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M O L E C U L A R  B I O L O G Y

Single-cell transcriptomic analysis of mIHC images via 
antigen mapping
Kiya W. Govek*, Emma C. Troisi*, Zhen Miao, Rachael G. Aubin, Steven Woodhouse, Pablo G. Camara†

Highly multiplexed immunohistochemistry (mIHC) enables the staining and quantification of dozens of antigens 
in a tissue section with single-cell resolution. However, annotating cell populations that differ little in the profiled 
antigens or for which the antibody panel does not include specific markers is challenging. To overcome this ob-
stacle, we have developed an approach for enriching mIHC images with single-cell RNA sequencing data, building 
upon recent experimental procedures for augmenting single-cell transcriptomes with concurrent antigen mea-
surements. Spatially-resolved Transcriptomics via Epitope Anchoring (STvEA) performs transcriptome-guided 
annotation of highly multiplexed cytometry datasets. It increases the level of detail in histological analyses by 
enabling the systematic annotation of nuanced cell populations, spatial patterns of transcription, and interac-
tions between cell types. We demonstrate the utility of STvEA by uncovering the architecture of poorly character-
ized cell types in the murine spleen using published cytometry and mIHC data of this organ.

INTRODUCTION
Recently developed technologies for digital imaging and multiplexed 
immunohistochemistry (mIHC) (1–8) are enabling the field of his-
tology to enter into a quantitative era, allowing for more complex 
descriptions of tissue architecture. Imaging mass cytometry (5), mul-
tiplexed ion beam imaging (6), CO-Detection by indEXing (CODEX) 
(2), and highly multiplexed quantitative platforms for traditional 
immunohistochemistry (7, 8) can be used to simultaneously profile 
the expression level of dozens of proteins in a tissue section with 
single-cell resolution. Despite this progress, the amount of cell types 
and states that can be simultaneously identified by mIHC is limited. 
Computational methods for automated identification of cell popu-
lations cluster cells according to expression similarities of the pro-
filed antigens. These clusters are then manually annotated using 
previous knowledge of cell markers. However, this process is gener-
ally partial, subjective, and biased (9). The groups of cells that result 
from clustering algorithms often differ little in their antigenic pro-
file, and the interpretation of those differences is unclear. Moreover, 
the design of comprehensive antibody panels that include specific 
markers for every cell type and state present in the tissue is usually 
unfeasible. Consequently, the amount of annotated cell populations 
in mIHC analyses is often substantially smaller than the number of 
clusters produced by automated methods.

To overcome these limitations and improve the annotation of 
mIHC data, we propose an approach for enriching mIHC slides with 
single-cell RNA sequencing (RNA-seq) data. Currently available 
single-cell RNA-seq technologies can profile the expression level of 
thousands of genes in each cell, allowing for fine classification of 
cells based on their gene expression profile. Some of the most recent 
approaches, like cellular indexing of transcriptomes and epitopes 
by sequencing (CITE-seq) (10), RNA expression and protein se-
quencing (11), and Abseq (12), allow for augmenting single-cell 
transcriptomes with concurrent protein measurements by staining 
single-cell suspensions with oligo- tagged antibodies. These approaches 

can therefore be used to determine the quantitative relation between 
gene and antigen expression levels. Here, we build upon CITE-seq 
and computational methods for the integration of single-cell omics 
data (13, 14) to identify and annotate cell populations in mIHC 
images (or, more broadly, in highly multiplexed cytometry datasets) 
based on single-cell gene expression data of the same tissue. Our 
method, transcriptomics via epitope anchoring (STvEA), consists of 
three major steps (Fig. 1). First, it computationally consolidates the 
protein expression spaces of the mIHC dataset and a matching 
CITE-seq dataset using a shared antibody panel. This consolidated 
protein expression space is used to transfer features (e.g., mRNA cell 
type assignments, gene expression profiles, etc.) from the CITE-seq 
dataset into the mIHC images. STvEA then finds an optimal cluster-
ing of the CITE-seq mRNA expression data such that the resulting 
cell populations can be accurately mapped into the mIHC images 
based on their antigenic profile. In this way, STvEA enables the iden-
tification and annotation of cell populations in the mIHC data and 
the study of spatial patterns of transcription.

We use the murine spleen as a test system to benchmark the sta-
bility and performance of STvEA, since well-established antibody 
panels and high-quality mIHC datasets are readily available for this 
organ. For that purpose, we have generated a high-quality CITE-seq 
atlas of the murine spleen and used it with STvEA to annotate pub-
lished mIHC and mass cytometry datasets of this organ. Our results 
reveal that STvEA substantially increases the level of phenotypic 
annotation of these datasets and enables new analyses of highly 
multiplexed cytometry data. In addition, by systematizing the an-
notation of cell populations, it improves the reproducibility of the 
results. We have made this approach available to the entire commu-
nity as open-source software (Online Methods).

RESULTS
A high-quality CITE-seq atlas of the murine spleen
We aimed to improve and automate the annotation of a published 
high-resolution mIHC dataset of the murine spleen recently gener-
ated with the CODEX technology (2). CODEX uses an in situ po-
lymerization indexing procedure to measure the spatial distribution 
of a panel of protein markers with submicrometer resolution. To 
be able to more accurately annotate this dataset, we generated a 
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high-quality CITE-seq dataset of the murine spleen using the same 
30-antibody panel (table S1) and mice matching those of the CODEX 
dataset. In total, we profiled the transcriptome and antigen levels of 
7097 cells [with ≥1200 mRNA unique molecular identifiers (UMIs)] 
using CITE-seq. The median Spearman correlation among the ob-
served expression of mRNAs and the proteins they code for was 0.32, 
consistent with previous CITE-seq studies (10). We used single-cell 
variational inference (scVI) (15) to obtain a latent space representa-
tion of the mRNA data and clustered the cells in this space using an 
in-house consensus algorithm (Online Methods). Our analysis found 
17 clusters and no noticeable batch effects (Fig. 2A and fig. S1). We 
performed differential expression analysis to annotate the clusters 
based on the expression of known marker genes (Fig. 2B and table 
S2). In addition, we used a spectral graph method (16, 17) to char-
acterize the transcriptomic heterogeneity that originates from the 
continuous maturation processes occurring in the spleen (Fig. 2C 

and table S3). This approach allowed us to identify genes with sig-
nificant gradients of expression within one or several clusters, and 
we used these results to further annotate the atlas. Overall, we iden-
tified 30 cell populations, comprising most of the known splenic cell 
types (Fig. 2A) (18, 19). These results represent a substantial increase 
in resolution with respect to previous single-cell RNA-seq atlases of 
the murine spleen (20–22).

Mapping of the splenic CITE-seq atlas onto histology 
sections profiled with CODEX
We noticed that most of the cell populations identified in the tran-
scriptomic analysis of the CITE-seq atlas were also localized in the 
protein expression space (fig. S2). This observation indicates that 
small differences in cellular epitope levels are often representative 
of distinct cell populations, even if those differences do not lead to 
discrete clusters in the protein expression space. Consequently, we 

Fig. 1. Overview of STvEA. STvEA takes as input an mIHC dataset and a reference CITE-seq atlas and performs automated annotations of the mIHC data based on the 
reference atlas. It first normalizes and consolidates the protein expression spaces of the mIHC and CITE-seq datasets. Then, it identifies clusters the CITE-seq mRNA data 
such that the resulting cell populations can be accurately mapped onto the mIHC images. The resulting information is used to annotate cell types and states in the mIHC 
dataset and predict spatial patterns of gene expression and interactions between cell populations.
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reasoned that mapping the CODEX protein expression space into 
the CITE-seq protein expression space would allow us to survey the 
CODEX images for the cell populations identified in the transcrip-
tomic analysis. To lessen the technical differences and facilitate the 
integration of the two spaces, we devised a common approach to 
background removal and normalization for CODEX and CITE-seq 
protein expression measurements (fig. S3). In each dataset, we mod-
eled the distribution of protein levels using a two-component mix-
ture model (Online Methods). Our approach led to improved and 
more consistent protein expression levels across the two datasets 
(fig. S3). We then used a mutual nearest neighbors anchoring strategy 

(13, 14) to consolidate the signal component of the two datasets into 
a common protein expression space (Fig. 3A; Online Methods). By 
looking at the CODEX neighbors of each CITE-seq cell in the con-
solidated protein expression space, we were able to identify groups 
of cells in the mIHC images with similar antigenic profiles to those 
in the CITE-seq dataset, substantially extending the phenotypic an-
notation of cell types in the CODEX data. Overall, STvEA led to the 
annotation of 73% (n = 57,819) of the cells present in the CODEX 
mIHC images. It correctly recapitulated the known spatial distribu-
tion of splenic cell populations, including the partitioning between 
red pulp, B cell zones, and T cell zones; the location of plasmacytoid 
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Fig. 2. A high-resolution CITE-seq atlas of the murine spleen. (A) UMAP representation of the mRNA expression data of 7097 cells from the murine spleen profiled with 
CITE-seq. Cell populations were identified by clustering (represented in different colors) and annotated by differential expression analysis (bold text) and a spectral graph 
method [italic text; see also (C)]. Dashed lines represent soft transitions in the transcriptome of cells. (B) Heatmap depicting the expression of some of the top differential-
ly expressed genes in each cluster. (C) Analysis of the cellular heterogeneity within the clusters of B-2 cells using a spectral graph approach. Genes were ranked according 
to their Laplacian score, and statistical significance was assessed for each gene by randomization. In the figure, the expression levels of some of the significant genes are 
depicted in the UMAP representation. The complete results are provided for all clusters in table S3. (D) mRNA expression levels of Cr2, Ighm, and Trac (top) and the expres-
sion levels of the proteins they code for (bottom).
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dendritic cells (pDCs) in T cell zones; the location of monocytes in 
the red pulp; and the positioning of CD4 conventional dendritic 
cells (cDCs) along the bridging channels that connect T cell zones 
and the red pulp (Fig. 3B) (23). Cell populations that were not anno-
tated by STvEA mostly consisted of stromal cells (CD31+ or ERTR7+ 
cells) with no representation in the CITE-seq atlas due to the nonen-
zymatic procedure we used for tissue dissociation, cells without spe-
cific marker expression, as noted in the analysis of Goltsev et al. (2), 
and some T cell subpopulations (fig. S4). CODEX cell population 
assignments were consistent across CITE-seq replicates (Fig. 3C; me-
dian Pearson’s correlation r = 0.998, P < 10−10), and the inferred rela-
tive spatial distributions were reproducible across multiple spleens 
profiled with CODEX (fig. S5). We also tested other approaches for 
consolidating the normalized protein expression spaces of CODEX 
and CITE-seq, including Harmony (24) and LIGER (25), and ob-
tained similar results to those obtained by using a mutual nearest 
neighbors anchoring strategy (fig. S6).

Quantification of mapping uncertainties and stability
To quantitatively assess the magnitude of mapping errors, we looked 
at the protein expression profile of cells in the CODEX dataset related 
to the same CITE-seq cells. The average Pearson’s correlation coeffi-
cient between the protein expression profiles of CODEX cells related 
to the same CITE-seq cell was 0.74. This value varied substantially 
across the CITE-seq atlas (fig. S7), with cells annotated as B-1 B cells, 
T1 B cells, and dendritic cells having the lowest correlation coeffi-
cients (average Pearson’s r = 0.59, 0.55, and 0.56, respectively), pos-
sibly due to a lack of specific markers for these populations in the 
antibody panel. However, these coefficients were substantially larger 
than the correlation between the protein expression profiles of ran-
domly chosen CODEX cells (fig. S7; mean Pearson’s correlation 
coefficient r = 0.25).

Assessing the sensitivity and specificity of automated STvEA an-
notations requires a gold standard to compare with. Although the 
true cell types are unknown in the CODEX dataset, the expression 
of highly specific markers by some cell populations, including B220 
by B-2 cells, T cell receptor  (TCR) by T cells, NKp46 by natural 
killer (NK) cells, Ly6G by neutrophils and other granulocytes, and 
ERTR7 by stromal cells, provides a good approximation. Compar-
ing the annotations of STvEA with the expression of these highly 
specific markers allowed us to estimate the sensitivity and specifici-
ty of STvEA annotations across several populations (fig. S8). Our 
choice of parameters for STvEA favored specificity (for most cell 
populations, the false-positive rate was <5%) against sensitivity, which, 
in most cases, was between 60 and 70% (fig. S8). Different parame-
ter choices, however, enabled a higher sensitivity/specificity rate in 
situations where a higher sensitivity was desirable. For example, in-
creasing the number of neighbors (ktransfer) in the ℳCITEseq → CODEX 
transfer matrix (Fig. 3A; Online Methods) to 1500 led to the anno-
tation of 97% of the CODEX cells with a specificity >80% for most 
cell populations (fig. S8). The sensitivity and specificity of STvEA 
annotations was stable against changes in other parameters (fig. S9).

We next evaluated the stability of STvEA with respect to the 
number of cells in the CITE-seq atlas. We randomly sampled cells 
from the CITE-seq dataset to generate smaller datasets and applied 
STvEA independently to each of these atlases. The percentage of 
CODEX cells annotated by STvEA decreased from 73% when using 
the entire CITE-seq atlas (7097 cells) to 38% when using only 1000 
cells (Fig. 3D). Expectedly, regions of the CODEX protein expression 

space with low mapping scores (Online Methods) or less represen-
tation in the CITE-seq data were more sensitive to the size of the 
atlas (fig. S10). However, annotations were highly consistent across 
atlases of different sizes (median Pearson’s correlation coefficient 
between the predicted gene expression profile of a CODEX cell 
when using the original CITE-seq dataset or a down-sampled ver-
sion with 1000 cells; r = 0.93). These results thus indicate that the 
size of the CITE-seq atlas mainly affects the percentage of annotated 
cells in the mIHC images but not the quality of the annotations.

Last, we assessed the stability of the annotations against changes 
in the size of the antibody panel. We performed logistic lasso re-
gression using the CITE-seq cell populations as response variable to 
order the antibodies from least to most informative (fig. S11A; On-
line Methods). The resulting ordering was independent of the 
amount of correlation between the gene and protein expression lev-
els of each marker in the panel (test of association, P = 0.79). We 
then successively reduced the size of the antibody panel and ap-
plied STvEA. The annotations in the initial analysis were relatively 
stable against reducing the size of the antibody panel (fig. S11B). In 
particular, 73% of the annotated cells in the original analysis were 
still annotated when using a panel with only nine antibodies, and 
the median Pearson’s correlation coefficient between cell assign-
ments in these two analyses was 0.99, indicating a large degree of 
consistency for the annotations. Moreover, all the cell types identi-
fied in the mRNA analysis were still well represented in the annota-
tions of the CODEX dataset when using nine antibodies (fig. 11C). 
On the basis of these results, we conclude that STvEA can provide a 
high level of phenotypic annotation with relatively small antibody 
panels, as long as antibodies are suitably chosen and cell popula-
tions are represented in the reference CITE-seq atlas.

CITE-seq and CODEX are scalable to large antibody panels, and 
there are published studies (26, 27) using these technologies, re-
spectively, with 198 and 56 antibodies. However, there may be situ-
ations where it is unfeasible to design an mIHC experiment with an 
antibody panel that fully matches that of an existing CITE-seq ref-
erence atlas. In those situations, our results indicate that selecting a 
subset of antibodies for the mIHC panel that maximizes the amount 
of nonredundant information about the mRNA cell populations in 
the atlas, as described above, is a suitable approach.

Optimized annotation of cell populations
The analysis described above shows that mapping accuracy is not 
uniform across the CITE-seq atlas (fig. S7). We therefore reasoned 
that defining cell populations based exclusively on clustering the 
mRNA data, without taking into account mapping accuracy, could 
lead to suboptimal annotation of the mIHC images. In particular, 
some of the mRNA clusters might not be accurately mapped based 
on their protein expression profile, whereas other clusters might be 
split into smaller pieces that could still be accurately distinguished 
based on their protein expression profile. To overcome this limita-
tion and define cell populations that can be optimally mapped into 
the mIHC data, we devised a clustering approach of the single-cell 
mRNA data that takes into account mapping accuracy (Online 
Methods). Specifically, we used the algorithm HDBSCAN (28) to es-
tablish a simplified hierarchical tree of cell populations based on the 
single-cell mRNA data. A nonuniform cut of this tree was chosen on 
the basis of the Louvain modularity of the resulting populations in 
the CODEX protein expression space upon STvEA mapping (On-
line Methods). This approach partitioned the CITE-seq atlas into 17 
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Fig. 3. Mapping of the splenic CITE-seq atlas into histology sections profiled with CODEX. (A) Schematics of the procedure for mapping the CODEX and CITE-seq 
protein expression spaces. Anchors are identified using mutual nearest neighbors and weighted according to their consistency with the mRNA expression space (left). 
These anchors are used to consolidate the CODEX and CITE-seq protein expression spaces into a common space (middle). The transfer matrix ℳCITEseq→CODEX is built by 
looking at the nearest CODEX cells to each CITE-seq cell in this space (right). (B) Mapping of cells from the CITE-seq atlas into a splenic section profiled with CODEX. The 
figure shows the locations of cells in the section with antigenic profiles similar to those of six cells from the CITE-seq atlas. T and B cell zones are indicated with solid and 
dashed lines, respectively. (C) Consistency between the annotations of two spleens profiled by CITE-seq and mapped onto the same CODEX dataset. The heatmap shows 
the correlation between the CODEX cell assignments for each cell population. (D) Number of annotated cells in the CODEX dataset as a function of the number of cells in 
the CITE-seq atlas. The annotated cells are indicated in a UMAP representation of the CODEX protein expression.
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phenotypically distinct cell populations that could be accurately 
mapped onto the mIHC images (Fig. 4, A to C, and fig. S12A). The 
mapped guided clustering increased the accuracy of STvEA annota-
tions for most cell populations, as determined by the odds ratio be-
tween STvEA annotations and the expression of highly specific 
markers in the CODEX data (fig. S12B). These automated annota-
tions were also consistent with those resulting from manual annotation 
of the CODEX data (fig. S13; information redundancy R/Rmax = 
42%) (2) and included several populations that were not identified 
in the manual analysis and for which specific markers were not in-
cluded in the panel, such as pDCs, different stages of erythrocyte 
maturation, and several B cell subpopulations.

To estimate the accuracy of STvEA annotations in cases where 
the antibody panel does not include any specific marker, we removed 
NK cell or neutrophil markers (NKp46 and Ly6G and CD11b, re-
spectively) from the antibody panel and repeated the automated 
annotation with STvEA. The specificity to identify NK cells in 
the absence of specific markers was 97% [that is, only 3% of the 

NKp46(−) cells were annotated by STvEA as NK cells], whereas the 
sensitivity was 40%. These values indicate a strong association be-
tween STvEA NK cell labels and NKp46(+) CODEX cells (odds 
ratio = 21.5, Fisher’s exact test P < 10−16). Including NKp46 in the 
panel boosted the sensitivity to 70% while keeping the specificity at 
97%. Similarly, the specificity and sensitivity to identify neutrophils 
in the absence of specific markers were, respectively, 99 and 44% 
[odds ratio between STvEA neutrophil labels and Ly6G(+) CD11b(+) 
cells = 73.8, Fisher’s exact test P < 10−16]. Higher sensitivity (at the 
cost of reducing specificity) could be obtained by increasing the num-
ber of neighbors (ktransfer) in the ℳCITEseq → CODEX transfer matrix 
(Fig. 3A; Online Methods). Thus, these results suggest that incorpo-
rating additional antibodies in the panel can further enhance the 
annotation of cell populations present in the mRNA CITE-seq data 
of this analysis. For example, in our specific analysis, we expect that 
expanding the antibody panel with specific T cell differentiation 
markers such as CD62L, CD69, and CD103 would increase the phe-
notypic resolution of STvEA annotations for T cells.

T1 B cells

Neutrophils

pDCs

Macrophages/monocytes

Mature erythorcytes

Plasma cells

Immature erythrocytes

Natural killer cells

B-1 cells

CD8 cDCs

CD4 cDCs
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Fig. 4. Transcriptome-guided annotation of cell populations in histology sections profiled with mIHC. (A) UMAP representation of the protein expression space of 
a splenic tissue section profiled with CODEX. The representation is labeled by the cell populations identified by STvEA. In total, 17 phenotypically distinct populations 
were determined in the mRNA CITE-seq data based on their gene expression profile and their mapping into the CODEX dataset. (B) UMAP representation of the CITE-seq 
gene expression space labeled by the 17 cell populations annotated by STvEA. (C) Image of the tissue section labeled by the 17 cell populations annotated by STvEA.
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Last, we explored the utility of STvEA as a tool for annotating the 
clusters produced by some of the existing algorithms for cytometry 
data analysis, including X-shift (29), SPADE (30), and PhenoGraph 
(fig. S14) (31). The cell clusters produced by these methods were 
generally composed of one or two predominant cell types according 
to the annotations of STvEA. Together, these results show that STvEA 
is a useful and robust tool for the annotation of mIHC data.

Prediction of spatially resolved gene expression patterns
The mapping of single-cell transcriptomic data onto mIHC images 
provided by STvEA allowed us to investigate the predicted spatial 
patterning of any gene in the mRNA dataset (Fig. 5A). To validate 

some of the spatially resolved gene expression profiles predicted by 
STvEA, we performed multiplexed RNA fluorescent in situ hybridiza-
tion (FISH) (32) of several marker genes identified in the differen-
tial expression analysis (Fig. 5A and figs. S15 and S16). Specifically, 
we carried out hybridizations for Bhlhe41, a transcriptional repres-
sor highly expressed by B-1 cells (33) as they mature and migrate 
from B cell zones into the red pulp (34); and Il1b, expressed by sev-
eral subpopulations of cDCs, monocytes, macrophages, and neu-
trophils in the red pulp and T cell zones, but not expressed in B cell 
zones. In both cases, FISH correctly recapitulated the expression pat-
terns predicted by STvEA (Fig. 5A and figs. S15 and S16), con firming 
the utility of our computational approach to label mIHC images by 

Fig. 5. Identification of spatially resolved gene expression patterns and interactions between cell populations. (A) mRNA expression levels predicted by STvEA 
(top) and measured by RNA FISH (middle and bottom) in murine splenic sections for the genes Il1b (left) and Bhlhe41 (right). Red, Cd79a; green, Il1b/Bhlhe41; blue, DAPI 
(4′,6-diamidino-2-phenylindole). T and B cell zones in the tissue sections are indicated with solid and dashed lines, respectively. We used B cell zones, highlighted by the 
expression of Cd79a, as a reference for comparisons between RNA FISH and CODEX tissue sections. The relative location of cells expressing Il1b and Bhlhe41 with respect 
to B cell zones is indicated at the bottom. (B) Identification of interactions between splenic cell populations. Heatmap showing the significance of the spatial colocaliza-
tion of splenic cell populations, inferred by STvEA. Significant relations (q ≤ 0.05) that cannot be explained by mapping errors (95% confidence level) are indicated with 
black squares. (C) Some of the significant potential paracrine interactions among red pulp macrophages, basophils, neutrophils, and monocyte-derived macrophages in 
the red pulp. Interactions were inferred on the basis of the differential expression of the genes encoding for the ligand and receptor and on their spatial colocalization.
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gene expression levels. Using this approach, we were also able to 
resolve in the mIHC images some of the cell differentiation process-
es that take place in the spleen. For example, the predicted expres-
sion patterns of Car1, a marker of immature erythroblasts (35, 36), 
and Gypa, a marker of intermediate and late stages of erythroblast 
maturation (36, 37), represented the maturation of erythroblasts in 
erythroblastic islands of the red pulp (38) and allowed us to anno-
tate erythroblasts in the CODEX dataset according to their stage of 
maturation (fig. S17).

Identification of cell population interactions
Characterizing interactions between cell populations within the 
context of tissues is a key step toward understanding cell function. 
Inferring the cell type of individual cells in mIHC images enabled us 
to survey candidate interactions between cell populations, further 
expanding the scope of conventional mIHC image analyses. We de-
vised a graph-based approach for assessing the spatial colocaliza-
tion of cell populations identified in the transcriptomic analysis while 
accounting for mapping uncertainties (Online Methods). Significant 
colocalization patterns recapitulated the well-established immune 
cellular architecture of the spleen, partitioned into red pulp, B cell 
zones, and T cell zones (Fig. 5B). T cells, pDCs, and CD4 cDCs were 
recurrently in close proximity within T cell zones. Similarly, red pulp 
macrophages, erythrocytes, neutrophils, and monocytes were recur-
rently in close proximity within the red pulp. In addition, several cell 
populations showed colocalization patterns that spanned multiple 
splenic compartments (Fig. 5B). Specifically, CD4 cDCs appeared 
recurrently in close proximity with T cells in T cell zones and with 
NK cells in the red pulp (Fig. 5B). These inferred relations were re-
producible across multiple spleens profiled with CODEX (fig. S18A; 
Pearson’s correlation coefficient between significance levels, r ≥ 
0.98). In addition, an analysis of the same spatial colocalization 
patterns using the software Giotto (39) led to consistent results 
(fig. S18B).

To identify molecular cues that potentially mediate the cross-
talk between splenic cell populations, we compared differentially 
expressed genes to a database of receptor-ligand interactions (40) 
and assessed the relative spatial location of ligand- and receptor- 
expressing cell populations. Overall, we detected 587 significant in-
teractions based on this approach (Benjamini-Hochberg adjusted 
q ≤ 0.05; table S4), including the expression of several cues in red 
pulp macrophages related to the modulation of C1q-dependent 
phagocytosis, the F2L-mediated priming of neutrophils, and the 
IGF1-mediated activation of basophils (Fig. 5C and Supplementary 
Note). These interactions appeared substantially reduced or absent 
in monocyte-derived macrophages, suggesting the specialization of 
resident red pulp macrophages in the positive regulation of humor-
al innate immune responses in the murine spleen.

We validated some of the predicted colocalized spatial patterns 
of gene expression using multiplexed RNA FISH (fig. S19). In par-
ticular, we considered the expression of the ligand-receptor genes 
Plxnb2 and Sema4c, which, according to our analysis, were signifi-
cantly colocalized in the tissue sections (Benjamini-Hochberg ad-
justed q = 10−4; table S4) and expressed by multiple cell populations 
in the red pulp and T cell zones (fig. S19). As in previous cases, FISH 
correctly recapitulated the patterns of gene expression inferred by 
STvEA and confirmed the partial colocalization of Plxnb2- and 
Sema4c-expressing cells in the spleen (adjacency score P = 0.04; 
fig. S19).

Annotation of highly multiplexed cytometry data 
using STvEA
Beyond the realm of mIHC, other technologies also allow for highly 
multiplexed protein expression profiling of individual cells. Multi-
parameter flow cytometry and cytometry by time-of-flight (CyTOF) 
provide high-dimensional proteomic characterizations of single-cell 
suspensions and are frequently used in immunology and studies of 
cancer. We reasoned that the same procedure for annotating cell 
populations on mIHC images could be adapted to these modalities 
of data. To assess the utility of STvEA in this context, we first ap-
plied it to 114,568 wild-type mouse splenocytes profiled with CyTOF 
in a published study (2). The panel in this study had 22 antibodies in 
common with our CITE-seq atlas. STvEA correctly consolidated 
the protein expression spaces of the CyTOF and CITE-seq datasets 
and annotated 12 cell populations (Fig. 6A and fig. S20), which rep-
resented 91% of the cells in the CyTOF dataset. As in our analysis of 
CODEX data, these annotations included subtle cell populations, 
such as pDCs and different stages of erythrocyte maturation, which 
are difficult to identify without specifically tailored antibody panels. 
For comparison, we also performed more conventional analyses based 
on the algorithms X-shift, SPADE, and PhenoGraph, followed by 
manual annotation of the resulting clusters (Fig. 6B and fig. S14). 
Although the annotations produced by STvEA were consistent with 
the results of these analyses, STvEA provided an increase in the res-
olution and number of annotated cell populations with respect to 
manual annotations. The protein expression levels of cells in the 
CyTOF and CODEX datasets that were mapped to the same cell in 
the CITE-seq reference atlas showed a large degree of consistency, 
with average Pearson’s correlation coefficients ranging from 0.73, 
0.61, and 0.57, respectively, for T cells, erythrocytes, and B-2 cells to 
0.13 for pDCs (fig. S21).

We next applied STvEA to 146,110 splenocytes from a glioma 
mouse model profiled with CyTOF (41). We considered only 11 anti-
bodies shared with our splenic CITE-seq atlas. There was a substan-
tial overlap between the cell populations stained by these antibodies, 
making the annotation of this dataset particularly challenging. De-
spite these limitations, STvEA identified and annotated eight pheno-
typically distinct cell populations (Fig. 6C and fig. S20), accounting 
for 82% of the cells in the CyTOF dataset. Although these annota-
tions were broader than in other datasets we have analyzed, they 
still represented a substantial improvement with respect to proce-
dures based on the manual annotation of clusters (Fig. 6D and 
fig. S14).

DISCUSSION
Methods for simultaneous profiling of protein and gene expression 
with single-cell resolution are evolving rapidly. Here, we have pre-
sented a computational approach for identifying and annotating 
cell populations in mIHC images by leveraging CITE-seq data of 
the same or closely related tissues. STvEA enables the optimal trans-
fer of annotations from a CITE-seq dataset onto mIHC images or, 
more generally, highly multiplexed cytometry data. We have demon-
strated the utility of this approach with published mIHC and mass 
cytometry datasets of the murine spleen, and we have studied inter-
actions between cell populations in this organ based on the inferred 
spatial patterns of gene expression. The CITE-seq data resource that 
we have generated for this organ and its integrative spatial analysis 
can be interrogated through the web interface that accompanies this 
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paper (https://camara-lab.shinyapps.io/stvea). We expect this re-
source will be of great utility as a reference dataset for this organ.

Our work builds upon some of the recent developments in the 
integration of single-cell omics data (13, 14) and is similar in spirit 
to previous studies mapping single-cell RNA-seq data to FISH images 

(42–46). However, because mapping transcriptomic information 
onto cytometry data is carried out through the protein expression 
space, there are multiple conceptual and technical differences with 
those studies. Specifically, to consolidate protein expression mea-
surements performed with multiple technologies (next-generation 

Fig. 6. Transcriptome-guided annotation of mass cytometry data. (A) UMAP representation of 114,568 mouse splenocytes profiled with CyTOF by Goltsev et al. (2). 
The representation is labeled with the cell populations identified by STvEA based on a panel of 22 antibodies. (B) The same representation is labeled according to the 
manually annotated clusters produced by X-shift, PhenoGraph, and SPADE. Automated, transcriptome-guided annotations are consistent with manual analysis but pro-
vide an improvement in resolution and reproducibility. (C) UMAP representation of 146,110 splenocytes from a glioma xenograft model profiled with CyTOF by Dusoswa et al. 
(41). The representation is labeled with the cell populations identified by STvEA based on a panel of 11 antibodies. (D) The same representation is labeled according to 
the manually annotated clusters produced by X-shift, PhenoGraph, and SPADE. Annotation of this dataset is particularly challenging due to the small size and high 
redundancy of the antibody panel. In particular, the panel did not include any marker for B cells, which made it difficult to manually annotate this cell population. Al-
though the annotations provided by STvEA are also limited, they represent an improvement with respect to manual annotation procedures.

https://camara-lab.shinyapps.io/stvea
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sequencing of oligo-tagged antibodies, imaging of fluorescently la-
beled antibodies, and mass spectrometry of metal-tagged antibod-
ies), we developed tailored normalization schemes for CODEX and 
CITE-seq. In addition, to account for the inaccuracy introduced by 
using relatively small antibody panels to map high-dimensional single- 
cell gene expression spaces, we proposed a new clustering approach 
to identify cell populations in the CITE-seq data that can be opti-
mally mapped based on their protein expression profile. Last, we 
introduced graph-based statistical approaches for studying spatial 
relationships between the inferred patterns of gene expression in 
the mIHC images.

There are some limitations inherent to STvEA. By design, this 
approach can only annotate cell populations that are present in the 
mRNA CITE-seq reference data and that have a blueprint in the ex-
pression of profiled protein markers. Moreover, since the CITE-seq 
and mIHC datasets are generated from different specimens, environ-
mental factors and other sources of biological variability might intro-
duce small artifacts. In this regard, STvEA is complementary to 
emerging technologies for simultaneous highly multiplexed spatial 
profiling of proteins and transcripts, such as digital spatial profiling 
(DSP) (47) and deterministic barcoding in tissue for spatial omics 
sequencing (DBiT-seq) (48). These technologies perform concurrent 
spatially resolved proteomic and transcriptomic measurements in a 
tissue section and are therefore not subjected to mapping uncer-
tainties. However, STvEA also provides a handful of unique advan-
tages, such as its scalability to hundreds of thousands of cells (DSP 
can be only applied a few dozens of individual cells), its ability to 
work with submicrometer spatial resolutions (the spatial resolution 
of DBiT-seq is 20 m), and its applicability to existing datasets, of-
fering the possibility of performing new analyses of existing datasets. 
We therefore expect these tools to have complementary domains of 
applicability and be of great utility to researchers studying the cellu-
lar and molecular architecture of tissues, especially in light of the 
recent explosion of available single-cell RNA-seq and CITE-seq 
data of tissues.

METHODS
Mouse handling
All animal work was approved by and carried out in compliance 
with the animal welfare regulations defined by the University of 
Pennsylvania International Animal Care and Use Committee. 
Fifteen-week-old female BALB/cJ (stock no. 000651) mice were 
acquired from The Jackson Laboratory (Bar Harbor, ME). Mice 
were allowed to age at the University of Pennsylvania Small An-
imal Facility until they reached approximately 9 months, at which 
point they were euthanized using CO2 followed by cervical 
dislocation.

Tissue dissection and preparation of splenic single-cell 
suspensions
Spleens were removed from mice and mechanically dissociated with 
a syringe plunger over a 40-m strainer while being washed with 
5 ml of phosphate-buffered saline (PBS) and 10% fetal calf serum. 
Suspensions were centrifuged briefly to pellet cells. Red blood cells 
were lysed with an RBC lysis buffer (155 mM NH4Cl, 12 mM NaHCO3, 
and 0.1 mM EDTA) for 5 min and centrifuged again. Two million 
cells from the resulting pellet were resuspended in staining buffer 
(2% bovine serum albumin and 0.01% Tween in PBS) and sub sequently 

incubated with the antibody panel as described below (see “Single- 
cell CITE-seq library preparation and sequencing”).

CITE-seq antibody conjugation and panel preparation
Antibodies were conjugated to 5′ amino-modified, high-performance 
liquid chromatography–purified CITE-seq oligonucleiotides pur-
chased from Integrated DNA Technologies. Antibodies were con-
centrated to 1 mg/ml in PBS (pH 7.4) using 50-kDa cutoff spin 
columns (UFC505024, Millipore). Oligonucleiotides were resus-
pended to 1 mg/ml in 1× PBS (pH 7.4) and were subsequently 
cleaned as suggested in the CITE-seq protocol. Briefly, oligos were 
heated at 85°C and centrifuged at 17,000g to pellet any debris. For 
each antibody, 100 g of antibody and 100 g of oligo were conju-
gated using the Thunder-Link PLUS Oligo Conjugation System (SKU: 
425-0300, Expedeon). All conjugates were cleaned as described in 
the CITE-seq protocol and resuspended to their final concentration 
in the Antibody Resuspension Buffer provided with the kit, with the 
exception of CD16/32, which was resuspended in 1× PBS. Success-
ful conjugation was validated by running 1 g of each conjugate on 
a 2% agarose gel that was subsequently stained with Sybr Gold 
(S11494, Thermo Fisher Scientific).

To prepare the panel, 1.5 l of each antibody-oligo conjugate (ex-
cept CD16/32) were combined in PBS and centrifuged in a 50-kDa 
cutoff column. After washing, the cleaned panel was recovered by 
flipping the column upside down and centrifuging. The cleaned 
panel was resuspended in staining buffer.

Single-cell CITE-seq library preparation and sequencing
CD16/32 antibody-oligo conjugate (1.5 g) was incubated with the 
single-cell suspension for 10 min in place of the mouse seroblocker 
suggested in the CITE-seq protocol. The remaining 29 antibodies 
were then added to the cell suspension and incubated on ice. After 
incubation, cells were washed thoroughly, counted on a hemocy-
tometer, and loaded into the 10x Chromium platform (10x Genomics) 
for single-cell library preparation. Cells were loaded at 1200 cells/l. 
Only samples with >80% cell viability were used, profiling a total of 
two mouse spleens. cDNA libraries were prepared following the 
standard CITE-seq and 10x Genomics protocols. The resulting 
antibody-derived tag (ADT) and mRNA libraries were combined at 
a 1:9 ratio and sequenced with an Illumina HiSeq 2500 at the Center 
of Applied Genomics, Children’s Hospital of Philadelphia.

Multiplexed RNA FISH of splenic tissue sections
Whole spleens were removed from euthanized mice and immedi-
ately submerged in 4% paraformaldehyde (PFA) for 5.5 hours. They 
were then cryoprotected in a 30% sucrose/70% fixative solution at 
4°C until the tissue sank (approximately overnight, ~16 hours). The 
tissue was embedded in optimal cutting temperature compound 
(OCT compound, Sakura Finetek Inc., supply no. 4583) on dry ice 
and frozen at −80°C. Tissue was cut using a cryostat at −20°C into 
10-m-thick sections and frozen again at −80°C. Tissue was used 
for microscopy within 6 months of fixation and cryoprotection.

RNA FISH experiments were carried out with the RNAscope 
Multiplex Fluorescence Reagent Kit v2 (Advanced Cell Diagnostics, 
Hayward, CA, USA; catalog no. 323100). The RNAscope assay for 
fixed frozen samples was followed per the manufacturer’s protocol 
with the following two modifications: the postfix incubation was 
carried out with 4% PFA at room temperature for 90 min, and man-
ual target retrieval with a 5-min sample incubation was performed 
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instead of the steamer method. Probes for mouse Bhlhe41, Il1b, and 
Plxnb2 (Advanced Cell Diagnostics, catalog nos. 467431, 316891, 
and 459181) were hybridized with Opal 520 (Akoya Biosciences, 
catalog no. FP1487001KT), and probes for mouse Cd79a and Sema4c 
(Advanced Cell Diagnostics, 460181-C2 and 518631-C3) were hybrid-
ized with Opal 570 (Akoya Biosciences, catalog no. FP1488001KT). 
Both dyes were diluted 1:1500 with tyramide signal amplification 
buffer provided by the RNAscope kit. Channel 2 was diluted in channel 
1 1:50 as suggested in the RNAscope protocol. All incubations were 
carried out using a Stratagene PersonalHyb hybridization oven. Se-
quential sections were processed alongside the positive and negative 
controls provided by the RNAscope kit. Immuno fluorescence images 
were acquired using a Leica TCS SP8 Multiphoton confocal microscope.

Single-cell CITE-seq processing
We used Cell Ranger to demultiplex, map to the mouse reference 
genome (mm10), and count UMIs in the mRNA libraries and 
CITE-seq-Count to count UMIs in the ADT libraries. We filtered 
out cells with more than 10% UMIs from mitochondrially encoded 
genes or less than 1200 mRNA UMIs in total. We used scVI to infer 
a lower dimensional latent space for visualization and clustering of 
the mRNA expression data. scVI uses a neural network to fit a zero- 
inflated negative binomial model to represent the technical varia-
tion in scRNA-seq data and create a latent space. We inferred an 
18-dimensional latent space representation for the expression data 
of all genes expressed in at least 15 cells (training size = 0.75, num-
ber of epochs = 400, learning rate =1 × 10−3). The dimensionality of 
the latent space was empirically chosen on the basis of the stability 
of the resulting representations and was consistent with the elbow 
of the scree plot. To visualize the mRNA expression, we further 
reduced the latent space to two dimensions using Uniform Manifold 
Approximation and Projection (UMAP) with Pearson’s correlation  
distance.

Clustering and differential expression analysis of  
single-cell mRNA data
We clustered the cells in the latent space using HDBSCAN and an 
in-house consensus algorithm. Before clustering, we used UMAP to 
establish a metric in the 18-dimensional latent space, as suggested 
by the UMAP Python documentation. Then, we scanned across the 
min_cluster_size and min_sample parameters of HDBSCAN (min_
cluster_size ∈{5,9,13,17}, min_sample ∈{10,13,16,19,22,25,28,31,34,37}) 
and used cluster-based similarity partitioning to build a con-
sensus matrix

    M  ij   =  ∑ s ∈ S      I  ij  ,      I  ij   =  {     
0, ∣ c  si   =  c  sj     

   1, ∣otherwise
    

where S is the set of cluster assignments for all parameter configu-
rations that gave rise to clusters with a silhouette score > 0.114, and 
csi is the cluster ID of cell i in s. For this threshold, about 20% of the 
initializations of the UMAP metric and parameter scan do not pro-
duce any clusters with a satisfactory silhouette score. In this case, 
the UMAP and parameter scan were reinitialized with a new ran-
dom seed. We used the above consensus matrix as a dissimilarity 
matrix among cells to produce a consensus clustering using average 
linkage agglomerative clustering (inconsistent value ≤0.1). We ran 
edgeR’s general linear model on the mRNA count data to identify 
differentially expressed genes between each cluster and all the other 
cells (fold change threshold > 2).

Laplacian score analysis of single-cell mRNA data
We used the Laplacian score to more accurately annotate the mRNA 
data by identifying genes that have expression patterns within a 
cluster that cannot be explained by random variation. For each clus-
ter, we built a graph where nodes represent cells and edges connect 
pairs of cells that are within ɛ distance, as defined by Pearson’s cor-
relation in the latent space. We took ɛ to be given by the median 
pairwise distance among cells. For large clusters, we randomly sam-
pled 1000 cells. The Laplacian score ℓ of a gene with expression 
vector f is defined as

  ℓ =      ̃  f     T  ⋅ L ⋅   ̃  f   ─ 
   ̃  f     T  ⋅ D ⋅   ̃  f  

    

where
     ̃  f   = f −   

 f   T  ⋅ D ⋅ 1
 ─ 

 1   T  ⋅ D ⋅ 1
   1,  D = diag(A ⋅ 1 ) ,  1 =  [1, … , 1]   T ,  L = D − A   

and A is the adjacency matrix of the graph. We computed the Laplacian 
score of the log(1 + TPM ∙ 10−2) expression values for all genes ex-
pressed in at least 2% and at most 90% of the cells. To assess the 
significance of the Laplacian score as compared to random varia-
tion, we performed a permutation test by randomizing the cell la-
bels 1000 times.

Normalization of ADT libraries
We fit the distribution of ADT counts for each antibody with a 
two-component negative binomial mixture model

    

Prob( s  h   = backg . ) ~Bernoulli( b  h  )

      Prob(r =  k  hi   ∣ s  h   = backg . ) ~NB (    k  hi  ;  r h  (1) ,  p h  (1)  )        
 Prob(r =  k  hi   ∣ s  h   = signal ) ~NB (    k  hi  ;  r h  (2) ,  p h  (2)  )   

    

where khi represents the observed number of ADT UMIs for antigen 
h in cell i, the mixing parameter bh represents the probability of a 
measurement of antigen h actually coming from the background, 
and the signal component is defined as the component of the mix-
ture with the highest median. Upon fitting the model using least-
squares estimation, we filtered out the background component of 
the data by considering the matrix

    q hi  
CITEseq  ≡ Prob(r ≤  k  hi   |  s  h   ∈ signal )   ·  w  i     

where the weights wi are introduced to account for differences in 
the total number of ADT UMIs across cells

   w  i   ≡   1 ─ 
 ∑ g    k  gi   

    

These weights can be justified by noting that Prob(r ≤ khi ∣sh ∈ 
signal) depends linearly on the total number of ADTs except at the 
tails of the distribution.

We performed batch correction on the   q hi  
CITEseq   values using the 

mutual nearest neighbors approach of Haghverdi et al. (13) and res-
caled the resulting values to be in the [0,1] interval.

We did not consider CD169  in our analysis as it was showing 
expression in cell populations other than macrophages, possibly re-
flecting a lack of affinity of the conjugated antibody. In addition, the 
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unimodal distribution of ERTR7 expression values was consistent 
with the fact that we did not capture stromal cells in our CITE-seq 
dataset (possibly because of the use of a nonenzymatic dissociation 
procedure). We therefore assigned all cells to the background com-
ponent and set   q ERTR7,i  

CITEseq  = 0 .

Processing of CODEX data
We considered the segmented and spillover-compensated CODEX 
data of the three wild-type mice profiled by Goltsev et al. (2). We 
filtered out artifacts using a similar gating strategy to that of the 
CODEX protocol. We removed cells smaller than 1000 or larger 
than 25,000 voxels. We then identified maximum and minimum 
cutoffs for blank channels by plotting the expression of one blank 
channel versus another, as described in the CODEX protocol. We 
removed cells with intensities above the upper cutoffs in any of the 
blank channels or below the lower cutoffs in all of the blank chan-
nels. Our cutoffs fell around the 99.5 and 0.2 percentiles, respectively. 
However, we checked that small variations of the specific values did 
not greatly affect the number of cells removed.

Normalization of CODEX data
We normalized the processed CODEX data by the total levels in each cell

     ̂  M    hi   =    M  hi   ─ 
 ∑ g    M  gi   

    

where Mhi is the level of antigen h in cell i before normalization. 
After this process, antigen levels are well approximated by a two- 
component Gaussian mixture model

    

Prob( s  h   = backg . ) ~Bernoulli( a  h  )

      Prob(r =    ̂  M    hi   ∣ s  h   = backg . ) ~N (      ̂  M    hi  ;   h  (1) ,   h  (1)  )        
 Prob(r =    ̂  M    hi   ∣ s  h   = signal ) ~N (      ̂  M    hi  ;   h  (2) ,   h  (2)  )   

    

where the Gaussian with the highest median corresponds to the sig-
nal component, and the mixing parameter ah represents the proba-
bility of a measurement of antigen h actually coming from the 
background. Upon fitting the model to the data using the expectation- 
maximization algorithm for maximum likelihood estimation, we 
filtered out the background component of the data by considering 
the probabilities

   p  hi   ≡ Prob(r ≤    ̂  M    hi   |  s  h   ∈ signal)  

in subsequent analysis.

Mapping of CODEX data into CITE-seq
We mapped the inferred CODEX probabilities p into the CITE-seq 
space qCITEseq using a modified version of the general strategy pro-
posed by Stuart et al. (14). Specifically, we identified a set of anchors 
using a mutual nearest neighbors approach with kanchor = 20. We 
found the nearest neighbors using Euclidean distance in a common 
29-dimensional space obtained by canonical correlation analysis 
(CCA). We then filtered out anchors that do not preserve the struc-
ture of the original protein space. For that purpose, we kept only 
those for which the CODEX cell in the anchor was within the kfilter = 
100 nearest CODEX cells to the CITE-seq cell in the anchor, or vice 
versa, as measured by Pearson’s correlation distance between p 
and qCITEseq.

Cells in the CODEX dataset were aligned into the CITE-seq pro-
tein space using the following transformation

    q hi  
CODEX  ≡  p  hi   +   ∑ 

( j  1  , j  2  )∈ A  i  
    (    q  hj  1    

CITEseq  −  p   hj  2     )   ⋅  w  ( j  1  , j  2  ),i     

where 𝒜i is the set of kweight = 100 anchors (j1, j2) with smallest Pear-
son’s correlation distance between vectors     → p     j  2      and     → p    i    (with compo-
nents phj2 and phi, respectively), and w(j1, j2), i are weights specifying 
the effect size of anchor (j1, j2) on the CODEX cell i based on both 
mRNA and protein data

   w  ( j  1  , j  2  ),i   =   1 −  e   − d  i j  2     s   j  1   j  2    /c   ─────────────  
 ∑ ( j  1  , j  2  )∈ A  i       1 −  e   − d  i j  2     s   j  1   j  2    /c 

    

In this equation, dij2 denotes Pearson’s correlation distance be-
tween the vectors     → p    i    and     → p     j  2     , and c is a parameter specifying the 
width of the Gaussian kernel. The number of shared neighbors be-
tween the two anchor cells, sj1j2, is defined as

    s   j  1   j  2     =  |    N   j  1    
CITEseq  ∩  N   j  2    

CITEseq  |   +  |    N   j  1    
CODEX  ∩  N   j  2    

CODEX  |     

where   N   j  1    
CITEseq   is the set of nearest CITE-seq cells to cell j1 in the 

mRNA latent space,   N   j  2    
CITEseq   is the set of nearest CITE-seq cells to 

cell j2 in the CCA space,   N   j  1    
CODEX   is the set of nearest CODEX cells 

to cell j1 in the CCA space, and   N   j  2    
CODEX   is the set of nearest CODEX 

cells to cell j2 in the CCA space. As before, distances in the mRNA 
and CCA spaces were measured using Pearson’s correlation and 
Euclidean distance, respectively. In all cases, the number of nearest 
neighbors was chosen to be kscore = 80. The values sj1j2 were scaled 
such that the 0.9 quantile is at 1 and the 0.01 quantile is at 0, and 
values above or below these quantiles were set to 1 or 0, respectively.

Since randomly sampled sections of the CODEX dataset can be 
mapped independently and concatenated later, we divided the CODEX 
dataset into eight random sections of the same size (9900 cells) to 
provide a speed improvement for the nearest neighbor calculations.

To be able to transfer quantities between the CITE-seq and 
CODEX datasets, we then built a ℳCITEseq→CODEX transfer matrix

    ℳ ij  
CITEseq→CODEX  ≡  

⎧
 

⎪
 ⎨ 

⎪
 

⎩
   
   e   −   ̃  d    ij  /c  ───────────  
 ∑ r : j∈ N r  

CODEX     e   −   ̃  d    rj  /c  
   iff j ∈  N  i  

CODEX 
   

0 iff j ∉  N  i  
CODEX 

     

where     ~ d    ij    denotes Pearson’s correlation distance between the vec-
tors     → q    i    and     → q    j    (with components   q hi  

CITEseq   and   q hj  
CODEX  , respectively), 

and c is a parameter that specifies the width of the Gaussian kernel. 
The set   N  i  

CODEX   contains the nearest CODEX cells to the CITE-seq 
cell i as measured by     ~ d    ij   , where    k  transfer   ≡  |    N  i  

CODEX  |   = 0.002 ×  
n  CODEX    , and nCODEX is the number of cells in the CODEX dataset. 
These matrices can be used to transfer quantities across the two 
datasets. For instance, the inferred mRNA expression level of gene 
m in the CODEX cell j is given by

   E jm  CODEX  =  ∑ 
i
      ℳ ij  CITEseq→CODEX   E im  CITEseq   

where ECITEseq denotes the mRNA expression matrix in the CITE-
seq dataset. Similarly, the mRNA cell populations can be mapped to 
the CODEX data using
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   C jc  CODEX  =  ∑ 
i
      ℳ ij  CITEseq→CODEX   C ic  

CITEseq   

where the sum runs over all cells in the CITE-seq dataset and   
C ic  

CITEseq   is the indicator function of cluster c. Note that because of 
the mapping uncertainties, the resulting feature vector is no longer 
a binary vector. To assess mapping uncertainties (Fig. 3C), we com-
puted the Pearson’s correlation coefficient of the vectors   C jc  CODEX   
that result from restricting the above sum to cells in each of the two 
mice profiled with CITE-seq.

Parameter selection
For different values of kanchor, kfilter, and kscore, we evaluated the per-
formance of the algorithm to accurately map a set of “gold stan-
dard” cell populations. The populations we considered were B cells, 
T cells, NK cells, dendritic cells, neutrophils, plasma cells, and red 
pulp macrophages, as they were general enough to be clearly identi-
fiable in both datasets by clustering and the expression of specific 
markers. We used the Louvain community detection algorithm in a 
k = 49 nearest neighbor graph for clustering the CODEX protein 
data. To quantify the performance of the mapping, we defined the 
quality scores of a set of anchors 𝒜 as

 
   

 Q A  u   =   |  A |   u  −1    ∑ 
(i,j)∈A

     z (i,j)  
u   

       z (i,j)  
anchor  ≡  z (i,j)  

filter  ≡  {   
1, ∣ c  i   =  c  j   ∈ C

   
0, ∣otherwise

  ,   |A|  anchor   ≡  |A|  filter   ≡ |A|       

  z (i,j)  
score  ≡  {   

 s  ij  , ∣ c  i   =  c  j   ∈ C
   

0, ∣otherwise
  ,   |A|  score   ≡   ∑ 

(i,j)∈A
     s  ij   

    

where ci is the cell type of cell i and 𝒞 is the set of gold standard 
populations. We sequentially chose the values of kanchor, kfilter, and 
kscore that maximized these quality scores.

We assessed the behavior of the STvEA mapping with varying 
values of kanchor, kfilter, kscore, kweight, and ktransfer by measuring how 
well annotations of certain cell populations aligned with cells highly 
expressing the corresponding marker. For each value of k, we com-
puted the mapped cluster matrix   C jc  CODEX   of the CITE-seq cell types 
in CODEX. We compared the mapped B-2 cell population to CODEX 
cells with normalized B220 expression > 0.7, the T cell population to 
normalized TCR expression > 0.8, the NK cell population to nor-
malized NKp46 expression > 0.9, and the neutrophil population to 
normalized Ly6G expression > 0.8. We then computed the sensitiv-
ity and specificity of each of these true thresholded populations be-
ing positively identified by the STvEA mapping.

Quantification of mapping uncertainties and stability
To study the consistency between CODEX cells that are mapped by 
the same CITE-seq cell, we randomly selected ktransfer pairs of cells 
among the CODEX cells that map to the same CITE-seq cell and 
calculated Person’s correlation between antigen levels in each pair 
of cells. The mean value of the correlation coefficients was taken to 
represent the mapping uncertainty of each CITE-seq cell, which 
was shown on the UMAP in fig. S7. To compare these correlation 
coefficients with the correlation between two random pairs of CODEX 
cells, we considered 7097 random sets of ktransfer CODEX cells and 
computed the correlation coefficients using the same method. To 
assess localized uncertainty in the mapping algorithm, we defined a 
mapping score for each CODEX cell as    c  j   = max (    C jc  CODEX  )     and 

plotted these scores on the UMAP representation of the CODEX 
protein space (fig. S10). To study how the size of the CITE-seq data-
set affects the performance of STvEA, we randomly sampled 5000, 
2500, and 1000 cells from the original CITE-seq dataset and ran 
STvEA using the same default parameters.

To assess the effect of antibody panel selection on STvEA map-
ping, we used the glmnet R package (49) to perform multinomial 
logistic lasso regression on the CITE-seq mRNA clusters with re-
spect to the protein expression levels. We identified values of the 
regularization parameter  for which a subset of n = 25,21, …,13,9 
antibodies had nonzero coefficient and ran STvEA truncating the 
antibody panel to each of these subsets. The stability of STvEA was 
evaluated for each antibody panel by computing the Pearson’s cor-
relation coefficient between the vectors of cell population assign-
ments,   C jc  CODEX  , for each CODEX cell when using the full and a 
reduced antibody panel (fig. S11).

Optimized annotation of cell populations
To annotate mIHC images with STvEA while accounting for uncer-
tainty in the mapping algorithm, we sought to identify a clustering 
of the CITE-seq cells that allows for the highest resolution in num-
ber of clusters while maintaining a good modularity of the clusters 
upon mapping into the CODEX protein expression space. Cluster-
ing the CITE-seq mRNA data without taking into account their 
mapping onto the CODEX images can lead to clusters that cannot 
be accurately mapped based on the profiled proteins, as well as clus-
ters that could be further divided into pieces that can be still accu-
rately mapped. It is therefore natural to consider a hierarchical 
clustering approach where cluster splits are only kept if they are 
mapped into independent clusters in the CODEX protein expres-
sion space. We started from the simplified hierarchical tree of an 
HDSBCAN clustering that passed the silhouette threshold in the 
original CITE-seq consensus clustering (min_cluster_size = 17, 
min_samples  =  34). For computational simplicity, each CODEX 
cell was assigned to its closest CITE-seq neighbor in the shared pro-
tein space q. Each branch of the hierarchical tree could then be eas-
ily mapped onto CODEX. Since HDBSCAN allows some cells to 
remain unclustered, each bifurcation in the tree may have some 
“singlets” that are contained in the parent cluster but not the child 
clusters. To fill out the tree, we imputed these singlets into the closest 
child cluster based on Pearson’s correlation distance in the protein 
space. We then implemented an agglomerative clustering approach 
based on this tree by computing the modularity in the CODEX pro-
tein expression space. We considered the k = 50 nearest neighbor 
graph generated by Pearson’s correlation distance between the pro-
tein expression profiles of the CODEX cells. For each bifurcation in 
the tree, we computed the subgraph spanned by the cells in the two 
clusters involved in the bifurcation and then computed the Newman- 
Girvan modularity (50) (also known as Louvain modularity) of the 
clusters in this subgraph. Starting at the leaves of the tree, two child 
clusters were merged into their parent if the modularity of the bifur-
cation was less than a quality threshold tq or if the modularities be-
tween the cells in each child cluster versus all other cells in the 
CODEX dataset were less than a sparsity threshold ts (tq = 0.1, ts = 
0.003). In cases where a single-cluster branch in a bifurcation did not 
pass the sparsity threshold, the cells from this cluster where merged 
into sibling clusters. Similarly, cells of a single-cluster branch were 
merged into sibling clusters if this represented an increase in mod-
ularity larger than an imputation threshold ti (ti = 5%). After this 
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process, we smoothened the cell assignments in CODEX based on 
each cell’s neighbors. For each CODEX cell x, we defined a neigh-
borhood of other cells Nx within a protein expression correlation 
threshold (Pearson > 0.9). The cell assignment of a cell x is then 
defined as

    c  x  ′   = argmax 
(

  (ϵ +  C  x   ) ×  
(

  ϵ +   ∑ 
y∈ N  x  

     C  y   )   
)

     

where Cx is the indicator function of the cluster of x, and ϵ is a con-
stant to control the contribution of neighboring cells (ϵ = 0.01).

Spatial relationship among cell populations
To assess the spatial relationship between two feature vectors f and 
g defined over the cells in the CODEX dataset, we built a k nearest 
neighbor graph using Euclidean distance in the CODEX spatial di-
mensions. We then introduced the adjacency score, defined as

  D(f, g ) =  f   T  ⋅ A ⋅ g  

where A is the adjacency matrix of the nearest neighbor graph. This 
score takes high values when the features take high values in adja-
cent cells. The scale of the interactions is set by the magnitude of the 
nearest neighbor parameter k. Features that we have used in this 
paper include cell population assignments   C jc  CODEX   (to assess wheth-
er two cell populations colocalize spatially) and mapped gene ex-
pression   E jm  CODEX   (to assess whether genes encoding for ligands and 
receptors are expressed in adjacent cells). In our analyses, we used 
k = 2 and 29, corresponding to median distances of 5 and 13 m, 
respectively. The significance of this score was assessed using a null 
distribution built by permuting the cell IDs. For mutually exclusive 
binary features (such as cluster assignments), the null distribution 
can be computed analytically in terms of the hypergeometric distri-
bution Hypergeom(u; N, K, n),

  Prob(D(f, g ) = u ) ~Hypergeom(u; v(v − 1 ) , 2( f   T  ⋅ I ) ( g   T  ⋅ I ) , m)  

where v and m are the number of nodes and edges in the nearest 
neighbor graph, respectively, and I is the identity matrix. For non-
binary features, we did not find a closed form for the null distribution, 
so we approximated it using a normal distribution whose parame-
ters were estimated from 1000 random permutations. We controlled 
the false discovery rate for multiple hypothesis testing using the 
Benjamini-Hochberg q value procedure.

To account for the effect of mapping uncertainties on the adja-
cency score of cell populations, we also computed the overlap score, 
fT ∙ g, and assessed its significance by randomly permuting the en-
tries of one of the feature vectors. In addition, we evaluated the 
Pearson’s correlation of the adjacency score q values across the three 
mice profiled with CODEX (Fig. 4B).

We compared these results to those of Giotto’s cellProximityEnrichment 
function, which assesses the proximity of cell types by comparing 
the observed number of shared edges in the network to the expected 
number. We computed the Benjamini-Hochberg q value using Giotto 
on a k nearest neighbor network with the same value of k as our 
adjacency analysis and all other default parameter values.

Identification of paracrine interactions
We used CellPhoneDB (40) to identify significant ligand-receptor 
pairs within the CITE-seq mRNA expression data. CellPhoneDB 

identifies genes coding for ligand and receptor pairs that are differ-
entially expressed in one or more cell populations using a curated 
database of ligands and receptors. Since CellPhoneDB only consid-
ers human gene pairs, we generated a mouse ortholog database of 
ligands and receptors using Ensembl (version 96) (51). For simplicity, 
this analysis was restricted to only those genes that have a unique 
ortholog. The 587 significant interactions (CellPhoneDB P ≤ 0.05) 
identified by this analysis were then filtered using the adjacency score 
approach described above (see the “Spatial relationship among cell 
populations” section) with k = 29 (median distance, 13 m) to iden-
tify pairs of genes significantly expressed in adjacent cells. We re-
stricted the adjacency score test to only the pairs of cell populations 
identified by CellPhoneDB by setting the expression of each gene to 
0 outside of the cell population of interest. The expression of any 
complexes output by CellPhoneDB was calculated as the sum of the 
expression of their component genes.

Multiplexed single-molecule RNA FISH was performed as de-
scribed above (see the “Multiplexed RNA FISH of splenic tissue sec-
tions” section) using formalin-fixed paraffin-embedded tissue sections, 
and images were analyzed using ImageJ v2.1.0 (52). We segmented 
the cells and identified the follicles using tissue autofluorescence. 
To that end, we used a Gaussian filter ( = 2) to despeckle the images, 
and low-intensity regions corresponding to cell nuclei were identi-
fied using an adaptive local threshold based on the median intensity 
in a 50-pixel radial neighborhood (parameter_1 = 0). We filled in 
holes (iterations  =  1, count  =  2) and segmented nuclei using the 
watershed algorithm. Nuclei were defined as regions with an area 
between 100 and 2500 pixels and a circularity between 0.2 and 1.0. 
Segmented nuclei with a median pixel intensity above 50 in channel 
1 and 30  in channel 2, corresponding to red blood cells, were re-
moved. The remaining segmented nuclei were added to the ImageJ 
ROI manager and used to tally the number of probes in each nucleus. 
To identify RNA probes, we used a Gaussian filter ( = 2) to despeckle 
the images and a local maxima function (prominence = 30) to dis-
tinguish the probes from the background. Probes in channels 1 and 
3 separated by less than 15 pixels were filtered out. The adjacency 
score was run as described above (see the “Spatial relationship among 
cell populations” section).

Analysis of CyTOF data
We applied STvEA to the CyTOF datasets of Goltsev et al. (2) and 
Dusoswa et al. (41). The dataset of Goltsev et al. (2) consists of 
124,277 cells in total and has 22 antibodies in common with our 
CITE-seq panel. To preprocess these data, we first removed outlier 
cells that express fewer than 500 total counts in the 22 antibodies or 
are within the top 2% of cells for total counts. We applied an arcsinh 
transform (cofactor 5) to the remaining 114,568 cells and scaled the 
resulting values to the interval [0,1]. We use STvEA as described 
above to map our CITE-seq atlas into this dataset. We then applied 
the optimized clustering approach described above (tq = 0.2, ts = 
0.001, ti = 3.5%) to identify 16 clusters in the CyTOF dataset associ-
ated with 13 phenotypically different cell populations in the CITE-  
seq atlas.

For the dataset of Dusoswa et al. (41), we considered all 146,119 
cells passing the “Live singlets” gate from the MGL02_Spleen sam-
ple. We removed cells with zero expression in the 11 antibodies 
considered in our analysis, resulting in 146,110 cells in total. We 
scaled the arcsinh transformed (cofactor 5) values to the interval 
[0,1] and applied STvEA as described above to map our CITE-seq 
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atlas onto this dataset. We used the optimized clustering approach 
described above (tq = 0.25, ts = 0.001, ti = 1%) to identify 23 clusters 
in the CyTOF dataset associated with eight phenotypically different 
cell populations in the CITE-seq atlas.

Annotation of X-shift, SPADE, and PhenoGraph clusters 
using STvEA
We used the implementations of these algorithms in the VorteX Java 
software (https://github.com/nolanlab/vortex), the PhenoGraph 
Python package (https://github.com/jacoblevine/PhenoGraph), and 
the SPADE R package (https://github.com/nolanlab/spade). For all 
datasets, we ran the algorithms using default parameters. We only 
considered antibodies that were also present in our CITE-seq panel 
so that any difference between the automated annotations provided 
by STvEA and the manual annotations were caused by the method 
and not by differences in the input data. For each dataset, we manually 
annotated the clusters produced by XShift (VorteX), PhenoGraph, 
and SPADE using the same biological terms and associated expres-
sion markers as in the original publication of the dataset. We merged 
identically annotated clusters and visualized the annotations using a 
UMAP representation of the cytometry data (Fig. 6 and fig. S13). To 
create the pie chart graphs in fig. S14, we started with the output 
graph produced by SPADE, or we created one from the X-shift and 
PhenoGraph clusters by computing a minimum spanning tree be-
tween cluster centroids using the Pearson’s correlation distance be-
tween the protein expression profiles. For each node in the graph, 
we identified the proportion of cells from each mapped CITE-seq 
cluster (see the “Optimized annotation of cell populations” section 
above) in that node and visualized those proportions as a pie chart.

Online database
The complete results of our analysis can be interactively queried 
through a web application hosted at the URL https://camara-lab.
shinyapps.io/stvea.

STvEA software
All algorithms have been implemented and documented in an R 
package. The package can be downloaded from the URL https://
github.com/CamaraLab/STvEA.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/10/eabc5464/DC1

View/request a protocol for this paper from Bio-protocol.
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