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Physics of Majorana modes in 
interacting helical liquid
Sujit Sarkar

As an attempt to understand and search for the existence of Majorana zero mode, we study the 
topological quantum phase transition and also the nature of this transition in helical liquid system, 
which appears in different physical systems. We present Majorana-Ising transition along with the 
phase boundary in the presence of interaction. We show the appearance of Majorana mode under the 
renormalization of the parameters of the system and also the topological protection of it. We present 
the length scale dependent condition for the appearance of Majorana edge state and also the absence 
of edge state for a certain regime of parameter space.

In recent years, Majorana fermion physics and the topological state of matter have been the focus of intense 
research in condensed matter physics1–4. Experimental observation of Majorana zero mode is not unambiguous 
identification of Majorana mode5–10. Therefore, the subject of Majorana mode remains open.

This field of physics initiates several ideas and routes to understand and predict the existence of Majorana zero 
mode. Thus this field motivates us to search for and find the Majorana zero mode physics in interacting helical 
liquid, which appears in different quantum many body systems11–32. The physics of helical liquid is quite interest-
ing13. It is generally originated from the quantum spin Hall effect in a system with or without Landau levels. In the 
quantum spin Hall effect, the left movers in the edge are connected with the down spin and the right movers with 
the up spin and the transport process is quantized. This physics is generally termed as a “helical liquid” which 
describes the connection between the spin and momentum. It does not break the time reversal invariance which 
occurs in chiral Luttinger liquid. One important consequence of the topological insulator/helical spin liquid sys-
tem is the existence of edge state, which is the gapless excitation and remains the same in presence of interactions.

In this study, we focus on the Majorana-Ising transition and the existence of Majorana edge state under the 
renormalization of proximity induced superconductivity (Δ ) and applied magnetic field (B) in helical liquid 
system. The other goal of this study is to find out the length scale dependent condition for the appearance of 
Majorana fermion mode physics in helical liquid systems especially the absence of zero energy Majorana fermion 
mode in the deep repulsive regime of interactions, which are entirely new studies and results in the literature for 
this system.

One can write the Hamiltonian for the low energy collective excitation in one dimensional system as
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where ψR↑(x) and ψL↓(x) are the field operators for spin up right moving and spin down left moving electrons 
respectively. The term within the parenthesis are the respective Kramer’s pair. One of these Kramer’s pairs is in the 
upper edge and the other one in the lower edge of the system. The total fermionic field of this system is, 
ψ ψ ψ= +↑

−
↓x e e( ) ik x

R
ik x

L
F F . This is the most basic picture of a helical liquid, where the spin is determined by 

the direction of the particle.
The non-interacting part of the helical liquid for a single edge in terms of fermionic field is 
ψ µ ψ ψ µ ψ= ∂ − + − ∂ −↓ ↓ ↑ ↑

† †H x v i x x v i x( )( ) ( ) ( )( ) ( )L F x L R F x R01 . We use H01 during the derivation of 
Renormalization Group equations (please see the method section). The first two terms are from the H01. The rela-
tion between H0 and H01 is the following: H0 represent two Kramer’s pairs for the both upper and lower edge of the 
system, where H01 represent the single Kramer’s pair for a single edge of this two dimensional system. The physics 
is the same for the both edge of the topological insulator. Therefore, we consider a single edge Hamiltonian H01.
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Here we consider a low-dimensional quantum many body system of topological insulator in the proximity of 
s-wave superconductor and an external magnetic field along the edge of this system. The additional part in the 
Hamiltonian is

δ ψ ψ ψ ψ= ∆ + + . .↓ ↑ ↓ ↑
†H x x B x x h c( ) ( ) ( ) ( ) , (2)L R L R

where Δ  is the proximity induced superconducting gap and B is the applied magnetic field along the edge of the 
sample. It introduces the gap in the spectrum of the edge state. It causes a spin flip process which requires one to 
flip the momentum and hence to exchange a right movers with a left mover. The applied magnetic field align the 
physical spin in the direction parallel to the magnetic field16,23.

Now we consider the generic interaction, considering the two particles having forward and umklapp scattering as

ψ ψ ψ ψ= .↓ ↓ ↑ ↑
† †H g x x x x( ) ( ) ( ) ( ) (3)fw L L R R2

The analytical expression for umklapp in a conventional form can be expressed as23.

ψ ψ ψ ψ= ∂ ∂ + . .↓ ↓ ↑ ↑
† †H g x x x x h c( ) ( ) ( ) ( ) (4)um u L x L R x R

Therefore, the total Hamiltonian of the system is H =  H0 +  Hfw +  Hum +  δH. Now we can write the above 
Hamiltonian as HXYZ =  ∑ iHi (up to a constant)16, where

∑ µ= − + − .
α
α
α α
+H J S S B S[ ( 1) ]

(5)i i i
i

i
z

1

and Jx,y =  J ±  Δ  >  0, J =  vF and Jz >  0.
The bosonized form of this model Hamiltonian is (for detail, please see method).
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where θ(x) and φ(x) are the dual fields and K is the Luttinger liquid parameter of the system. The first and second 
term of the above equation are the bosonized version of Hamiltonian H01. The general interactions of this model 
Hamiltonian are the same as that given in ref. 16.

The Abelian bosonization study of this model Hamiltonian16 is not physically consistent for the following 
reason: It is very clear from the continuum field theoretical study that our model Hamiltonian contains two 
strongly relevant and mutually nonlocal perturbations over the Gaussian (critical) theory. In such a situation, 
the strong coupling fixed point is usually determined by the most relevant perturbation whose amplitude grows 
up according to its Gaussian scaling dimensions and it is not much affected by the less relevant coupling terms. 
However, this is not the general rule if the two operators exclude each other. In this case, the interplay between the 
two competing relevant operators (here Δ  and B are the two competing relevant operators, which are related with 
dual fields θ(x) and φ(x)) can produce a novel quantum phase transition through a critical point or a critical line. 
Therefore, the present study based on RG equations will give us the appropriate results for the topological state of 
the system over the previous studies16,28.

Results
Majorana-Ising transition and nature of phase transition. Our starting Hamiltonian is H2 =  H0 +  δH. 
We recast the fermionic field in terms of the Majorana fields as, ψ χ χ= +↓ x i x x( ) ( ( ) ( ))L

1
2 1 2  and 

ψ χ χ= +↑  
x x i x( ) ( ( ) ( ))R

1
2 1 2 . The total Hamiltonian, H =  H0 +  δH, becomes

∑ χ χ χ χ χ χ=
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( ) ( )
2

( ) ( ) ( ) ,
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x i i i i
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where = ∆ m B1,2  (here Δ  >  0). At Δ  =  B, one of the two Majorana fermion modes becomes gapless which is 
the signature of bulk Majorana-Ising quantum phase transition.

It is well known that the critical theory is invariant under the rescaling. Then the singular part of the free 
energy density satisfies the following scaling relations.

fs[Δ , B] =  e−2lfs[e(2−1/K)lΔ , e(2−K)lB]. The scale l can be fixed from the following analytical relation, 
∆ =− ⁎

e 1K l(2 1/ ) . Finally, after few steps of calculation, we arrive at the following relation: fs[Δ , B] =  Δ 2/(2−1/K)fs[1, 
Δ −(2−K)/(2−1/K)B] and the equation for phase transition is ∆− − − ~B 1K K(2 )/(2 1/ ) . The phase boundary between these 
two quantum phases can be obtained by using the above relation. When K =  1(non-interacting case), the phase 
boundary relation based on the exact scaling relation is Δ  =  B. The authors of ref. 32 have done a very time rele-
vant study for the prediction of phase boundaries for more general interactions in superconducting wire. They 
have found that the phase boundaries between the topological and non-topological phases, which are always 
straight lines. In the present study, based on the exact scaling relation, we observe that the separation between the 
topological and non-topological phase is straight line only for the non-interacting (K =  1) case otherwise the 
phase boundaries for repulsive and attractive interactions are curved as guided by the exact scaling relation. This 
exact scaling relation between the Δ , B and K is the non-linear one. Phase boundaries shift due to the presence of 
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repulsive (K <  1) and attractive (K >  1) interactions on this phase diagram, which is presented in Fig. 1. It reveals 
from this study that the topological phase region suppress for the repulsive interactions and favors for the attrac-
tive interactions.

Now we explain physically about the origin of the shifting of the phase boundaries in presence of interactions 
from the non-interacting one. Generally, one can consider the interaction between the Majorana fermions as 

χ χ χ χ~H int 1 1 2 2. In the mean field level, one can consider the following approximation, χ χ χ χ→2 2 2 2 . Thus it 
is clear from the mean-field analysis that one can absorb the effect of interaction as a redefined mass in the system 
(third term of equation 7) which shifts the phase boundary. Apart from this study on the phase boundaries, we 
also study the nature of the quantum phase transitions (please see below). This detail study based on exact scaling 
relation for the phase boundaries is absent in the literature for this model Hamiltonian System.

Nature of Quantum Phase Transition. To find the nature of quantum phases during the topological quantum 
phase transition, we do a toy model analysis. We consider the simple case when the umklapp term is absent at the 
point Δ  =  J. Then the complete Hamiltonian reduces to transverse Ising model as = ∆ −+H s s Bs2i i

x
i

x
i
z

1 . When 
B <  Δ , the discrete Ising symmetry is spontaneously broken which yields a doubly degenerate ordered phase. 
Then it induces the superconducting gap state which forms the Majorana fermion mode excitations at the edge of 
the system. For B >  Δ , the magnetic field induces the ferromagnetic state along the direction of the magnetic field.

Renormalization Group study to predict the Majorana mode. Figure 2, consists of two panels, the 
left one (Fig. 2A) is for K =  1, and the right one (Fig. 2B) is for K =  0.2. In each panel, we present the RG flow dia-
gram for Δ  with B. It reveals from our study of left panel (Fig. 2A, K =  1) that both the couplings (Δ  and B) are 
flowing off to the strong coupling phase. Here both the coupling terms are relevant. In the right panel (Fig. 2B, 
K =  0.2), i.e, when the system is in the strongly repulsive regime, our study reveals that the coupling term,  
Δ  is flowing off to zero. In this case there is no existence of Majorana fermion mode in the system. The magnetic field 
induced ferromagnetic phase dictated by the direction of magnetic field is the only phase that exists in the system23.
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Figure 1. Phase boundary between the two different phases Δ and B. The color blue, magenta, red, green 
and yellow are for K =  1, 0.55, 0.75, 1.5, 1.2 respectively.

Figure 2. RG flow of Δ with B, in the absence of umklapp scattering. The left panel (Fig. 2A) is for K =  1 and 
the right panel (Fig. 2B) is for K =  0.2.
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Therefore, it is clear from the study of Fig. 2, that the Majorana fermion mode disappears only in the presence 
of very strong repulsion. Otherwise, the Majorana fermion mode is robust, i.e., topologically protected from weak 
and intermediate values of strong repulsion.

In Fig. 3, we present the result of the variation of Δ  with B in the presence of umklapp scattering. This figure 
consist of two panels. In the left panel (Fig. 3A), K =  1 and gu =  0.2 and the right panel (Fig. 3B) K =  0.45 and 
gu =  0.4. The behavior of the RG flow is the same for each panel as that of the absence of gu. Therefore, it is clear 
from this study that the Majorana zero mode is robust, i.e., topologically protected in the presence of umklapp 
scattering due to their topological protection. The authors of ref. 16, have studied the effect of umklapp scattering 
by using the Abelian bosonization method. But the present Hamiltonian consists of the three sine-Gordon cou-
pling terms (last three terms of eq. 6) not the single one. At the same time they are the functions of φ(x) and θ(x). 
The fields φ(x) and θ(x) are the mutually exclusive, i.e., the minima of one is not the minima of other. As we have 
already discussed (after eq. 6) that for these case to get the correct physical pictures one has to be done RG study. 
Thus the results what we obtain based on RG analysis is more correct and physical.

Length scale dependent Majorana edge state. The Majorana edge state survives at the edge of the 
system if it satisfies the condition for a system with length L as ∆

L 1
v

, where v is the velocity of collective mode 
of system and Δ  is superconducting gap. Otherwise, there is no Majorana edge state, i.e., the topological state of 
the system is absent30,31.

Now we discuss physical origin for the condition of appearance of Majorana fermion edge mode very briefly: 
In a nanowire or at the edge of topological insulator, where the helical spin liquid form in a edge, the Majorana 
edge state appears as the particle-hole bound state at the both end of the wire or edge with localization length 
ξ

∆
~( )v . The overlap of the Majorana wave functions is proportional to e−L/ξ. The existence of the Majorana fer-

mion zero mode requires that the wave function overlap should be vanishingly small, that finally implies the 
condition which we have mentioned above.

In Fig. 4, we present the results of the study of Δ , B and K with the length scale (l) and three initials values of 
Δ  =  0.1, 0.2, 0.4 with the initial value of B =  0.2. These values are same as the values of above three curves. The 
study of the left panel (K =  1) shows the existence of Majorana edge state in the system. For all values of Δ  show 
that it increases very rapidly with the length scale which satisfy the condition for the existence of Majorana edge 
states. At the same time, we observe that B decreases rapidly, i.e., the zero mode Majorana edge state protected. 
Thus it is clear from this study that the system is in always topological state with zero mode Majorana edge state 
when the system is non-interacting.

In Fig. 5, we present the results of the study of Δ , B and K with the length scale under RG process in presence 
of repulsive interactions (K =  0.2). It is clear from this study that for all values of Δ s decrease very rapidly with 
length scale. And the condition for the existence of Majorana fermion mode is violating for this strong repulsive 
interaction. In presence of interaction, the condition for the absence of zero energy Majorana fermion mode 
become ∆

L 1
v

, for this case Majorana modes hybridize strongly and shift from the zero energy mode. 
Therefore, it is very clear from our study that the strong repulsive interaction strongly suppress the possibilities of 
zero mode Majorana edge state. Note that our study is completely an independent study with new results for this 
model Hamiltonian to predict the length scale dependent topological state which is absent in refs 16 and 28.

Effect of Chemical Potential. Here we study explicitly, how the presence of chemical potential affect the 
different quantum phases for the different regime of interactions of this system.

At first we consider only the presence of B (gu =  0, Δ  =  0). To study this effect, we consider the following  
transformation, 2φ →  2φ +  δ1x, where δ = − µ

π
K

1 . This transformation eliminates the term ∂ xφ(x) from  
the bosonized Hamiltonian (equation (6)) but this transformation leads to a spatially oscillating term, i.e., 

πφ δ πφ+
π

xcos(2 ( ))B
1 . For this situation system shows the commensurate to incommensurate transition. 

Figure 3. RG flow lines of Δ with B. The left panel (Fig. 3A) is for K =  1, gu =  0.2 and the right (Fig. 3B) panel 
is for K =  0.45, gu =  0.4.
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This term is quickly oscillating and averages out to zero when δ1a ≫  1, which reflects the competition between the 
μ and B. As a result of this competition, the RG flow in B has to be cut-off when 2δ1(l) ~ 1.

Now we consider the case when both B and Δ  are non-zero. To study this effect explicitly, we use a RG equa-
tion of δ1. To the lowest order in B, Δ  and δ1, the RG flows of δ1 is δ=δd

dl 1
1 29. When all the perturbations are rele-

vant, they flow to the strong coupling phase under RG transformation. If the coupling B(l) reaches to the strong 
coupling phase before δ1(l)a reaches to one, the phase of the system is ferromagnetic phase under the condition 
δ1(0)a ≪  B(0)1/(2−K). When Δ (l) term reaches to the strong coupling phase, then the system shows the existence of 
Majorana edge state.

In the presence of umklapp term, the system posses an oscillatory term πφ δ πφ+
π

x xcos(4 ( ) 2 ( ))
g

1
u . If 

the gu(l) term reaches to the strong coupling phase earlier than B(l), then the system is in the ferromagnetic phase.
Therefore, it is clear from the above study based on the RG equation of δ1 that the different quantum phases 

of this system dominates in presence of chemical potential in the different regime of the interaction space. This 
detail study of the effect of μ is absent in the previous studies, refs 16 and 28.

Discussions
We have found Majorana-Ising transition for helical liquid based on the exact analytical expression for phase 
boundary and also explained the nature of this transition. We have carried out the renormalization group study of 
the interacting helical liquid in the presence of proximity induced superconductivity and applied magnetic field 
along the edge direction to predict the Majorana mode in the presence of interaction and umklapp scattering. We 
have also found the topological protection in the system. We have studied the length scale depended condition for 
the existence of Majorana edge state, which is entirely a new results in the literature for this system. We have also 
found a regime of parameter space for repulsive regime where there is no evidence of Majorana edge state. Our 
renormalization group study has yielded the correct analytical and physical explanation for the topological state 
of matter under the variation of interaction parameters of the system.

Figure 4. The variation of Δ, B and K with length scale (l). The curves with blue, pink and red lines are 
respectively for the Δ , K and B. Δ  =  0.1, 0.2, 0.4; B =  0.2, K =  1.

Figure 5. The variation of Δ, B and K with length scale (l). The curves with blue, pink and red lines are 
respectively for the Δ , K and B. Δ  =  0.1, 0.2, 0.4; B =  0.2. Left panel (Fig. 5A) is for K =  0.45, the right panel  
(Fig. 5B) is for K =  0.2.
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Methods
Bosonized Hamiltonian. In the bosonization process, one can express the fermionic field of one  
dimensional quantum many body system as ψ η=

πα
π φ

↑ ↑
↑ ↓x e( )R L R

i x
/ ,

1
2 ,

4 ( )R, / , where ηL/R is the Klein factor to 
preserve the anticommutivity of the fermionic field which obeys the Clifford algebra33. Here we introduce the two 
bosonic fields, θ(x) and φ(x), which are dual to each other. These two fields are related with the following rela-
tions, φ(x) =  φR(x) +  φL(x) and θ(x) =  θR(x) +  θL(x). The analytical relation between the Klein factors have men-
tioned in ref. 33. The bosonized form for the Hamiltonian (H01) is,

φ ϕ µ
π
φ= ∂ + ∂ − ∂ .↓ ↑H v x x x[( ( )) ( ( )) ] ( )

(8)F x L x R x01 ,
2

,
2

We use the relation, ρ φ= ∂σ π σx x( ) ( )R L x R L/ ,
1

/ , , during the derivation of H01. Now we present the bosonized 
version of Hf, Hum, HB and HΔ. We derive these analytical expressions by following the ref. 33, given by.

π
φ φ

π
φ φ= ∂ ∂ + ∂ + ∂↓ ↑ ↓ ↑H
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x x

g
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2
[( ( )) ( ( )) ] (9)f x L x R x L x R

2 4 2 2
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η η
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π
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−
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B e e B x
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B L R
i x x h c

L R
i x i x
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4 ( ( ) ( ) ) )

, ,
4 ( ) 4 ( )

L R
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η η

π
η η

π
πθ

=
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=
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− =
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π φ φ

π θ π θ
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− + + . .
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−
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e e x

2
(

2
( ) sin( 4 ( )),

(11)

L R
i x x h c

L R
i x i x
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4 ( ( ) ( ) ) )
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4 ( ) 4 ( )

L R

π
η η η η

π
η η η η= −

−
+
−

.π φ φ π φ φ
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+
↑ ↓ ↑ ↓
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g

e
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e
(2 )

[ ]
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(12)um

u
L R L R

i u
R L R L

i
2

2 4 ( )
2

2 4 ( )L R L R

Finally from Eq. 12, we can write πφ=
π

H xcos( 16 ( ))um
g

2
u
2 , = +

π
v vF

g

2
4 , = −

π
K 1

g

v2 F

2 . Explanation of 
sign mismatch with ref. 16 is the following: The author of ref. 16 have considered πφ πφ π→ +x x4 ( ) 4 ( ) /2, 
πθ πθ π→ −x4 4 ( ) /2.

Renormalization Group Equations. Now we discuss the procedure for the derivation of RG equations, let 
us consider two operators, = φ θ+X e ia x ib x

1
( ( ) ( ) )1 1  and = φ θ+X e ia x ib x

2
( ( ) ( ) )2 2 . In the RG procedure, one can write 

these two field operators as a sum of fast and slow mode fields. In the fast field, the momentum range is  
Λ e−dl <  K <  Λ  and for the slow field K <  Λ e−dl, where Λ  is the momentum cut-off, dl is the change in the logarith-
mic scale. The next step is the integration of the fast field for the operators X1 and X2 and it yields a third operator 
at the same space time point, = φ θ+ + +X ei a a x i b b x

3
( ) ( ) ( ) ( ) )1 2 1 2 . The prefactor of X3 can be found by the relation, 

π
− +~X X e Xa a b b dl

1 2
( )

2 3
1 2 1 2 . Our Hamiltonian will consist of two operators, if we consider l1 and l2 as the coeffi-

cients of the operators X1 and X2 respectively. Then the RG expressions for dX
dl

3  contain the term +
π

a a b b( ) l l
1 2 1 2 2

1 2 . 
This is the procedure to derive these RG equations of the present problem, which are the following:

= − +

∆
=


 −



∆

= − +

=
∆
− .

dB
dl

K B K g B

d
dl K

dg
dl

K g KB

dK
dl

K B

(2 ) 4 ,

2 1 ,

(2 4 ) 2

4 (13)

u

u
u

2

2
2 2

Where = 




Λ
Λ

l ln
0

, is the flow parameter and Λ 0 is the initial value of the momentum cut-off parameter. In the RG 
process, one can write the RG equations themselves in a perturbative expansion in coupling constant (g(l)). They 
cease to be valid beyond a certain length scale, where g(l) ~ 134. It is very clear from the above RG equations that in 
the absence of umklapp scattering, these equations reflect the duality in our helical liquid model system. The duality 
is the following: φ ↔  θ, K ↔  K−1 and Δ  ↔  B. These RG equations have trivial (Δ * =  0 =  B*) fixed points for any arbi-
trary K. Apart from that, these RG equations have also two non-trivial fixed lines, Δ  =  B and Δ  =  − B for K =  1.
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