol-binding	site	but	that	are	affected	by	chronic	ethanol	expo-
sures	and	 included	 intracellular	signaling	proteins	 (Plcb1,	Rgs,9 and 
Prkcb	in	PFC	and	Prkaca	in	striatum),	proteins	involved	in	endocyto-
sis	and	vesicle	trafficking	(Dnm2,	Atxn2, and Napb	 in	striatum),	and	
transcription	 factors	 (Meis2 and Tgfb2	 in	PFC	and	 Irf4	 in	 striatum)	
(Abrahao	et	al.,	2017).	These	are	well-defined	genes	in	the	context	
of	 ethanol,	 and	 their	 prioritization	 in	 our	 animal	model	 shows	 the	
validity of our methodology.

The	cluster	analysis	 (Figure	5)	 revealed	that	some	of	 the	prior-
itized	genes	presented	a	 specific	 functional	pattern	 in	each	 tissue	

analyzed.	The	Plcb1 and Prkcb genes appear detached from the other 
genes	in	the	PFC	just	as	Lrrk2,	Drd2, and Dnm2 genes appeared de-
tached	from	other	genes	 in	the	striatum.	Collectively,	 those	genes	
play	 roles	 that	ultimately	contribute	 to	 synaptic	plasticity,	 regulat-
ing behavioral outcomes associated with specific neural circuits. 
Additionally,	 they	 exhibit	 a	 close	 relationship	 in	which	 their	 prod-
ucts	activate	each	other	(Plcb1 and Prkcb) or participate in the same 
signaling	pathway	(Lrrk2 and Dnm2),	indicating	an	orchestrated	net-
work.	Moreover,	 the	 inverse	pattern	of	regulation	assessed	by	the	
z-score	calculation	showed	that	most	of	the	prioritized	genes	in	the	
PFC	are	upregulated	while	in	the	striatum	they	are	downregulated.	
Additionally,	the	prioritized	genes	in	the	PFC	and	striatum	are	differ-
ently	regulated	in	comparison	with	all	DEGs	found	in	the	same	tis-
sue,	highlighting	that	prioritized	genes	are	working	in	distinct	ways	
in	response	to	chronic	alcohol.	Unfortunately,	our	study	could	not	
determine	causal	 interactions	between	brain	regions;	thus,	further	

F I G U R E  2   Circle plots for the most 
functionally relevant enriched terms for 
PFC	(first	row)	and	striatum	(second	row),	
depicting the relationship between the 
enriched	terms	and	the	gene	expression	
profile	for	biological	processes	(first	
column)	and	KEGG	pathways	(second	
column).	The	outer	circle	indicates	the	
up-	(red	dots)	or	downregulate	(blue	dots)	
state of each gene associated with each 
term. The inner circle represents the 
z-score	calculated	for	each	term	using	
the	number	of	up-	and	downregulated	
genes.	Negative	z-scores	indicate	a	
downregulation of the genes annotated 
for	the	current	biological	process	or	KEGG	
pathways.	Positive	z-scores	indicate	
upregulation of the genes annotated for 
the	current	biological	process	or	KEGG	
pathways.	For	the	biological	process	
enriched	terms	in	PFC	and	striatum,	only	
the 10 most significant terms were shown 
in	order	to	keep	all	the	IDs	legible
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studies are necessary to elucidate the regulatory role that striatum 
pursue	over	PFC	or	vice	versa	in	response	to	alcohol	intake.

The transcription factor analysis showed a pattern for Irf4 sug-
gestive	of	a	possible	regulation	of	genes	in	the	PFC	over	the	stria-
tum or vice versa. This gene belongs to the interferon regulatory 
factor	(IRF)	family	of	TFs	related	to	gene	expression	regulation	and	
immune	response	activation	(Negishi	et	al.,	2017).	Despite	our	find-
ing that Irf4	was	prioritized	in	the	striatum,	it	was	a	TF	with	the	high-
est	 centrality	metric	 in	 the	PFC.	Furthermore,	 this	 gene	appeared	
in	the	cluster	analysis	together	with	genes	in	the	PFC	and	showed	
a more similar functional pattern with this tissue. This result sug-
gests that Irf4 may play a crucial role in the opposite pattern of reg-
ulation	observed	between	PFC	and	striatum.	The	activation	of	TFs	

and the neuroimmune responses are two crucial mechanisms of the 
brain	in	response	to	chronic	ethanol	and	can	trigger	longer-term	mo-
lecular	 neuroadaptations	 (Koob	&	Volkow,	 2016).	 In	 the	 TF-target	
gene	network,	the	Irf4 in the striatum is also associated with diverse 
TFs	such	as	Tbp, Elf1, Mxl1, Jun, Zmiz1, and Chd.	So	far,	studies	have	
only	reported	on	the	role	of	the	IRF	family	in	inflammation	and	sec-
ondary	diseases	from	chronic	alcohol	(Petrasek	et	al.,	2011;	Seki	&	
Brenner,	2008).	Therefore,	the	association	found	here	highlights	the	
Irf4 as an important target to be investigated in animal models of 
alcohol	intake.

To	 investigate	whether	 the	 genes	 that	 showed	 a	 tissue-specific	
pattern	of	regulation	in	the	inflexible	drinker	animals	(Irf4, Plcb1, Prkcb, 

F I G U R E  3  TF-target	gene	network	for	the	prioritized	genes	identified	in	the	PFC	(a)	and	striatum	(b).	The	blue	squares	represent	the	
potential	transcription	factors	(TFs),	and	the	circles,	the	prioritized	genes.	Each	edge	between	a	TF	and	a	gene	represents	a	potential	
regulatory	activity.	The	colors	of	the	circles,	as	well	as	the	area	of	the	circle,	represent	the	number	of	possible	TFs	associated	with	this	gene.	
The	darker	the	red	colors	of	the	circle,	the	larger	the	number	of	TFs	associated	with	it

TA B L E  3  Top	10	transcription	factors	(TFs)	with	the	highest	
centrality	metrics	in	prefrontal	cortex	(PFC)	and	striatum

To 10 TF for centrality metric

Prefrontal Cortex Striatum

Gene symbol
Degree/ 
Betweenness

Gene 
symbol

Degree/ 
Betweenness

Hcfc1 14/272.37 Nrf1 6/93.25

Ubtf 9/199.78 Hcfc1 5/127.11

Nrf1 8/75.07 Rcor1 4/91.13

Mas 8/72.63 Tcf12 4/25.43

Tbp 7/60.71 Chd2 4/20.57

Irf4 7/52.27 Usf1 3/43.51

Chd1 5/43.89 Zmiz1 3/26.47

Myb 5/33.49 Smc3 3/26.47

Zmiz1 5/33.49 Myb 3/26.47

E2f4 5/33.15 Ubtf 3/25.39

F I G U R E  4  Venn	diagram	representing	the	sharing	pattern	
among	the	prioritized	genes.	PFC	(red	ellipse),	striatum	(blue	
ellipse),	and	the	potential	transcription	factors	(TFs)	in	PFC	(purple	
ellipse)	and	striatum	(green	ellipse)



12 of 15  |     MARTINS DE CARVALHO ET AL.

Dnm2, and Lrrk2)	were	also	differentially	regulated	in	AUD,	we	per-
formed	a	quantitative	PCR	analysis	 in	PFC	and	NAc	of	postmortem	
brains	of	AUD	subjects.	Although	we	did	not	observe	any	differences	
in the transcriptional regulation of PLCB1, PRKCB, and DNM2, we ob-
served an upregulation of IRF4	in	both	PFC	and	NAc	of	humans	(these	
effects	did	not	survive	FDR	5%	correction).	Nevertheless,	this	uncor-
rected result corroborates our hypothesis of Irf4 role in the control of 
transcriptional	regulation	and	activity	in	PFC	and	striatum	in	inflexible	
drinking	mice	and	highlights	its	role	in	the	compulsive	ethanol	drink-
ing.	Since	the	finding	for	IRF4	in	AUD	was	significant	only	at	an	uncor-
rected	level,	we	consider	them	preliminary	and	in	need	of	replication.

We also observed that LRRK2 was significantly downregulated in 
the	NAc	of	humans	with	AUD.	We	had	previously	suggested	a	role	
of Lrrk2 in the transition to the loss of control over voluntary etha-
nol	intake;	however,	this	finding	differs	from	the	upregulation	of	this	
gene	found	in	the	striatum	(dorsal	and	ventral)	of	inflexible	drinker	
mice	(da	Silva	E	Silva	et	al.,	2016).	Interestingly,	our	recent	work	on	a	

ethanol	preference	behavior	in	a	zebrafish	model	also	showed	a	up-
regulation of lrrk2	in	the	brain	of	animals	with	inflexible	phenotype	
and demonstrates the role of lrrk2 in driving the preference for eth-
anol,	since	the	treatment	with	its	inhibitor	(GNE-0877)	reduced	the	
ethanol	 preference	 in	 the	 inflexible	 group	 (“Inhibition	of	 Lrrk2	 re-
duces	ethanol	preference	in	a	model	of	acute	exposure	in	zebrafish,”	
Paiva	et	al.,	2020).	Though	 these	 transcriptional	differences	could	
reflect	distinct	responses	between	the	NAc	and	the	dorsal	striatum	
or	between	species,	it	is	also	possible	that	it	is	not	either	the	up-	or	
downregulation	of	this	gene,	but	it	is	dysregulation	in	general,	that	is	
relevant	to	the	loss	of	control	over	ethanol	intake.

In	 conclusion,	 the	present	 study	 is	 the	 first	 one	 in	 the	 alcohol	
field	to	apply	the	guilt-by-association	approach	using	the	GUILDify	
and	ToppGene	to	prioritize	genes.	We	generate	a	list	of	DEG	in	both	
PFC	and	striatum	that	we	do	believe	to	be	implicated	in	the	transi-
tion	of	normal	to	compulsive	ethanol	intake	and	that	can	be	tested	in	
future	functional	studies.	Most	of	the	prioritized	genes	are	involved	

F I G U R E  5  Multidimensional	scaling	
plot	(MDS)	clustering	the	prioritized	
genes	identified	in	the	PFC	(red	symbols),	
striatum	(green	symbols),	and	both	tissues	
(blue	symbols)	based	on	the	functional	
annotation. The genes were clustered 
based	on	the	Euclidian	distance	obtained	
from the hamming distance for the 
incidence	matrix	composed	by	genes	and	
the most functionally relevant enriched 
GO	and	KEGG	terms.	The	red	circle	
highlights the position of the IRF4 gene

Characteristics AUD (n = 10) Controls (n = 13) p-value

Age 50.55 ± 6.07 49.94 ± 11.32 p > .05

BMI 24.64 ± 5.40 33 ± 1.46 p = .023

PMI 38.91 ± 12.69 31.06 ± 13.94 p > .05

Brain	Weight 1,387.73	± 127.71 1506.63 ± 106.81 p = .015

Age	onset	drinking 18.55 ± 4.13 24 ± 4.86 p = .007

BAC 0.197 ± 0.14 0.002 ± 0.008 p = .0001

Drinking	(g/day) 233.27 ± 118.09 18.51 ± 19.87 p = .0001

Drinks	per	week 125.36 ± 89.99 9.81 ± 9.60 p = .0001

Pack-years	cigarettes 45.09 ± 19.22 4.07 ± 13.87 p = .0001

TA B L E  4   Demographic and clinical 
characteristics of alcohol use disorder 
(AUD)	and	control	subjects.	BMI	= body 
mass	index;	PMI	= postmortem interval 
(hour);	BAC	= blood alcohol concentration 
(g/100ml)	at	death
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in	 the	 establishment	 of	 synapse	 plasticity,	 a	 crucial	 process	 that	
leads	 to	neuroadaptations	and	ethanol-related	behaviors.	The	 test	
of	some	of	the	prioritized	genes	that	showed	a	tissue-specific	pat-
tern in postmortem brain tissue allowed us to uncover evidence from 
both	human	AUD	and	 inflexible	drinker	animals	for	 Ifr4 underlying 
the	pattern	of	regulation	observed	between	the	PFC	and	striatum.	
Our results also highlight a prominent role of LRRK2 in the pattern of 
responses	to	compulsive	alcohol	drinking	in	humans	and	mice.
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