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HIGHLIGHTS

e We explored metabolite responses in women with prior gestational diabetes mellitus

e We used the oral glucose tolerance test as the provocative measure in this study

e« Women with prior gestational diabetes mellitus were stratified by glucose tolerance

e We examined the relationship between metabolomic and clinical/behavioral parameters
e Greater change in metabolites was strongly associated with breastfeeding duration

ARTICLE INFO ABSTRACT
Artic{e history: Objective: Although gestational diabetes mellitus (GDM) is associated with an increased risk of type 2
Received 14 January 2014 diabetes mellitus (T2DM) compared to normoglycemic pregnancies, the biochemical pathways under-

Received in revised form
27 March 2014
Accepted 28 March 2014

lying the progression of GDM to T2DM are not fully elucidated. The purpose of this exploratory study was
to utilize metabolomics with an oral glucose tolerance test (OGTT) to examine the amino acid response in
women with prior GDM to determine if a relationship between these metabolites and established risk
factors for T2DM exists.
Materials/methods: Thirty-eight non-pregnant women without diabetes but with prior GDM within the
Gestational diabetes mellitus previous 3 years were recruited from a community-based population. A 75 g-OGTT was administered;
Type 2 diabetes fasting and 2-h plasma samples were obtained. Metabolite profiles of 23 amino acids or amino acid
Breastfeeding derivatives were measured with gas chromatography-mass spectrometry. Measures of insulin resistance
Pregnancy were derived from the OGTT and risk factors for T2DM were obtained by self-report.
Results: Twenty-two metabolite levels decreased significantly in response to the OGTT (p < 0.05). The
clinical covariates most powerfully associated with metabolite level changes included race, body mass
index (BMI), and duration of prior breastfeeding, (mean + SD of standardized (-coefficients, § =
—0.38 £+ 0.05, 0.25 + 0.08, and 0.44 + 0.03, respectively, all p < 0.05). Notably, a prior history of
breastfeeding was associated with the greatest number of metabolite changes.
Conclusions: Greater change in metabolite levels after a glucose challenge was significantly associated
with a longer duration of breastfeeding and higher BMIL Further exploration of these preliminary ob-
servations and closer examination of the specific pathways implicated are warranted.

© 2014 The Authors. Published by Elsevier Inc. All rights reserved.
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Introduction

Gestational diabetes mellitus (GDM) affects approximately 7% of
all pregnancies in the United States, and this prevalence is
increasing in parallel to obesity [1] and type 2 diabetes mellitus
(T2DM) [2]. Furthermore, women with GDM compared to women
without a history of GDM are at increased risk for developing T2DM
[3], which is influenced by risk factors such as higher body mass
index (BMI), older age, GDM in past pregnancies, inadequate or
deficient postpartum intervention and education, and use of insulin
therapy and medical nutrition therapy [4]. Existing methods to
assess T2DM risk after GDM focus on clinical, demographic, or ge-
netic information [5]. However, the biochemical pathways under-
lying increased T2DM risk after GDM are still unclear.

Metabolomic profiling, an approach that examines biochemical
pathways to identify biomarkers predictive of metabolic diseases,
has shown promise in identifying early biomarkers of risk for
several disorders including T2DM [6—11]. Therefore, we conducted
a cross-sectional exploratory metabolomic analysis of samples from
an oral glucose tolerance test (OGTT) in postpartum women
without diabetes but with a history of GDM in order to explore their
metabolomic profiles and the association of these profiles with
established and putative risk factors for T2DM. These preliminary
metabolomic observations offer the promise of hypothesis gener-
ation regarding the mechanism of T2DM development subsequent
to GDM.

Methods

Thirty-nine non-lactating women with a GDM pregnancy within
the past 3 years were enrolled in a randomized-controlled lifestyle
intervention; details of this trial are described elsewhere [12,13].
At baseline, participants provided clinical and self-reported be-
havioral data. After a 10-h, overnight fast, participants underwent a
75 g-OGTT where fasting and 2-h plasma samples were collected. For
our cross-sectional analysis, women were classified as normal
glucose tolerance (NGT), impaired fasting glucose (IFG), impaired
glucose tolerance (IGT), or T2DM based on criteria from the Amer-
ican Diabetes Association for fasting and 2-h glucose plasma levels
[14]. Women classified as IFG, IGT, or IFG + IGT were considered to
have prediabetes. Body mass index (BMI) was measured as weight
(in kg) divided by height (in m) squared. The study was approved
by the University of Michigan Institutional Review Board and the
Partners Human Research Committee. All participants provided
informed, written consent prior to study enrollment.

The University of Michigan’s Diabetes and Research Training
Center performed all biochemical assays. Methods for glucose
[12], insulin [12], and sex hormone binding globulin [15] assays
are described elsewhere. The Human Adiponectin Radioimmu-
noassay kit (Linco Research, St. Charles, MO) was used to assay
adiponectin (standard curve concentrations 0.78—200 ng/mL;
assay sensitivity limit 1 ng/mL; and inter-assay CV 15.5% at 20 ng/
mL and 10.2% at 72 ng/mL). Metabolomic analyses were per-
formed by the University of Michigan’s Nutrition and Obesity
Research Center. Amino acids (AA) for analyses were chosen and
analyzed based on the methodology described by Wang et al. [11]
in conjunction with currently available platform metabolites.
Plasma purification and derivatization was performed with the
“EZ:faast” free AA analysis kit via gas chromatography-mass
spectrometry. AA separation and detection was done with a
6890 gas chromatography with a 5973 mass selective detector
from Phenomenex (Torrance, CA) [16].

Student paired t-tests were used to compare metabolite levels at
fasting vs. 2-hour time points and analyze differences between
glucose tolerance groups. Pearson correlation coefficients were

used to examine the correlation of AA levels before and after the
OGTT. The change in AA levels was defined as the 2-h AA level
minus the fasting AA level. Two additional measures were calcu-
lated in order to place our data in context with current literature:
the fold change from fasting to 2-h post-glucose load was calculated
as the change in AA divided by the fasting AA level; and the percent
change was calculated as the fold change multiplied by 100. For-
ward stepwise regressions (inclusion criteria p < 0.15) were used to
examine the ability of clinical covariates to predict the change in
AA. Independent clinical variables examined were age; race (white,
black, Asian, or other); ethnicity (Hispanic: yes, no); BMI; parity
(continuous variable for the number of previous deliveries, 1-5);
family history of type 2 diabetes (yes, no); fasting glucose levels;
2-h glucose levels; glucose to insulin (G/I) ratio, homeostatic model
of assessment — insulin resistance (HOMA-IR), insulin levels,
duration of breastfeeding following their GDM pregnancy (no
breastfeeding, breastfed (0—3 months, 3 months—1 year, or >1
year)); and adiponectin levels. The variable inclusion level was set
to p < 0.15 to allow metabolites with limited but not significant
effects to be included as these potentially influenced the inclusion
and coefficients of other variables. However, only those variables
with a p < 0.05 were subsequently included in results and con-
clusions. Using these regressions, standardized B-coefficients ()
based on standard deviations with p < 0.05 were calculated for each
metabolite response to compare across clinical or behavioral pa-
rameters and metabolites. HOMA-IR and G/I ratios were calculated
[17,18], which have been shown to be adequate measures of insulin
resistance [19,20]. Women with NGT were compared with women
with prediabetes with an independent samples t-test and x’-test.
AA levels were reported as unitless liquid chromatography-tandem
mass spectrometry peak areas. Data were presented as mean + SD
and p < 0.05 was considered statistically significant. SAS software
v9.2 was used for all analyses (SAS Institute Inc., Cary, NC).

Theory

Metabolomics, the systematic study of small molecule products
of biochemical pathways, has shown promise in the identification
of key metabolites for the prediction, diagnosis and monitoring of
several metabolic disorders, including GDM [21]. An exploratory
study of biomarkers from 2nd trimester maternal urine and blood
plasma observed that women who developed GDM showed early
changes in biotin status, altered amino acid levels, and/or gut
metabolism [22]. Another investigation found associations between
1st trimester biomarkers, hs-CRP and SHBG, and an increased risk
of GDM [23]. Because of the importance of early risk stratification
for GDM, as well as the variable predictive power of current models
for GDM diagnosis, improved 1st trimester biomarker determina-
tion is necessary.

Several longitudinal studies have shown associations between
metabolites and future development of insulin resistance, predia-
betes, or T2DM in humans [6—11]. Recent investigations have also
shown that metabolomic analyses of samples from participants
before and after an OGTT can be used to detect early shifts in
metabolism during the progression from early insulin resistance to
T2DM [7,24]. For example, in a community-based population of 377
men and women without diabetes, Ho et al. evaluated biochemical
changes after an OGTT for individuals at risk for T2DM [7]. AA
changes identified in regards to an OGTT were found to be physi-
ologically consistent with biochemical pathways of insulin action.
Of note, four metabolites (pyridoxic acid, B-hydroxybutyric acid,
lactic acid and isoleucine) showed blunted responses in insulin-
resistant participants.

These data are relevant because prior studies have suggested that
the progressive decline of glucose tolerance first detected during
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pregnancy likely parallels the pathogenesis of T2DM [25]. Although
women with a history of GDM are at a higher risk for T2DM than
those without GDM |3], there is limited information on the mecha-
nisms underlying the progression from GDM to subsequent T2DM.
Therefore, metabolomic analyses of samples from an OGTT on
women with a history of GDM may be utilized to strengthen extant
models of T2DM pathophysiology and potentially expose the
mechanistic linkage between these two metabolic diseases.

Results

Thirty-eight women were included in analyses. Although 39
women were enrolled in the original study [12], one woman had a
measured 2-h glucose level >200 mg/mL, which is consistent with
diabetes; consequently, she was excluded from further analyses. Of
the remaining 38 women, 61% were NGT, 3% had IFG, 21% had IGT,
and 15% had both IFG and IGT. The mean age was 35 + 4 years; 71%
self-reported white race; 61% were NGT (Table 1). No participant
was breastfeeding at the time of the study. After delivery, 9% of
women with NGT and 7% of women with prediabetes never
breastfed; 13% of women with NGT and 20% of women with pre-
diabetes breastfed from 0 to 3 months; 48% of women with NGT and
40% of women with prediabetes breastfed 3 months—1 year; and
30% of women with NGT and 33% of women with prediabetes
breastfed for more than a year (Table 1). Twenty of the 23 AA and
AA derivatives had statistically significant reductions in response to
the OGTT (p < 0.0001). Alanine (mean + SD; —39.17 + 77.36,
p = 0.0035), sarcosine (—0.52 + 0.90, p = 0.0014), and glutamine
(—=75.74 + 241.33, p = 0.0607) had less statistically significant re-
ductions while cystine increased (2.18 & 3.02, p < 0.0001) (Table 2).
As expected, all of the metabolites changes were significantly
correlated with each other (Fig. 1).

Clinical and biochemical parameters, such as postpartum be-
haviors, race, parity, G/I ratio and history of breastfeeding, were

Table 1
Baseline characteristics of participants
Normal glucose Prediabetes p-value
tolerance (n =23) (n=15)
Age, years 339+ 39 379 +3.2 <0.01
Months postpartum 16.0 + 13.1 19.4 + 10.5 0.40
Months postpartum after ~ 16.3 £ 12.9 215+ 104 0.19

GDM

HbAT1c, % (mmol/mol) 54+05(36+18) 56+05(38+18) 049

SHBG (nmol/L) 69.3 +42.4 56.4 +24.4 0.25
Fasting glucose (mg/dL) 85.0 + 7.8 96.0 + 9.3 <0.01
2-h glucose (mg/dL) 98.1 £17.2 1619 + 18.7 <0.01
Fasting insulin (IU/L) 30.5 + 73.6 211+ 8.6 0.55
2-h insulin (IU/L) 19.8 + 174 194 £ 9.0 0.93
Adiponectin (ng/mL) 6581.8 + 2357.5 6065.7 + 3169.8 0.61
BMI (kg/m?) 273 +54 29.3 + 5.1 0.26
G/I ratio 57+ 18 54425 0.74
HOMA-IR 6.7 + 16.8 50422 0.65
Parity (n) 27 +15 27 +1.2 0.87
Current smokers, % 17 20 0.84
Family history of type 2 35 60 0.23

diabetes, %
Race, White, % 70 70 0.80
Ethnicity, Hispanic, % 435 0 0.41
Breastfeeding

No breastfeeding, % 9 7 0.82

Breastfed 0—3 months, % 13 20 0.90

Breastfed 3 months—1 48 40 0.89

year, %

Breastfed > 1 year, % 30 33 0.85

GDM, gestational diabetes mellitus; HbAlc, glycated hemoglobin; SHBG, sex
hormone-binding globulin; BMI, body mass index; G/I, glucose to insulin ratio;
HOMA-IR, homeostatic model of assessment — insulin resistance.
Data are means =+ standard deviation unless otherwise indicated.

Table 2
Difference in metabolites’ response to an OGTT (2-h minus fasting)
Metabolite Mean Standard deviation p-value
Alanine -39.17 77.37 0.0035
Sarcosine —0.52 0.90 0.0014
Glycine -52.86 61.06 <0.0001
Alpha ABA -3.77 3.35 <0.0001
Valine —65.93 45.73 <0.0001
Leucine —53.87 26.20 <0.0001
Isoleucine —26.42 13.92 <0.0001
Threonine —28.90 22.03 <0.0001
Serine —43.21 40.85 <0.0001
Proline —43.58 30.43 <0.0001
Asparagine -11.15 9.67 <0.0001
Aspartic acid —5.46 7.03 <0.0001
Methionine —5.47 3.95 <0.0001
4-hydroxyproline —-2.34 2.52 <0.0001
Glutamate -21.63 22.62 <0.0001
Phenylalanine —15.56 11.17 <0.0001
Glutamine -75.74 241.33 0.0607
Ornithine -11.94 15.22 <0.0001
Lysine -32.01 31.44 <0.0001
Histidine -11.52 10.25 <0.0001
Tyrosine —-12.55 9.19 <0.0001
Tryptophan -5.70 5.64 <0.0001
Cystine 2.18 3.02 <0.0001

Amino acid levels were calculated as unitless liquid chromatography-tandem mass
spectrometry peak areas.

Means defined as the 2-h amino acid level minus the fasting amino acid level after
oral glucose tolerance test was administered.

associated with changes in metabolite levels (Table 3). White race
was negatively associated with changes in alanine, tryptophan,
serine, asparagine, glutamine, ornithine, glutamate, and lysine
(6 = -0.16, —0.31, —0.35, —0.44, —-0.28, —0.54, —0.36, —0.58,
respectively, all p < 0.05). Parity and adiponectin were positively
associated with a change in cystine levels (§ = 0.44, p < 0.001
and 0.24, p = 0.031). Increasing fasting glucose levels were nega-
tively associated with changes in levels of alanine, valine, and
glutamate (8 = —0.24, —0.32, —0.52, respectively, all p < 0.007).
Breastfeeding was positively associated with several metabolites
in response to the OGTT: phenylalanine, tryptophan,
4-hydroxyproline, serine, threonine, asparagine, ornithine, aspartic
acid, and lysine (8 = 0.49, 0.40, 0.50, 0.38, 0.44, 0.45, 0.35, 0.32,
0.60, respectively, all p < 0.05). When comparing the women with
NGT to the women with prediabetes, the women with prediabetes
demonstrated a blunted percent decrease in AA compared to the
women with NGT (Fig. 2); however, this trend in attenuated AA
decrease between the two groups did not achieve statistical
significance.

Four AA (leucine, isoleucine, proline, and alpha-aminoisobutyric
acid) did not show any significant association with clinical param-
eters in the forward stepwise regression. Age, BMI, family history of
T2DM, fasting and 2-h glucose, HOMA-IR, fasting insulin, and adi-
ponectin had positive associations with a few AA changes in
response to the OGTT, while SHBG and HbA1c did not show any
significant associations with any AA responses (Table 3).
Additionally, when considering insulin resistance, 2-h glucose,
HOMA-IR, and G/I ratio, all demonstrated associations with OGTT-
induced AA changes; however, no metabolite common to all of
these parameters emerged.

In order to compare and contrast our data with what was found
by Ho et al. [7], we calculated the fold change in metabolites
following the OGTT in the women with NGT versus prediabetes
(Table 4). Although we are unable to strictly compare these two
different populations of participants, the magnitudes of the three
fold-changes are not widely discrepant. In addition, when consid-
ering physiologic clustering of AA, we did not observe any patterns
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Figure 1. Correlations among amino acid changes during an oral glucose tolerance test. Correlations among amino acid changes from fasting to 2-h sample during an oral glucose
tolerance test (OGTT). Pearson correlation coefficients are shown. General correlations across amino acids were observed; greater correlations based on chemical groupings were not
observed. Cystine demonstrated primarily inverse correlations because it increased from fasting to 2-h samples. Sarcosine demonstrated weaker correlations due to a less significant

decrease during the OGTT (p = 0.002).

of responsiveness with respect to branched chain AA or chemical
grouping (acidic or basic).

Discussion

We conducted an exploratory metabolomic analysis in 38 non-
pregnant, non-lactating women without diabetes but with
insulin-resistance as reflected by G/I ratio and HOMA-IR within 3
years of a GDM pregnancy. We found that, with the exception of
cystine which increased significantly, plasma AA levels decreased
significantly from fasting to 2-h post-OGTT; however, we did not
observe a statistically significant difference between the women
with prediabetes and the women with NGT (Fig. 2). The trend for an
attenuated response to an OGTT in women with prediabetes and a
history of GDM is similar to the pattern seen in previous studies of
participants with diabetes or prediabetes compared to those
without diabetes. In addition, breastfeeding, race, and BMI were
associated with the most metabolite profile changes following the
OGTT and parity had the most profound effect on metabolite levels.

Longer breastfeeding duration was associated with the greatest
number of AA changes (phenylalanine, tryptophan, 4-hydroxyproline,
serine, threonine, asparagine, ornithine, aspartic acid, and lysine) with
standardized (-values ranging between 0.35 and 0.60. Moreover, the
high levels of standardized fs relative to those observed in other
clinical-metabolite associations indicate a strong effect of a history of
breastfeeding at the metabolite level. Also, because the measures of
insulin resistance are negatively associated in relation to the positive
associations found with breastfeeding for various amino acids
(phenylalanine, serine, aspartic acid), this suggests that breastfeeding
has a positive influence on insulin resistance. This is consistent with
data that suggests a protective effect of breastfeeding against meta-
bolic syndromes [26,27].

We observed a strong positive association between changes in
cystine levels and increasing parity which has not been previously
reported in the literature. We found metabolite decreases of similar

magnitude to those found by Ho et al. [7]. In addition, we observed
an association between non-white race and a greater decrease in
several metabolite plasma levels. However, the role of race is one to
be examined in a larger, more racially/ethnically diverse population
of women. Although we were unable to perform cluster analyses or
conduct a comparison of normoglycemic controls to women with
GDM, investigations of these questions may be of interest.
Furthermore, we did not find abnormalities of branched chain AA
with increasing BMI as reported by Batch et al. [28] which might be
because of our small population size.

One notable limitation of this study is the sample size. We were
unable to adjust for multiple comparisons as might be done in a
large study population. Moreover, the limited sample size and the
high degree of correlation among delta amino acids magnified the
risk of overfitting the data due to collinearity, thereby limiting our
ability to perform cluster analyses and draw extensive conclusions
from these data. Consequently, we were similarly restricted in our
ability to draw conclusions regarding relationships between
metabolite changes and subgroups of race and parity.

Recent examinations have examined metabolite profiles in
populations of currently pregnant women with uncomplicated [22]
and complicated [22,29,30] pregnancies and found that certain AA
were elevated in women with insulin-resistance compared to
women with NGT. These metabolites, however, have not been
consistent across studies. Future studies with larger cohorts could
utilize cluster analysis based on measures of insulin resistance such
as the G/I ratio or HOMA-IR in order to begin to clarify metabolic
pathways of clinical interest. For example, Wang et al. [11]
demonstrated a substantial increase in the predictive value of AA
in participants with T2DM versus those with NGT when three AA
were considered together rather than separately. This study, how-
ever, extends the current literature by examining the relationship
between metabolite responses and the biochemical and behavioral
parameters associated with insulin resistance and prediabetes
status.



42

Table 3

Associations between clinical parameters and 2-h minus fasting metabolite response to an OGTT
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Metabolite Age beta (p-value) Race beta (p-value) BMI beta (p-value) Parity beta Family history beta Fasting glucose
(p-value) (p-value) beta (p-value)

Alanine —0.16 (0.015) —0.08 (0.042) 0.18 (0.005) —0.24 (<0.001)

Valine 0.19 (0.01) —0.32 (0.007)

Leucine

Tryptophan —0.31 (0.017) 0.54 (<0.001) 0.27 (0.018)

4-hydroxyproline 0.29 (0.005)

Sarcosine —0.39 (0.010) 0.10 (0.043) —0.37 (0.045)

Serine —0.35(0.027) 0.26 (0.005)

Cystine 0.44 (<0.001)

Asparagine —0.44 (0.008) 0.26 (0.028)

Glutamine —0.28 (0.048)

Ornithine —0.54 (<0.001) —0.36 (0.005)

Aspartic acid 0.10 (0.038)

Glutamate —0.36 (0.003) —0.52 (<0.001)

Lysine —0.58 (<0.001) 0.47 (0.002)

2-h glucose beta G/I ratio beta HOMA-IR beta Insulin beta Breastfeeding beta Adiponectin beta
(p-value) (p-value) (p-value) (p-value) (p-value) (p-value)

Phenylalanine —0.31 (0.016) 0.49 (0.007)

Tryptophan 0.40 (0.009) —0.38 (0.004)

4-hydroxyproline 0.50 (<0.001)

Sarcosine 0.50 (0.036)

Glycine —0.35 (0.015)

Serine —0.27 (0.003) —0.28 (0.006) 0.38 (0.022)

Threonine 0.44 (0.008)

Tyrosine 0.12 (0.022)

Cystine 0.24 (0.031)

Asparagine 0.45 (0.01)

Glutamine —0.31 (0.036)

Ornithine 0.35 (0.007)

Aspartic acid —0.29 (0.009) —0.36 (<0.001) 0.32(0.026)

Lysine 0.60 (<0.001)

Histidine 0.16 (0.008)

BMI, body mass index; G/I, glucose to insulin ratio; HOMA-IR, homeostatic model of assessment — insulin resistance.
Data for amino acid-clinical parameter associations which did not achieve statistical significance are not included.
Data are presented as standardized §-coefficients (p-values). Standardized -coefficients were computed from standard deviations with p-values <0.05.

Categorical variables examined were race (White, Black, Asian or other); family history of type 2 diabetes (yes, no); and duration of breastfeeding following their GDM

pregnancy (no breastfeeding, breastfed 0—3 months, breastfed 3 months—1 year, or breastfed >1 year).
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Figure 2. Percent change in metabolites during an oral glucose tolerance test. Percent change from fasting to 2-h plasma samples during an oral glucose tolerance test (OGTT) in
women with prior gestational diabetes mellitus (GDM) and either normal glucose tolerance (NGT) or prediabetes (PDM). Prediabetes status was determined as having impaired
glucose tolerance, impaired fasting glucose, or both, according to American Diabetes Association guidelines (see Methods section). Blunted decreases in women with prediabetes
compared to NGT were observed in metabolites with the greater percent changes, although these differences did not achieve statistical significance.
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Table 4
Comparisons between fold-change in metabolites following an OGTT between the
current study and Ho et al. Diabetes, 2013

Metabolite Ho et al. (2013) Normal glucose Prediabetes
tolerance n=15
n=23

Isoleucine -047 —0.46 -0.35

Leucine -0.45 -043 -0.34

Methionine -0.36 -0.37 -0.34

Tyrosine -0.34 -0.39 -0.31

Threonine -0.27 -0.25 -0.21

Aspartate -0.27 -0.14 -0.23

Phenylalanine —0.26 -0.24 -0.23

Ornithine -0.25 -0.17 -0.26

Serine -0.24 -0.23 -0.23

Valine -0.23 -0.25 -0.21

Lysine -0.17 -0.17 -0.21

Histidine -0.17 -0.24 -0.18

Tryptophan -0.16 -0.20 -0.15

Glycine -0.14 -0.14 -0.16

Glutamate -0.14 -0.21 -0.28

Proline -0.14 -0.22 -0.20

Glutamine —-0.10 0.07 -0.14

Alanine -0.07 -0.06 -0.11

Data are the fold-change in metabolites following an oral glucose tolerance test in
women with normal glucose tolerance versus prediabetes.

Conclusion

To our knowledge, this is the first study to focus on the metab-
olomic responsiveness to an OGTT in women with a history of GDM.
The identification of the role of postpartum behaviors, like breast-
feeding, on metabolite responsiveness to an OGTT is novel and may
facilitate our understanding of how best to risk-stratify and intervene
in those women at high risk for metabolic diseases. The importance
of this exploration in postpartum women is the impetus for closer
examination of these relationships and the specific pathways
implicated in the pathogenesis of T2DM after GDM.
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