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Abstract
Gene prioritization approaches are useful tools to explore and select candidate genes 
in transcriptome studies. Knowing the importance of processes such as neuronal ac-
tivity, intracellular signal transduction, and synapse plasticity to the development and 
maintenance of compulsive ethanol drinking, the aim of the present study was to ex-
plore and identify functional candidate genes associated with these processes in an 
animal model of inflexible pattern of ethanol intake. To do this, we applied a guilt-by-
association approach, using the GUILDify and ToppGene software, in our previously 
published microarray data from the prefrontal cortex (PFC) and striatum of inflexible 
drinker mice. We then tested some of the prioritized genes that showed a tissue-
specific pattern in postmortem brain tissue (PFC and nucleus accumbens (NAc)) from 
humans with alcohol use disorder (AUD). In the mouse brain, we prioritized 44 genes 
in PFC and 26 in striatum, which showed opposite regulation patterns in PFC and 
striatum. The most prioritized of them (i.e., Plcb1 and Prkcb in PFC, and Dnm2 and 
Lrrk2 in striatum) were associated with synaptic neuroplasticity, a neuroadaptation 
associated with excessive ethanol drinking. The identification of transcription factors 
among the prioritized genes suggests a crucial role for Irf4 in the pattern of regulation 
observed between PFC and striatum. Lastly, the differential transcription of IRF4 and 

www.wileyonlinelibrary.com/journal/brb3
https://orcid.org/0000-0001-6063-7140
mailto:﻿
https://orcid.org/0000-0001-5719-8802
http://creativecommons.org/licenses/by/4.0/
mailto:brunialt@ufmg.br


2 of 15  |     MARTINS DE CARVALHO et al.

1  | INTRODUC TION

Alcoholism is a chronic disorder characterized by compulsive eth-
anol seeking and intake despite negative consequences (Koob & 
Volkow,  2016). Among the brain regions altered by chronic eth-
anol intake, the striatum and the prefrontal cortex (PFC) are con-
sidered central to reinforcement and decision-making over ethanol 
consumption (Koob & Volkow,  2010). Recently, studies have been 
showing the different pattern of gene expression among brain re-
gions in both human and animal models of chronic alcohol admin-
istration (Bogenpohl et al., 2019; Farris et al., 2015). It is proposed 
that changes in the regulation of gene expression contribute to the 
long-lasting changes in chronic ethanol-induced neuronal plasticity 
resulting in inflexible changes in behavior (Nestler, 2001).

We published two transcriptional studies, in the PFC and stria-
tum, that compared inflexible drinker mice (consume ethanol despite 
negative consequences, akin to human alcohol addiction) to light 
drinker mice (mice who preferred water before and after withdrawal 
and after ethanol adulteration with quinine) (da Silva E de Paiva Lima 
et al., 2017; Silva et al., 2016). The transcriptional analysis revealed 
that the Lrrk2, Camk2a, Camk2n1, Pkp2, and Gja1 genes were dif-
ferentially regulated in inflexible drinkers compared to light drinkers, 
implicating them in the loss of control over ethanol consumption 
(da Silva E de Paiva Lima et al., 2017; Silva et al., 2016). However, 
there were many other genes differentially expressed in PFC and 
striatum that remained unexplored. In this regard, gene prioritiza-
tion approach emerges as an extremely useful tool to explore and 
select remaining candidate genes from transcriptome studies that 
could be associated with a specific disease or condition (Albert & 
Lemonde,  2004; Kominakis et  al.,  2017; Tian et  al.,  2008). The 
“guilt-by-association approach” is one type of network-based prior-
itization tools, which principle suggests that the genes whose prod-
ucts (proteins) interact with the products of known disease genes 
are more likely to be disease genes (Guney et al., 2014).

The goal of the present study was to identify functional candi-
date genes associated with the regulation of dopamine pathways, 
neuronal activity, intracellular signal transduction, synapse plas-
ticity, and behaviors, due to the relevance of these processes for 
the control of ethanol intake. To explore the genes on microarrays 
and identify possible candidate genes, we used a guilt-by-association 
approach that took into consideration the ethanol-induced neurobi-
ological process already described in the literature. We then tested 
some of the prioritized genes that showed a tissue-specific pattern 

in postmortem brain tissue (PFC and nucleus accumbens (NAc)) from 
humans with alcohol use disorder (AUD). This preclinical postmor-
tem translational study allowed us to corroborate functional can-
didate genes in PFC and striatum of an animal model of inflexible 
drinking to that from expression patterns in postmortem brain sam-
ples of individuals with AUD.

2  | METHODS

2.1 | Extended chronic ethanol intake

The present study was performed with striatum and PFC micro-
array data previously published by our group (da Silva E de Paiva 
Lima et  al.,  2017; Silva et  al.,  2016). These studies used samples 
from the animal model reported by Ribeiro and colleagues (Ribeiro 
et al., 2012), and a detailed description of experimental design, etha-
nol consumption, and blood ethanol concentration is published in 
(Ribeiro et al., 2012).

In short, Swiss male mice were subjected to a three-bottle free-
choice treatment: a 10% and a 5% (v/v) ethanol solution, and water. 
Only male mice were used to avoid interference of hormonal fluc-
tuation, since we know that estrogen can enhance the reinforcing 
and rewarding effects of alcohol, contributing to the increase of al-
cohol intake in female mice (Hilderbrand & Lasek, 2018; Vandegrift 
et  al.,  2017). The experimental design consisted of four steps: (1) 
acquisition/free-choice (AC: 10 weeks) with simultaneous access to 
water and ethanol solutions 5 and 10% (v/v); (2) withdrawal of eth-
anol solutions (2 weeks); (3) reinstatement of ethanol solutions (RE: 
2 weeks); and (4) adulteration of ethanol solutions with 0.005 g/L 
quinine (AD: 2 weeks). The control group had access to water only 
throughout the experiment (Ribeiro et al., 2012). The Swiss mice are 
an outbred strain and were chosen for this model in order to ac-
cesses the phenotypic variability in the pattern of alcohol intake that 
could reflect the genotypic variability, thus representing better what 
is observed in the human.

At the end of the three-bottle free-choice paradigm, mice were 
classified based on their ethanol consumption and preference: 
“light drinkers” (significant higher water than ethanol consumption 
throughout all experiment phases); “heavy drinkers” (higher ethanol 
consumption than water with significant reduction of ethanol intake 
after adulteration with quinine); and “inflexible drinkers” (higher eth-
anol than water consumption throughout the experiment, without 

LRRK2 in PFC and nucleus accumbens in postmortem brains from AUD compared to 
control highlights their involvement in compulsive ethanol drinking in humans and 
mice.
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significant reduction in ethanol intake after adulteration with qui-
nine). The individual ethanol consumption profile is shown in Table 
S1. Animals that did not meet any of the classification criteria were 
excluded. At the end of the AD phase, mice from Inflexible, Heavy, 
and Light groups were exposed to the same free-choice task for an 
extra week, allowing them to return to their previous ethanol intake 
patterns.

Inflexible drinkers showed high and stable ethanol consumption 
even under an aversive condition generated by quinine, a nonpalat-
able compound. Quinine adulteration is a well-established approach 
that can be used to model compulsive drinking in animals and is a suit-
able mode to demonstrate aversion resistance that has face validity 
for human alcoholism (Blegen et al., 2018; H. Chen & Lasek, 2019; 
Hopf & Lesscher, 2014). In addition, this group (113 ± 11.3 mg/dl) 
along with the heavy drinker mice (79 ± 19.8 mg/dl) presented intox-
ication levels of BEC that were significantly higher than those in the 
light drinkers (48 ± 13.3 mg/dl) (Ribeiro et al., 2012).

2.2 | Microarray analysis

The gene expression of bilateral striatum (dorsal and ventral) and 
PFC was analyzed using an Affymetrix GeneChip® Mouse Genome 
430 2.0 Array (Affymetrix, São Paulo, Brazil). For light and inflexible 
drinkers, a pooled sample of 4 animals of each group was hybridized 
in triplicates, totalizing 6 chips. The evaluation of the two extreme 
ethanol drinking groups allowed us to find possible genes related to 
the compulsive drinking phenotype while controlling for the chronic 
presence of alcohol even though BEC levels differed (da Silva E de 
Paiva Lima et  al.,  2017; Silva et  al.,  2016). The fragmentation and 
hybridization steps were performed in accordance with GeneChip 
3’IVT Express Kit (Affymetrix, São Paulo, Brazil) manual. The fluo-
rescent scanning step was performed using the GeneChip® Scanner 
3,000 (Affymetrix, São Paulo, Brazil). The array data were normal-
ized using the RMA (Robust Multi-array Average) method using the 
package “affy” in the R environment. Differentially expressed genes 
(DEGs) were identified using the RankProd algorithm with a signifi-
cance level set at 99% (p <  .01). After the acquisition of DEG list, 
the R package mouse4302.db (version 3.2.2) was used to retrieve im-
portant information such as gene name, chromosome loci, and func-
tion for each array probe. The volcano plot and heatmap clustering 
analysis showing the differentially expressed genes can be found in 
(da Silva E Silva et al., 2016). The microarray data are available on the 
Gene Expression Omnibus (GEO), NCBI, and can be assessed using 
the following ID: GSE12​3114.

For the present study, we used the DEG list generated by the 
analysis described above. As we choose to apply a guilt-by-associa-
tion approach to prioritize those genes, we considered the module 
fold change (FC) values >1.3 to do the first gene selection. This value 
reflects at least a 30% expression difference (either for up or down-
regulated) in the Inflexible drinkers versus light drinkers, given us a 
higher number of genes to start the analysis. The value of >1.3 has 
been used by others [17, 18,19], and it is an effect size large enough 

to assess the relationship between two variables and determine 
their biological relevance.

2.3 | Functional prioritization of differentially 
expressed genes

The prioritization of DEG followed three steps: (1) DEG in the mi-
croarray analysis for PFC and striatum were selected based on 
fold change value to generate the statistical candidate gene list; (2) 
GUILDify software was used to retrieve well-established functional 
candidate genes (trained list) for the neurobiological process already 
known to be triggered by alcohol to induces its effects, through key-
words selection; and (3) ToppGene software was used to perform 
a candidate gene prioritization using simultaneously the trained list 
and the statistical candidate gene list. The workflow is represented 
in Figure 1.

In the first step, DEGs from the microarray data for PFC and 
Striatum (da Silva E de Paiva Lima et al., 2017; Silva et al., 2016) were 
selected based on FC >  1.3, to generate the statistical candidate 
gene list. In the second step, the GUILDify database (BIANA knowl-
edge base) was used to link genes and phenotypes in animal models 
(Mus musculus). GUILDify uses keywords chosen by users to search 
in UniProt, OMIM, and GO databases, and products of genes (pro-
teins) that match these keywords. GUILDify maps the selected pro-
teins onto a genome-wide protein interaction network (PPI) and runs 
the global topology-based prioritization algorithm (NetScore). As an 
output, GUILDify provides a likelihood score (GUILDify score) asso-
ciating the gene product with the phenotype for each gene product 
in the PPI network (Guney et al., 2014).

To obtain the “trained list” of candidate genes, we used keywords 
that describe neurobiological process already known to be induced 
by ethanol such as alterations in intracellular signal transduction, 
neuronal activity, and inflexible changes in behavior. Together, all 
these processes contribute to the long-lasting changes in chronic 
ethanol-induced neuronal plasticity and consequently to the perpet-
uation of addiction cycle. Consequently, using the guilt-by-associa-
tion approach, we aimed to identify putative functional candidate 
genes for these relevant processes. The selected keywords were as 
follows: "Nicotinic acetylcholine", "Inhibits ionotropic glutamate", 
"Inhibition NMDA", "BK", "GIRK", "SK2", "Mesolimbic dopamine", 
"Firing midbrain dopamine", "Dopamine neuron fire", "dopamine", 
"kappa opiate", "striatal D2 dopamine", "midbrain GABAergic", 
"GABAA potentiation", "Glutamatergic transmission", "Glutamate 
reuptake", "Long-term depression", "Long -term potentiation", 
"Ethanol-binding", "Ethanol-sensitive", "ethanol potentiation", "Long-
term ethanol exposure", "motor impulsivity", "Ethanol-receptor", 
"Ethanol-associated behaviors", "Large conductance Ca2+-activated 
K+", "addiction" "compulsion", "craving". Only those genes with a 
GUILDify score >0.1 were retained in the final “trained list” (Table 
S2).

In the third step, ToppGene was used to perform a candidate gene 
prioritization using the trained list (obtained with GUILDify) and the 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE123114
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candidate gene list (FC > 1.3) simultaneously. Briefly, ToppGene per-
forms an annotation-based prioritization analysis through a fuzzy-
based multivariate approach to compute the similarity between any 

two genes based on semantic annotations. The similarity scores 
from individual features are combined into an overall score using 
a statistical meta-analysis. A p-value of each annotation of a test 
gene is derived by random sampling of the whole genome (J. Chen 
et al., 2009).

In our study, the functional information shared between the 
“trained” gene list and the candidate genes was used to perform 
the multivariate analysis. The following sources were used to re-
trieve the functional information for the genes in both lists: Gene 
Ontology (GO) terms for molecular function (MF), biological process 
(BP), and cellular component (CC); human and mouse phenotypes; 
metabolic pathways; PubMed publications; coexpression pattern; 
and diseases. Finally, p-values were obtained using a statistical me-
ta-analysis, where a random sampling of 5,000 genes from the whole 
genome for each annotation information was combined to estimate 
an overall p-value. Subsequently, a false discovery rate (FDR) of 
5% multiple correction (p-value ≤ 10e-4) was applied and the sig-
nificant prioritized genes were selected. It is important to highlight 
that those genes that were present in both the trained and candidate 
gene lists were automatically selected as prioritized genes. These 
analyses were performed independently for the candidate genes 
identified in striatum and PFC.

2.4 | Gene Ontology and metabolic pathway 
enrichment analyses

The WebGestalt application was used to perform the Gene Ontology 
(GO) and metabolic pathway enrichment analyses for the prioritized 
genes in striatum and PFC, independently (Zhang et al., 2005). An 
overrepresentation enrichment analysis (ORA) was performed for 
each GO term category (biological process (BP), molecular function 
(MF), and cellular component (CC)) using a nonredundant database. 
The ORA was also performed for the metabolic pathways present 
in the Kyoto Encyclopedia of Genes and Genomes (KEGG). For both 
analyses, the terms analyzed were annotated specifically for the 
Mus musculus genome. Terms were considered enriched with a p-
value < .05 and FDR 5% multiple correction testing and visualization 
of results was performed using the GOplot package on R statistical 
software (R Core Team, 2013; Walter et al., 2015). These analyses 
were performed independently for the candidate genes identified 
in striatum and PFC. To evaluate the fold change profile in each en-
riched term, a z-score was calculated using the following formula:

where up is the number of genes with positive fold change, down is 
the number of genes with negative fold change, and count is the total 
number of genes related to the enriched term.

To evaluate the functional similarity of the prioritized genes, the 
enriched terms associated with the selected processes used during 
the guilty-by-association approach were selected and the hamming 

z−score=
(up−down)

�����

F I G U R E  1  Workflow of gene prioritization on the microarrays 
analysis in Prefrontal cortex (PFC) and striatum of inflexible drinker 
mice. Using keywords that describe the biological process that 
underlies addiction and compulsive ethanol intake, GUILDify 
generated a list of genes associated with these phenotypes 
(trained list). ToppGene related the functional information of 
the trained list genes with candidate genes of the microarray of 
each structure separately through a fuzzy-based multivariate 
analysis, which generated a list of prioritized genes. WebGestalt 
was used to perform Gene Ontology and metabolic pathway 
enrichment analyses for the prioritized genes in PFC and striatum 
with assistance of an overrepresentation enrichment analysis. 
Subsequently, the most functional relevant enriched terms 
were selected and the Hamming distance among the genes was 
estimated using an incidence matrix composed of the genes and the 
terms. Subsequently, the Hamming distance was used to calculate 
the Euclidian distance and the prioritized genes were clustered. 
Finally, NetworkAnalyst was used to identify potential transcription 
factors with higher regulatory potential for the prioritized genes in 
PFC and striatum. The microarray data are available on the Gene 
Expression Omnibus (GEO), NCBI, and can be assessed using the 
following ID: GSE12​3114

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE123114
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distance among the genes was estimated using the incidence matrix 
composed by the genes and the enriched terms. The hamming dis-
tance matrix was used to compute the number of differences among 
the DEG regarding the enriched terms (obtained from BP, MF, CC, 
and KEGG terms). In other words, all the pairs of DEG were com-
pared using an incidence matrix to account the number of enriched 
processes were annotated to the first gene of the pair but not the 
second gene from the pair and vice versa. Consequently, the ham-
ming distance matrix, obtained from the original incidence matrix 
(composed by genes and enriched terms), was used to calculate the 
Euclidian distance between the pairs of genes, resulting in a similar-
ity matrix. Once the Euclidean distance was calculated, the similarity 
matrix was used as input of the multidimensional scaling analysis in 
order to create a map of the distances among the genes using two 
dimensions. Subsequently, the proportion of the variance explained 
by the two dimensions used to create the distance map among the 
genes was calculated.

2.5 | Identification of potential transcription factor 
for the best functional candidate genes

The prioritized genes identified in the striatum and PFC were sub-
jected to a gene network analysis in order to identify potential 
transcription factors (TFs) using the NetworkAnalyst applica-
tion (Xia et al., 2015). The potential TFs were obtained from the 
ENCODE ChIP-seq data using only peak intensity signal <500 and 
the predicted regulatory potential score <1 (using BETA Minus al-
gorithm). Subsequently, a “regulatory network” was created using 
the interactions between the prioritized genes and the potential 
TFs, where the nodes represent either the genes or the TF (circles 
and squares, respectively), and the edges represent the predicted 
interaction between them. The centrality metrics (degree and be-
tweenness) for each network were analyzed to identify those TFs 
that explain most of the network topology. Consequently, using 
this methodology, it is possible to identify those TFs that have a 
higher regulatory potential for the functionally prioritized genes. 
To evaluate the relationship between the potential TFs and the 
prioritized genes between and within tissues, we used a Venn 
diagram.

2.6 | Postmortem Human Brain: subjects, clinical 
assessment, behavioral measures, and real-time PCR

Human postmortem brain tissue was obtained from the New South 
Wales Tissue Resource Centre (NSWBTRC) at the University of 
Sydney, Australia. PFC and nucleus accumbens (NAc) were analyzed 
from males with severe AUD (PFC: n = 10 and NAc: n = 8) and from 
male controls (PFC: n  =  13 and NAc: n  =  12) that consumed less 
than 20 g of absolute alcohol per day (Sutherland et al., 2016). All 
AUD subjects had alcohol detected in blood at the time of death. 
The numbers for the brain regions differed due to tissue availability.

Clinical characteristics of AUD and control subjects were ret-
rospectively assessed through extensive review of all available 
medical files followed by a confirmation through donor history 
questionnaires from the donor's next of kin. Clinical characterization 
of alcohol use was based on Diagnostic Criteria for Alcohol-Related 
Disorders-Alcohol Dependence (DSM-IV). Alcohol use disorders 
identification test (AUDIT) was used to assess alcohol consump-
tion, drinking behaviors, and alcohol-related problems. The num-
ber of standard drinks per week and per day was calculated based 
on an Australian standard drink that contains 10 grams of alcohol. 
Quantity and frequency of smoking were also retrospectively as-
sessed, and pack-years of smoking were calculated. All details about 
how NSWBTRC collects demographic, social, medical, pathological, 
cognitive, psychiatric medication and lifestyle factor data are pub-
lished in (Sutherland et al., 2016).

Total mRNA was extracted from PFC and NAc, (superior fron-
tal Brodmann areas 8 and 9) using the RNeasy Lipid Tissue Mini 
Kit (Qiagen) in accordance with the manufacturer's instructions. 
Samples were quantified using an Agilent 2,100 Bioanalyzer and an 
RNA 6,000 Nano Kit and stored at −80°C. For each sample, 1 μg 
of total RNA was used to make complementary DNA (cDNA) using 
SuperScript® III First-Strand Synthesis SuperMix for qRT-PCR kit 
(Invitrogen) in accordance with the manufacturer's instructions.

The expression levels of target genes were measured using ViiA™ 
7 Real-Time PCR System (Thermo Fisher). The following TaqMan 
Gene Expression Assays were used: leucine-rich repeat kinase 2 
(LRRK2) Hs01115057_m1, interferon regulatory factor 4 (IRF4) 
Hs00180031_m1, dynamin 2 (DNM2) Hs00974698_m1, protein ki-
nase C beta (PRKCB) Hs00176998_m1, and phospholipase C beta 1 
(PLCB1) Hs01001930_m1.

Real-time PCR reactions for each gene were performed using 10 
µl of TaqMan™ Universal PCR Master Mix (Thermo Fisher), 0.5 µl of 
TaqMan assay, and 3.5 µl of ultra-pure water. For all reactions, a neg-
ative control without cDNA template (NTC) was tested, and the final 
reaction volume was kept at 10 µl. The relative quantities of the tran-
scripts were calculated by the delta–delta Ct method (Pfaffl, 2001) 
using the GADPH gene as a endogenous control according to 
Vandesompele et  al.  (2002). Data were analyzed for the Gaussian 
distribution using the Shapiro–Wilk and Anderson–Darling nor-
mality tests. ROUT method was used to identify outliers (Q = 1%). 
Independent t tests were used to calculate differences in gene ex-
pression between AUD and controls for IRF4 and DNM2 in NAc 
and for IRF4 and PRKCB in PFC. The Mann–Whitney test was used 
for LRRK2 in NAc and PLCB1 in PFC. We report both uncorrected 
(p < .05) and corrected false discovery rate 5% (FDR) corrected (de-
scribed as q value) results. Statistical tests were performed using 
GraphPad Prism version 7.01 and R software.

2.7 | Ethics statement

Animal experimentation was carried out in compliance with institu-
tional guidelines and approved by the Ethics Committee for Animal 
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Experimentation of the Universidade Federal de Minas Gerais (pro-
tocol number 159/2007) and the Universidade Federal do Paraná 
(Protocol Number: 281) (Ribeiro et al., 2012).

The use of human postmortem brain tissue was reviewed and 
approved by a National Institute on Alcohol Abuse and Alcoholism 
(NIAAA) Scientific Advisory Board, and the project was also re-
viewed by the National Institutes of Health (NIH) Office of Human 
Subjects Research Protections and determined exempt from review 
by the NIH Institutional Review Board.

3  | RESULTS

3.1 | Prioritized genes

Analyses started with 1674 and 917 DEGs in PFC and striatum, re-
spectively, obtained from the microarray data (da Silva E de Paiva 
Lima et al., 2017; Silva et al., 2016). The microarray data are avail-
able on the Gene Expression Omnibus (GEO), NCBI, and can be as-
sessed using the following ID: GSE12​3114. After screening for the 
threshold  >  1.3-fold change, 1,550 and 820 DE genes from PFC 
and striatum, respectively, were selected, giving rise to the statisti-
cal candidate gene list. In the second step, GUILDify generated a 
trained list with 3,946 genes associated with the preselected key-
words. At the final step, 44 and 26 functional candidate genes (p-
value after FDR 5%<0.05), in PFC and striatum, respectively (Table 1 
and Table 2 and Table S4), were selected in the functional prioritiza-
tion analysis performed by the ToppGene software, using both the 
statistical candidate gene list and the trained list. Interestingly, 10 
prioritized genes were shared between both tissues, where 5 genes 
(Atp1a3, Camk2a, Dnm1, Gabrb3, and Gria1) were directly selected 
from the overlapping between the statistical candidate gene list and 
trained list obtained with GUILDify and the other 5 (Kcnma1, Lct, 
Meis2, Palm, and Slc17a7) were selected through the prioritization 
performed by ToppGene software.

3.2 | Enrichment analyses for prioritized genes

Figure  2 shows the enrichment analyses for the prioritized genes 
in PFC and striatum, independently. Circle plots represent the en-
riched terms associated with the candidate processes used during 
the guilty-by-association analysis for PFC and striatum, indicating 
the relationship between the enriched terms and the gene expres-
sion profile for BP and KEGG pathways. To facilitate the visualization 
and reduce the “noise” in the enrichment analyses, the most func-
tional relevant terms were depicted in the barplot for the enriched 
GO and KEGG terms (see Table S3). Several terms related to the 
regulation of the nervous system (i.e., synaptic transmission, syn-
aptic vesicle cycle, regulation of membrane potential), behavior, and 
response to stimulus were identified as enriched in both functional 
candidate genes’ list. These results reinforce the potential of guilt-
by-association approaches to identify candidate genes associated 

with target phenotypes among a new list of candidate genes using 
the functional profile of previously reported candidate genes. Tables 
S5 and S6 present all the enriched terms for GO and KEGG analyses. 
Figure S1 presents the classification outcomes for molecular func-
tions and cellular components obtained with GO.

The fold change profile, accessed by the z-score of up- and 
downregulated prioritized genes in each enriched term, provided 
the following pattern between PFC and striatum: in almost all the 
cases, the enriched terms in the PFC were composed by a set of 
upregulated genes, while in striatum they were composed mostly by 
a different set of downregulated genes (Figure 2).

Interestingly, when the z-score is calculated for all the DEGs and 
the prioritized genes in PFC and striatum, the observed pattern is the 
opposite. Prioritized DEGs were mostly upregulated in PFC (1.77 and 
0.5, respectively), while they were mostly downregulated in striatum 
(−2.25 and −1.20, respectively). These results indicate that DEG and 
the genes functionally relevant in enriched terms are differentially 
regulated in PFC than in striatum.

The chord plots for KEGG (Figure S2 and S3) and GO (Figures S4 
and S5) enriched terms allowed the analysis of the number of terms 
associated with each functional candidate gene. It was possible to 
note that while some genes were associated with several enriched 
terms (e.g., Pink1, Bdnf, Gria1), other genes were associated with just 
one or few terms (e.g., Il1rap, Scn1a, Cep97).

3.3 | Potential transcription factors

Figure 3 depicts the TF-target gene network for PFC (3A) and stria-
tum (3B). Each node in this network represents a gene (circles) or 
a TF (squares), and each edge between two nodes represents evi-
dence of regulatory interaction. Table 3 shows the 10 TFs with the 
highest centrality metric in each network, as well as the potential 
target genes. The centrality metrics for all the nodes presented in 
Figure 4 are listed Table S7. The interferon regulatory factor gene 
(Irf4), prioritized in the striatum, was identified as one of the TFs with 
the highest centrality metric in the PFC network (Figure 5).

The PCA plot in Figure 5 was created using the first two princi-
pal components of a multidimensional scaling (MDS) analysis. The 
components were obtained using the Euclidean distance between 
each pair of genes in the dataset. The Euclidian distance was esti-
mated from a nongeometric distance (Hamming distance) in order 
to avoid geometric approximations. In summary, the MDS analy-
sis is the final step for the functional similarity analysis among the 
genes. After some transformations the incidence matrix composed 
by the DEG and enriched terms (BP, MF, CC, and KEGG) are repre-
sented in a two-dimensional map. The first and second components 
explain 79.77% and 6.93% of the variance, respectively. Together, 
both components explain more than 86% of the total variance on 
the difference between genes, regarding the functional profile. In 
sum, Figure 5 reflects the results of a functional clustering analysis 
performed using the all the GO terms associated (filtering was not 
applied based on p-value) with the prioritized genes. Additionally, it 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE123114
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TA B L E  1  Prioritized genes in prefrontal cortex. ToppGene related the functional information (retrieved from Gene Ontology; PubMed 
publications; coexpression pattern; and diseases) of the trained list genes with candidate genes of the microarray of each structure 
separately through a fuzzy-based multivariate analyze, which generated a list of prioritized genes. *Genes were prioritized in both prefrontal 
cortex and striatum. The microarray data are available on the Gene Expression Omnibus (GEO), NCBI, and can be assessed using the 
following ID: GSE12​3114

Prefrontal Cortex

Gene Symbol Gene ID Description p-value

Anxa1 301 Annexin A1 1,44E−04

Apc 324 APC regulator of WNT signaling pathway 5,21E−05

*Atp1a3 478 Atpase Na+/K + transporting subunit alpha 3 5,67E−05

B2m 567 Beta−2 microglobulin 1,18E−04

Cacna1g 8,913 Calcium voltage-gated channel subunit alpha1 G 1,68E−04

*Camk2a 815 Calcium/calmodulin-dependent protein kinase II alpha 7,83E−05

Camk2b 816 Calcium/calmodulin-dependent protein kinase II, beta 1,28E−04

Cask 8,573 Calcium/calmodulin-dependent serine protein kinase 1,74E−04

Cdh1 999 Cadherin 1 6,79E−05

Cdkn1a 1,026 Cyclin-dependent kinase inhibitor 1A 1,72E−04

Cxcl12 6,387 Chemokine ligand 12 4,12E−05

Ddc 1644 Dopa decarboxylase 2,29E−04

*Dnm1 1759 Dynamin 1 6,97E−05

Drd2 1813 Dopamine receptor D2 1,16E−04

Erbb3 2065 Erb-b2 receptor tyrosine kinase 3 4,43E−05

Fn1 2,335 Fibronectin 1 5,25E−05

Fos 2,353 FBJ osteosarcoma oncogene 8,11E−05

Gabra2 2,555 GABA A receptor, subunit alpha 2 1,85E−04

*Gabrb3 2,562 GABA A receptor, subunit beta 3 4,30E−05

Gnai2 2,771 G-protein subunit alpha i2 1,47E−04

*Gria1 2,890 Glutamate ionotropic receptor AMPA type subunit 1 9,54E−05

Hla-Dqb1 3,119 Major histocompatibility complex, class II, DQ beta 1 3,15E−05

Igf1 3,479 Insulin-like growth factor 1 6,79E−05

Jun 3,725 Jun proto-oncogene 1,23E−04

Kcnq2 3,785 Potassium voltage-gated channel subfamily Q member 2 8,24E−05

Kit 3,815 KIT proto-oncogene receptor tyrosine kinase 2,45E−05

Limk1 3,984 LIM domain-containing, protein kinase 1,40E−04

Lrp1 4,035 Low-density lipoprotein receptor-related protein 1 2,19E−04

Mapt 4,137 Microtubule-associated protein tau 5,15E−07

Mef2c 4,208 Myocyte enhancer factor 2C 8,03E−05

Nrp1 8,829 Neuropilin 1 2,19E−04

Pdgfb 5,155 Platelet derived growth factor, B polypeptide 3,17E−05

Plcb1 23,236 Phospholipase C, beta 1 7,44E−05

Plcb4 5,332 Phospholipase C, beta 4 1,24E−04

Prkar1b 5,575 Protein kinase, camp-dependent regulatory, type I beta 2,15E−04

Prkcd 5,580 Protein kinase C, delta 9,55E−05

Slc1a1 6,505 Solute carrier family, member 1 2,19E−04

Stat1 6,772 Signal transducer and activator of transcription 1 1,88E−04

Stx1a 6,804 Syntaxin 1A 7,43E−05

Tgfb2 7,042 Transforming growth factor, beta 2 6,95E−05

Tgfb3 7,043 Transforming growth factor, beta 3 1,73E−04

(Continues)

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE123114
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was possible to identify interesting clustering patterns from the PCA 
analysis. Most part of the PFC genes are mapped in the negative side 
of the first component (explaining 79.77% of the total variance) and 
in the positive side of the second component (explaining 6.93% of 
the total variance). On the other hand, most of the striatum genes are 
mapped in the opposite coordinates, positive side of the first com-
ponent, and positive side of the second component. Interestingly, 
genes expressed in both structures clustered in intermediary areas 
in the PCA. Despite the PCA does not use the expression values to 
perform the cluster analysis (the functional annotation was used as 
input for this analysis), the results suggest a possible specialization 
of the genes expressed in each region. Figure 5 indicates that Irf4 
has a more similar functional pattern than the PFC-prioritized genes 
(red circle). In addition, the cluster analysis (Figure 5) showed that 
in the striatum Dnm2, Lrrk2, and Drd2 are the genes with the larg-
est weight in the first, which explains around 80% of variance, and 
second components (along with BDNF). Furthermore, these striatal 
genes along with Plcb1 and Prkcb, in PFC, appeared detached from 
the other genes within and between the tissues, suggestive of a tis-
sue-specific functional pattern.

3.4 | Postmortem human brain qPCR results

Table 4 summarizes the demographic and clinical characteristics of 
AUD and control subjects. Compared to controls, the AUD subjects 
had higher BMI, daily alcohol intake, drinks per week, blood alco-
hol concentration (BAC) at time of death, higher pack-years ciga-
rettes, and younger drinking initiation, but they did not differ in age. 
Moreover, AUD subjects had a lower brain weight and smaller brain 
volumes than controls.

Exploratory correlations between mRNA levels and drinking, 
smoking, and demographics (age and BMI) for the AUD group and 
controls are shown in Tables S8 and S9. The correlation analyses 
showed a positive correlation between the levels of IRF4 in the NAc 
with BAC (r  =  .670, p  =  .034) and pack-years cigarettes (r  =  .611, 
p  =  .046) just in the control groups. For the AUD group, positive 
correlations were observed between the DNM2 mRNA levels in NAc 
and BAC (r = .721, p = .043), and between the PLCB1 levels in PFC 
and daily alcohol intake (r =  .641, p =  .046). Correlations between 
demographic (age and BMI) data and mRNA levels of all genes eval-
uated in NAc and PFC were not significant in both AUD and control 
groups.

The cluster analysis for the prioritized genes (Figure  5) sug-
gested a tissue-specific functional pattern for Irf4, Dnm2, Lrrk2, 
Prkcb, and Plcb1 genes in the context of compulsive ethanol drinking. 
Postmortem human brain from individuals with AUD was used to 
test whether those prioritized genes in our animal model that pres-
ent face validity for human alcohol addiction would also be found 
dysregulated in humans with AUD. Therefore, we analyzed their 
transcriptional regulation in the PFC and NAc. The q values repre-
sent the p-value correct by the FDR 5%. No differences were ob-
served for PLCB1 (U = 38, p = .101, q = 0.121) and PRKCB (t = 0.776, 
df = 21, p = .445, p = .066) in PFC (Figure 6b and 6c), or for DNM2 
(t = 0.674, df = 18, p = .508, q = 0.508) in NAc (Figure 6f). For IRF4 
in PFC, ROUT method identified one outlier in the AUD group. IRF4 
was upregulated in both PFC (t = 2.33, df = 20, p = .030, q = 0.066), 
and NAc (t = 2.292, df = 18, p =  .034, q = 0.066) in AUD subjects 
when compared with controls (Figure  6a,d). For LRRK2, ROUT 
method identified one outlier in the control group. LRRK2 was down-
regulated (U = 11, p = .005, q = 0.030) in NAc of AUD compared to 
controls (Figure 6e). Just LRRK2 in NAc was significant after the FDR 
5% correction.

4  | DISCUSSION

In the present study, using a guilt-by-association approach in micro-
array data from an animal model of inflexible ethanol consumption 
(da Silva E Ribeiro et al., 2012; Silva et al., 2016), we prioritized 44 
DEGs in PFC and 26 in striatum. Among those genes, the Irf4 and 
Lrrk2 in addition to presenting a tissue-specific pattern of regulation 
in the inflexible drinker mice were also differentially regulated in the 
PFC and NAc of postmortem brain from AUD subjects. These results 
suggest a crucial role for Irf4 and Lrrk2 in the context of compulsive 
ethanol intake in mice and humans.

The guilt-by-association heuristic has led to the identification 
of genes that are believed to be associated with a specific disease, 
phenotype, or common cellular function. Although the guilt-by-as-
sociation approach is widely applied in studies aiming to scrutinize 
the biological processes associated with complex traits (Albert 
& Lemonde,  2004; Altshuler et  al.,  2000; Bowcock,  2007; Guo 
et al., 2013; Stuckenholz et al., 1999; Ziganshin & Elefteriades, 2016), 
the combination of GUILDify and ToppGene in a single analysis is 
a new approach in the literature regarding functional prioritization 
(Pas et al., 2018; Kominakis et al., 2017).

Prefrontal Cortex

Gene Symbol Gene ID Description p-value

Th 7,054 Tyrosine hydroxylase 7,06E−05

Wnt5a 7,474 Wnt family member 5A 1,55E−04

Ywhaz 7,534 Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase 
activation protein zeta

1,29E−04

TA B L E  1   (Continued)
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The selection of terms and biological processes to build the 
trained list, using the GUILDify, can be considered a biased ap-
proach. However, this bias is consciously introduced in the anal-
ysis due to the functional relevance of the processes to the target 
phenotype. In our specific case, our phenotype is the inflexible 
pattern of ethanol intake that includes characteristics such as long-
term high ethanol intake, heightened anxiety during withdrawal, 
and persistent intake despite ethanol adulteration with quinine. 
Those behaviors can be resultants both from pre-existing genetic 
differences and from persistent changes in neuronal process in-
duced by ethanol that are already described in the literature and 
can be represented by the keywords chosen here (e.g., "Firing mid-
brain dopamine"; "Long -term potentiation"; "Inhibition NMDA"). 
The ToppGene will not use these keywords to select our genes; 
instead, the software uses the similarities between the functional 

patterns of the genes presented in the candidate gene list and the 
trained gene list. Therefore, the prioritized genes presented in this 
study can be interpreted as a statistical measure of how much the 
functional profile of each candidate gene is similar with the whole 
functional profile of the trained list (GUILDify) that reflects the 
process behind the alcohol addiction. Consequently, even if some 
of the genes in our initial list of candidate genes were not previ-
ously assigned to our selected terms, we were able to identify a 
possible function of these genes in our candidate processes due to 
the functional similarity. However, it is important to highlight that 
it is not our goal, and neither is possible to detect all genes that are 
associated with the inflexible pattern of ethanol intake. Our goal is 
to find and select genes with higher evidence of association with 
the process that are crucial to the development and maintenance 
of the inflexible phenotype observed in mice.

TA B L E  2  Prioritized genes in striatum. ToppGene related the functional information (retrieved from Gene Ontology; PubMed 
publications; coexpression pattern; and diseases) of the trained list genes with candidate genes of the microarray of each structure 
separately through a fuzzy-based multivariate analysis, which generated a list of prioritized genes. *Genes were prioritized in both prefrontal 
cortex and striatum. The microarray data are available on the Gene Expression Omnibus (GEO), NCBI, and can be assessed using the 
following ID: GSE12​3114

Striatum

Gene Symbol Gene ID Description p-value

*Atp1a3 478 Atpase Na+/K + transporting subunit alpha 3 1,83E−05

Atxn2 6,311 Ataxin 2 4,33E−05

Bmpr2 659 Bone morphogenetic protein receptor, type II 1,88E−04

Braf 673 Braf transforming gene 4,08E−05

Cacna2d1 781 Calcium channel, voltage-dependent, alpha2/delta subunit 1 1,88E−04

*Camk2a 815 Calcium/calmodulin-dependent protein kinase II alpha 3,83E−05

Cdkn1b 1,027 Cyclin-dependent kinase inhibitor 1B 1,06E−04

*Dnm1 1759 Dynamin 1 3,08E−05

Dnm2 1785 Dynamin 2 6,12E−05

Drd2 1813 Dopamine receptor D2 4,73E−05

*Gabrb3 2,562 GABA A receptor, subunit beta 3 1,34E−05

*Gria1 2,890 Glutamate receptor, ionotropic, AMPA1 (alpha 1) 2,80E−05

Hbegf 1839 Heparin-binding EGF-like growth factor 1,86E−04

Hspa8 3,312 Heat shock protein 8 1,99E−04

Irf4 3,662 Interferon regulatory factor 4 7,62E−05

Kalrn 8,997 Kalirin, rhogef kinase 2,20E−04

Kcnj6 3,763 Potassium inwardly rectifying channel subfamily J member 6 1,00E−04

Kif1b 23,095 Kinesin family member 1B 2,12E−04

Mapk8 5,599 Mitogen-activated protein kinase 8 2,13E−04

Mef2c 4,208 Myocyte enhancer factor 2C 1,39E−04

Pafah1b1 5,048 Platelet-activating factor acetylhydrolase, isoform 1b, subunit 1 1,11E−04

Prkar2b 5,577 Protein kinase, camp-dependent regulatory, type II beta 1,08E−04

Scn1a 6,323 Sodium channel, voltage-gated, type I, alpha 7,14E−05

Scn1b 6,324 Sodium channel, voltage-gated, type I, beta 8,34E−05

Slc1a2 6,506 Solute carrier family 1, member 2 1,18E−04

Syn1 6,853 Synapsin I 1,94E−04

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE123114
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Among the prioritized genes in PFC and striatum, we observed 
several direct and indirect molecular targets for ethanol. The direct 
targets comprised Drd2, Gria1, Grik2, Grin2b, Chrna7, and Gabrb3, 
and the protein products of these genes are affected by acute and 
chronic ethanol (Abrahao et  al.,  2017). The indirect targets com-
prised genes encoding proteins for which there is no evidence of an 
ethanol-binding site but that are affected by chronic ethanol expo-
sures and included intracellular signaling proteins (Plcb1, Rgs,9 and 
Prkcb in PFC and Prkaca in striatum), proteins involved in endocyto-
sis and vesicle trafficking (Dnm2, Atxn2, and Napb in striatum), and 
transcription factors (Meis2 and Tgfb2 in PFC and Irf4 in striatum) 
(Abrahao et al., 2017). These are well-defined genes in the context 
of ethanol, and their prioritization in our animal model shows the 
validity of our methodology.

The cluster analysis (Figure 5) revealed that some of the prior-
itized genes presented a specific functional pattern in each tissue 

analyzed. The Plcb1 and Prkcb genes appear detached from the other 
genes in the PFC just as Lrrk2, Drd2, and Dnm2 genes appeared de-
tached from other genes in the striatum. Collectively, those genes 
play roles that ultimately contribute to synaptic plasticity, regulat-
ing behavioral outcomes associated with specific neural circuits. 
Additionally, they exhibit a close relationship in which their prod-
ucts activate each other (Plcb1 and Prkcb) or participate in the same 
signaling pathway (Lrrk2 and Dnm2), indicating an orchestrated net-
work. Moreover, the inverse pattern of regulation assessed by the 
z-score calculation showed that most of the prioritized genes in the 
PFC are upregulated while in the striatum they are downregulated. 
Additionally, the prioritized genes in the PFC and striatum are differ-
ently regulated in comparison with all DEGs found in the same tis-
sue, highlighting that prioritized genes are working in distinct ways 
in response to chronic alcohol. Unfortunately, our study could not 
determine causal interactions between brain regions; thus, further 

F I G U R E  2   Circle plots for the most 
functionally relevant enriched terms for 
PFC (first row) and striatum (second row), 
depicting the relationship between the 
enriched terms and the gene expression 
profile for biological processes (first 
column) and KEGG pathways (second 
column). The outer circle indicates the 
up- (red dots) or downregulate (blue dots) 
state of each gene associated with each 
term. The inner circle represents the 
z-score calculated for each term using 
the number of up- and downregulated 
genes. Negative z-scores indicate a 
downregulation of the genes annotated 
for the current biological process or KEGG 
pathways. Positive z-scores indicate 
upregulation of the genes annotated for 
the current biological process or KEGG 
pathways. For the biological process 
enriched terms in PFC and striatum, only 
the 10 most significant terms were shown 
in order to keep all the IDs legible
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studies are necessary to elucidate the regulatory role that striatum 
pursue over PFC or vice versa in response to alcohol intake.

The transcription factor analysis showed a pattern for Irf4 sug-
gestive of a possible regulation of genes in the PFC over the stria-
tum or vice versa. This gene belongs to the interferon regulatory 
factor (IRF) family of TFs related to gene expression regulation and 
immune response activation (Negishi et al., 2017). Despite our find-
ing that Irf4 was prioritized in the striatum, it was a TF with the high-
est centrality metric in the PFC. Furthermore, this gene appeared 
in the cluster analysis together with genes in the PFC and showed 
a more similar functional pattern with this tissue. This result sug-
gests that Irf4 may play a crucial role in the opposite pattern of reg-
ulation observed between PFC and striatum. The activation of TFs 

and the neuroimmune responses are two crucial mechanisms of the 
brain in response to chronic ethanol and can trigger longer-term mo-
lecular neuroadaptations (Koob & Volkow,  2016). In the TF-target 
gene network, the Irf4 in the striatum is also associated with diverse 
TFs such as Tbp, Elf1, Mxl1, Jun, Zmiz1, and Chd. So far, studies have 
only reported on the role of the IRF family in inflammation and sec-
ondary diseases from chronic alcohol (Petrasek et al., 2011; Seki & 
Brenner, 2008). Therefore, the association found here highlights the 
Irf4 as an important target to be investigated in animal models of 
alcohol intake.

To investigate whether the genes that showed a tissue-specific 
pattern of regulation in the inflexible drinker animals (Irf4, Plcb1, Prkcb, 

F I G U R E  3  TF-target gene network for the prioritized genes identified in the PFC (a) and striatum (b). The blue squares represent the 
potential transcription factors (TFs), and the circles, the prioritized genes. Each edge between a TF and a gene represents a potential 
regulatory activity. The colors of the circles, as well as the area of the circle, represent the number of possible TFs associated with this gene. 
The darker the red colors of the circle, the larger the number of TFs associated with it

TA B L E  3  Top 10 transcription factors (TFs) with the highest 
centrality metrics in prefrontal cortex (PFC) and striatum

To 10 TF for centrality metric

Prefrontal Cortex Striatum

Gene symbol
Degree/ 
Betweenness

Gene 
symbol

Degree/ 
Betweenness

Hcfc1 14/272.37 Nrf1 6/93.25

Ubtf 9/199.78 Hcfc1 5/127.11

Nrf1 8/75.07 Rcor1 4/91.13

Mas 8/72.63 Tcf12 4/25.43

Tbp 7/60.71 Chd2 4/20.57

Irf4 7/52.27 Usf1 3/43.51

Chd1 5/43.89 Zmiz1 3/26.47

Myb 5/33.49 Smc3 3/26.47

Zmiz1 5/33.49 Myb 3/26.47

E2f4 5/33.15 Ubtf 3/25.39

F I G U R E  4  Venn diagram representing the sharing pattern 
among the prioritized genes. PFC (red ellipse), striatum (blue 
ellipse), and the potential transcription factors (TFs) in PFC (purple 
ellipse) and striatum (green ellipse)
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Dnm2, and Lrrk2) were also differentially regulated in AUD, we per-
formed a quantitative PCR analysis in PFC and NAc of postmortem 
brains of AUD subjects. Although we did not observe any differences 
in the transcriptional regulation of PLCB1, PRKCB, and DNM2, we ob-
served an upregulation of IRF4 in both PFC and NAc of humans (these 
effects did not survive FDR 5% correction). Nevertheless, this uncor-
rected result corroborates our hypothesis of Irf4 role in the control of 
transcriptional regulation and activity in PFC and striatum in inflexible 
drinking mice and highlights its role in the compulsive ethanol drink-
ing. Since the finding for IRF4 in AUD was significant only at an uncor-
rected level, we consider them preliminary and in need of replication.

We also observed that LRRK2 was significantly downregulated in 
the NAc of humans with AUD. We had previously suggested a role 
of Lrrk2 in the transition to the loss of control over voluntary etha-
nol intake; however, this finding differs from the upregulation of this 
gene found in the striatum (dorsal and ventral) of inflexible drinker 
mice (da Silva E Silva et al., 2016). Interestingly, our recent work on a 

ethanol preference behavior in a zebrafish model also showed a up-
regulation of lrrk2 in the brain of animals with inflexible phenotype 
and demonstrates the role of lrrk2 in driving the preference for eth-
anol, since the treatment with its inhibitor (GNE-0877) reduced the 
ethanol preference in the inflexible group (“Inhibition of Lrrk2 re-
duces ethanol preference in a model of acute exposure in zebrafish,” 
Paiva et al., 2020). Though these transcriptional differences could 
reflect distinct responses between the NAc and the dorsal striatum 
or between species, it is also possible that it is not either the up- or 
downregulation of this gene, but it is dysregulation in general, that is 
relevant to the loss of control over ethanol intake.

In conclusion, the present study is the first one in the alcohol 
field to apply the guilt-by-association approach using the GUILDify 
and ToppGene to prioritize genes. We generate a list of DEG in both 
PFC and striatum that we do believe to be implicated in the transi-
tion of normal to compulsive ethanol intake and that can be tested in 
future functional studies. Most of the prioritized genes are involved 

F I G U R E  5  Multidimensional scaling 
plot (MDS) clustering the prioritized 
genes identified in the PFC (red symbols), 
striatum (green symbols), and both tissues 
(blue symbols) based on the functional 
annotation. The genes were clustered 
based on the Euclidian distance obtained 
from the hamming distance for the 
incidence matrix composed by genes and 
the most functionally relevant enriched 
GO and KEGG terms. The red circle 
highlights the position of the IRF4 gene

Characteristics AUD (n = 10) Controls (n = 13) p-value

Age 50.55 ± 6.07 49.94 ± 11.32 p > .05

BMI 24.64 ± 5.40 33 ± 1.46 p = .023

PMI 38.91 ± 12.69 31.06 ± 13.94 p > .05

Brain Weight 1,387.73 ± 127.71 1506.63 ± 106.81 p = .015

Age onset drinking 18.55 ± 4.13 24 ± 4.86 p = .007

BAC 0.197 ± 0.14 0.002 ± 0.008 p = .0001

Drinking (g/day) 233.27 ± 118.09 18.51 ± 19.87 p = .0001

Drinks per week 125.36 ± 89.99 9.81 ± 9.60 p = .0001

Pack-years cigarettes 45.09 ± 19.22 4.07 ± 13.87 p = .0001

TA B L E  4   Demographic and clinical 
characteristics of alcohol use disorder 
(AUD) and control subjects. BMI = body 
mass index; PMI = postmortem interval 
(hour); BAC = blood alcohol concentration 
(g/100ml) at death
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in the establishment of synapse plasticity, a crucial process that 
leads to neuroadaptations and ethanol-related behaviors. The test 
of some of the prioritized genes that showed a tissue-specific pat-
tern in postmortem brain tissue allowed us to uncover evidence from 
both human AUD and inflexible drinker animals for Ifr4 underlying 
the pattern of regulation observed between the PFC and striatum. 
Our results also highlight a prominent role of LRRK2 in the pattern of 
responses to compulsive alcohol drinking in humans and mice.
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