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Abstract
Developmental and epileptic encephalopathies (DEEs) are a group of
severe, early onset epilepsies characterized by refractory seizures,
developmental delay or regression associated with ongoing epileptic
activity, and generally poor prognosis. DEE is genetically and
phenotypically heterogeneous, and there is a plethora of genetic testing
options to investigate the rapidly growing list of epilepsy genes. However,
more than 50% of patients with DEE remain without a genetic diagnosis
despite state-of-the-art genetic testing. In this review, we discuss the major
advances in epilepsy genomics that have surfaced in recent years. The
goal of this review is to reach a larger audience and build a better
understanding of pathogenesis and genetic testing options in DEE.
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Background
The developmental and epileptic encephalopathies (DEEs) 
are a heterogeneous group of severe, early onset conditions  
characterized by developmental delay or regression associated 
with refractory seizures and generally poor prognosis1. The inci-
dence of epilepsy is nearly 70 per 100,000 children younger  
than 2 years and genetic epilepsies account for more than 0.4% 
of the general population constituting 30% of all epilepsies2. The 
prevalence of epilepsy in the United States is 5–8 million sub-
jects annually, while the incidence is 35–71/100,000 per year3, 
though epidemiological data specific for DEEs are just emerg-
ing. A study on a broader group of severe epilepsies beginning 
before 18 months found an incidence of one in 2,000 births4–6. 
Some of the most well-studied DEEs include infantile spasms  
and Dravet, Lennox–Gastaut, and West syndromes.

Over the last decade, next-generation sequencing (NGS) has 
advanced the field of human genetics and genomics significantly7, 
leading to an explosion of gene discovery across many human 
disorders. The number of disease-associated genes has grown 
to 4,132, and over 50 genes have been newly associated with 
epilepsy in the last three years alone8. However, the new  
technologies have also brought new challenges9. The ability to 
perform sequencing across large cohorts of affected individu-
als with variable but related phenotypes highlights “phenotype 
expansions” associated with some disease genes. For the  
epilepsies, patients can have clinical presentations that range 
from static to degenerative, clouding a clear distinction between 
isolated DEEs and secondary epilepsies associated with neu-
rodevelopmental disorders (NDDs)10. A great benefit of using  
NGS is its ability to deliver clinical diagnosis in a short time, 
but the available “cafeteria choice” of cutting-edge genetic tests  
can leave medical professionals and patients’ families confused.

In this review, we discuss the major advances in epilepsy 
genomics that have surfaced in recent years and summarize 
the pros and cons of genetic testing options in DEEs that could 
help clinicians and patients reach the end of their “diagnostic  
odyssey” faster and in a cost-effective way.

Genetic testing
DEE is genetically and phenotypically heterogeneous, and there 
is a plethora of genetic testing options ranging from gene pan-
els, which may include a few or hundreds of genes, to exome 
sequencing (ES), which investigates all ~20,000 genes. These 
are NGS techniques, also known as massive parallel sequencing  
(MPS), which include a variety of approaches that facilitate 
simultaneous sequencing of a large number of DNA segments11.  
Whole ES and targeted gene panels have contributed incred-
ibly towards novel gene discovery, particularly in the pediatric  
epilepsies12. Sequencing all three billion bases of the genome, 
genome sequencing (GS), is mostly done in research settings but 
will inevitably enter the clinical realm soon.

Copy-number variants (CNVs) contribute significantly to vari-
ation in the human genome. CNVs are estimated to cause  
1.2% difference for every reference genome13. CNVs can 
be detected by several genomic methods including conven-
tional karyotype (deletions/duplications >5 Mb) and chromo-
somal microarrays (CMA, ~100 kb–5 Mb). Other methods 

such as quantitative PCR and multiplex ligation-dependent 
probe amplification are targeted approaches to detect smaller  
variations (<1 kb).

The most common types of genetic causes of DEE are 
sequence changes, responsible for 30–40% of cases, and chro-
mosomal deletions or duplications, responsible for 5–10% 
of cases14,15. Gene panels provide a higher sequencing depth 
and lower cost when compared to ES and GS but restrict  
the diagnosis to specific genes in the panel. Importantly, some 
large panels are based on ES, with restricted analysis of only 
the “panel” genes, so the benefit of higher depth of cover-
age is lost, but this opens up the possibility of future reanalysis 
to include the whole exome. ES also provides good sequencing 
depth at a lower cost; however, it is restricted to protein coding 
regions only. CNVs can be predicted by this method but require  
a secondary method to plot the breakpoints. Selection 
of the most appropriate test may depend on a variety of  
factors including age at seizure onset, severity of disease, other  
associated features, and patient insurance.

Novel genes in DEE
Several novel genes and disorders associated with DEE have 
been identified in the last few years16–18 (Table 1). Many of 
the genes causing epilepsy encode components of neuronal 
ion channels leading to neuronal hyperexcitability or deple-
tion of inhibitory mechanisms19,20. However, recently, several 
new genes coding for proteins other than ion channels have been  
identified, such as chromatin remodelers, intracellular sig-
naling molecules, metabolic enzymes, transcription factors, 
and mitochondrial complex genes5,21,22. The search term “epi-
lepsy” OR “seizure” OR “epileptic syndrome” OR “epileptic  
encephalopathy” from 2016 to 2019 led to 66 entries in 
Online Mendelian Inheritance in Man. Although comprehen-
sive discussion of all the discoveries is beyond the scope of this  
review, selected major advances are highlighted below.

ES trios have revealed the influence of de novo mutations as a 
genetic cause of severe epilepsies (Table 1). A recent study com-
pared de novo variants identified in individuals with variable 
NDDs with and without epilepsy23. In the subset of 1,942 sub-
jects with NDDs with epilepsy, 33 genes were observed to have  
significant excess of de novo variants, three of which had lim-
ited or no previous evidence of disease association: CACNA1E, 
SNAP25, and GABRB2. Nine de novo missense and two 
truncating variants in CACNA1E variants were identified 
in this cohort23. In a subsequent study, de novo variants in  
CACNA1E were identified in 30 individuals with DEE16.  
Detailed phenotyping revealed refractory infantile-onset sei-
zures, severe hypotonia, and profound developmental delay, 
often with congenital contractures, hyperkinetic movement  
disorders, macrocephaly, and early death16. Functional analy-
sis revealed consistent gain-of-function effects in R-type  
calcium channels. Some patients were seizure free on treat-
ment with the anti-epileptic drug topiramate, which blocks 
R-type calcium channels. The condition is now catalogued as  
early infantile epileptic encephalopathy type 69 (#MIM 618285).

The RORB gene, which encodes the retinoid-related nuclear 
receptor ROR-beta, was recently associated with photosensi-
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Table 1. Epilepsy genes and phenotypes catalogued in Online Mendelian Inheritance in Man (OMIM) since 2016.

Gene Phenotype OMIM 
phenotype #

Chromatin remodeling

ACTL6B Epileptic encephalopathy, early infantile, 76 #618470

SMARCC2 Coffin-Siris syndrome 8 #618362

STAG2 Neurodevelopmental disorder, X-linked, with craniofacial abnormalities #301022

Intracellular signaling

CSF1R Brain abnormalities, neurodegeneration, and dysosteosclerosis #618476

YWHAZ Popov-Chang syndrome #618428

CHP1 Spastic ataxia 9, autosomal recessive #618438

Ion channels and neurotransmitter receptors

CACNA1E Epileptic encephalopathy, early infantile, 69 #618285

GABRG2 Epileptic encephalopathy, early infantile, 74 #618396

CACNA2D2 Cerebellar atrophy with seizures and variable developmental delay #618501

HCN1 Generalized epilepsy with febrile seizures plus, type 10 #618482

CACNA1B Neurodevelopmental disorder with seizures and nonepileptic hyperkinetic movements #618497

KCNK4 Facial dysmorphism, hypertrichosis, epilepsy, intellectual/developmental delay, and gingival 
overgrowth syndrome

#618381

SLC25A42 Metabolic crises, recurrent, with variable encephalomyopathic features and neurologic regression #618416

ATP1A1 Hypomagnesemia, seizures, and mental retardation 2 #618314

SLC28A1 Uridine-cytidineuria #618477

SCN8A Myoclonus, familial, 2 #618364

SLC9A7 Intellectual developmental disorder, X-linked 108 #301024

Metabolism

GLS Epileptic encephalopathy, early infantile, 71 #618328

PARS2 Epileptic encephalopathy, early infantile, 75 #618437

RNF13 Epileptic encephalopathy, early infantile, 73 #618379

FCSK Congenital disorder of glycosylation with defective fucosylation 2 #618324

PPP3CA Arthrogryposis, cleft palate, craniosynostosis, and impaired intellectual development #618265

PPP2CA Neurodevelopmental disorder and language delay with or without structural brain abnormalities #618354

MTHFS Neurodevelopmental disorder with microcephaly, epilepsy, and hypomyelination #618367

P4HTM Hypotonia, hyperventilation, impaired intellectual development, dysautonomia, epilepsy, and eye 
abnormalities

#618493

DHPS Neurodevelopmental disorder with seizures and speech and walking impairment #618480

MAST1 Mega-corpus-callosum syndrome with cerebellar hypoplasia and cortical malformations #618273

DEGS1 Leukodystrophy, hypomyelinating, 18 #618404

MYORG Basal ganglia calcification, idiopathic, 7, autosomal recessive #618317

ALKBH8 Intellectual developmental disorder, autosomal recessive 71 #618504

NAXD Encephalopathy, progressive, early onset, with brain edema and/or leukoencephalopathy, 2 #618321

KDM6B Neurodevelopmental disorder with coarse facies and mild distal skeletal abnormalities #618505

HS6ST2 Paganini-Miozzo syndrome #301025

TRMT1 Intellectual developmental disorder, autosomal recessive 68 #618302

COLGALT1 Brain small vessel disease 3 #618360

IREB2 Neurodegeneration, early-onset, with choreoathetoid movements and microcytic anemia #618451
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Gene Phenotype OMIM 
phenotype #

PIGB Epileptic encephalopathy, early infantile, 80 #618580

Mitochondrial metabolism

MICOS13 Combined oxidative phosphorylation deficiency 37 #618329

GFM2 Combined oxidative phosphorylation deficiency 39 #618397

Neuronal development

NFASC Neurodevelopmental disorder with central and peripheral motor dysfunction #618356

NHLRC2 Fibrosis, neurodegeneration, and cerebral angiomatosis #618278

Nucleoplasmic transport

NUP133 Galloway-Mowat syndrome 8 #618349

NUP214 Susceptibility to acute infection-induced encephalopathy 9 #618426

Regulation of cell morphology and motility

BICD2 Spinal muscular atrophy, lower extremity-predominant, 2b, prenatal onset, autosomal dominant #618291

DOCK3 Neurodevelopmental disorder with impaired intellectual development, hypotonia, and ataxia #618292

PHACTR1 Epileptic encephalopathy, early infantile, 70 #618298

MACF1 Lissencephaly 9 with complex brainstem malformation #618325

DYNC1I2 Neurodevelopmental disorder with microcephaly and structural brain anomalies #618492

Synaptic vesicle cycle

NEUROD2 Epileptic encephalopathy, early infantile, 72 #618374

MAPK8IP3 Neurodevelopmental disorder with or without variable brain abnormalities #618443

Transcriptional regulation

ATN1 Congenital hypotonia, epilepsy, developmental delay, and digital anomalies #618494

RORB Susceptibility to idiopathic generalized epilepsy 15 #618357

ZNF142 Neurodevelopmental disorder with impaired speech and hyperkinetic movements #618425

RSRC1 Intellectual developmental disorder, autosomal recessive 70 #618402

TCF20 Developmental delay with variable intellectual impairment and behavioral abnormalities #618430

EIF3F Intellectual developmental disorder, autosomal recessive 67 #618295

ZBTB11 Intellectual developmental disorder, autosomal recessive 69 #618383

CNOT1 Holoprosencephaly 12 with or without pancreatic agenesis #618500

NFIB Macrocephaly, acquired, with impaired intellectual development #618286

SOX4 Coffin-Siris syndrome 10 #618506

TRRAP Developmental delay with or without dysmorphic facies and autism #618454

Others Transmembrane protein

TMEM94 Intellectual developmental disorder with cardiac defects and dysmorphic facies #618316

Structural protein

COL3A1 Polymicrogyria with or without vascular-type Ehlers–Danlos syndrome #618343

Nuclear DNA polymerase

POLE Intrauterine growth retardation, metaphyseal dysplasia, adrenal hypoplasia congenita, genital 
anomalies, and immunodeficiency

#618336

Multiple functions

WDR4 Microcephaly, growth deficiency, seizures, and brain malformations #618346

Intracellular trafficking

TRAPPC2L Encephalopathy, progressive, early onset, with episodic rhabdomyolysis #618331
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tive generalized epilepsy in a large family segregating a non-
sense variant in the gene24. In the same study, two individuals 
with de novo coding variants in RORB and a third individual  
with a de novo intragenic deletion presented with significant 
developmental delays and behavioral abnormalities in addi-
tion to their generalized epilepsy, consistent with a diagnosis  
of DEE. Together, these results suggest that RORB haploin-
sufficiency causes a fairly consistent epilepsy phenotype  
but variable developmental outcomes.

Several additional recent discoveries highlight the overlap between 
DEEs and NDDs, with several new genes associated with syn-
dromic epilepsy, including NBEA, FBXO11, and SMARCC225–27. 
NBEA has long been a candidate gene for NDDs and autism28. 
Clear disease association and description of the phenotypic 
spectrum were recently reported after the identification of 24 
de novo variants in patients with NDD, many of whom also had 
generalized epilepsy. Similarly, one-quarter to one-third of indi-
viduals with pathogenic variants in FBXO11 or SMARCC2,  
each associated with variable NDD, also have epilepsy.

Recessive genes are a rare but important cause of DEE. Inborn 
errors of metabolism and malformations of cortical develop-
ment constitute most of the autosomal recessive epilepsies29.  
Glycosylphosphatidylinositol (GPI) anchored proteins play 
key roles in the human body, mainly in development and  
neurogenesis. Several genes involved in GPI biosynthesis and 
the remodeling pathway are causative of autosomal reces-
sive epilepsy. One such gene that was recently identified is 
PIGB30. This group reported 16 patients from 10 unrelated  
families with early infantile epileptic encephalopathy, type 80  
(#MIM 618580). Some other recessive epileptic encephalopa-
thies are due to WWOX, TBC1D24, UBA5, and SLC13A531–34. 
TBC1D24 is known to cause a continuum of features that 
were originally described as distinct, recognized Mende-
lian phenotypes ranging from autosomal dominant deafness to  
autosomal recessive epileptic encephalopathy35. Similarly, 
in addition to causing epileptic encephalopathy type 28 
(#MIM 616211), WWOX is implicated as the molecular basis 
of spinocerebellar ataxia, type 12 (#MIM 614322)36,37. Both  
these genes are examples of a spectrum of disorders with 
increasingly blurred lines differentiating them as more indi-
viduals and pathogenic variants are identified. Recently, 
homozygous pathogenic variants in CSF1R, encoding a tyrosine  
kinase growth factor receptor for colony-stimulating fac-
tor-1, were identified in patients with brain abnormalities, 
neurodegeneration, and dysosteosclerosis38. This gene was  
previously implicated in a dominant adult-onset leukoencepha-
lopathy. Proliferation and growth of macrophages, including  
microglia, require colony-stimulating factor-1 receptor (CSF1R). 
This study represents an under-recognized group of genes  
that are associated with well-described, dominant phenotypes 
but can also produce a different clinical picture when present 
in biallelic, recessive states. This is important for filtering and 
interpreting variants from NGS data, as candidate variants  
cannot be eliminated based on poor phenotypic fit39.

CNVs in DEE
Studies using CMA have shown that pathogenic CNVs 
account for 5–10% of childhood epilepsies including DEE40–42, 

and CMA is the recommended first-line genetic test if the  
clinical picture includes dysmorphism, intellectual disability, 
congenital anomalies, and other neuropsychiatric features43.  
However, NGS is increasingly being employed in the  
detection of CNVs. One good example is the detection of 
deletions in TANGO2. TANGO proteins play a crucial role 
in redistributing Golgi membranes into the endoplasmic  
reticulum44. Bi-allelic TANGO2 pathogenic variants have been 
identified as a cause of a pediatric condition with multi-organ  
involvement45. Recently, a study identified intragenic, multi-exon 
deletions in TANGO2 by reanalysis of ES data45,46. The most  
common disease-causing allele (55%) in one series was dele-
tion of exons 3–9 of TANGO217. ES is not yet a match for 
CMA for CNV detection, as it can provide data about only the  
protein coding or exonic regions, but it is an increasingly pow-
erful diagnostic tool, and a growing number of algorithms 
are being developed to aid the detection of CNVs by NGS.  
With the introduction of ES and GS, it is now possi-
ble to detect both single nucleotide variations and CNVs  
using an exome- or genome-wide approach with a single test47.

Future of epilepsy genomics
Despite state-of-the-art genetic testing, more than 50% of 
patients with DEE remain without a genetic diagnosis. Whole 
GS is increasingly being used to uncover the role of non-coding 
genetic material in the human genome48,49. Undoubtedly,  
massively parallel sequencing has greatly accelerated disease  
gene (and variant) discovery, but most studies and nearly 
all clinical testing employ gene panels or ES, limiting the 
genomic search space and the types of variants that can poten-
tially be identified. For disorders like fragile X syndrome that 
are due to the expansion of triplet repeats, testing strategies  
other than gene panels or exome are required. Several stud-
ies have proposed a genetic testing strategy to achieve the high-
est clinical utility, cost-effectiveness, and diagnostic yield for 
individuals with epilepsy50–52, but specific testing algorithms are  
likely to change over time as new tests are introduced and the 
costs of existing tests decrease. New assays may be required to  
detect lesser-known but important molecular mechanisms.

Post-zygotic, somatic mosaic mutations are increasingly  
identified as an important cause of genetic disorders22,53. In 
epilepsies, many of the mutations in the mTOR pathway that 
lead to brain malformations are somatic mosaic mutations.  
Typically, leukocyte-derived DNA is used in individuals with 
DEE to search for germline variants, which are inherited or 
arise de novo in the zygote. Recent studies have demonstrated  
that post-zygotic somatic variants also underlie DEE22,54–58 but can 
be easily missed by standard NGS tests.

Another field that has potential to uncover some of the under-
lying molecular mechanisms is epigenetics. Epimutations  
represent a class of mutational event where the epigenetic  
status of a genomic locus deviates significantly from the  
normal state59. Methylation of DNA and histone modifications 
are increasingly being implicated as causative or contributing  
factors for several conditions60,61. DNA methylation at CpG 
dinucleotides is the most widely studied epigenetic modifica-
tion. Methylation represents an epigenetic change—a chemical  
modification of DNA that does not change the underlying 
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DNA sequence. A recent study investigated the role of 
de novo methylation changes in NDDs using methylation  
chips62. In a cohort of 489 affected individuals, of which 16% 
had epilepsy, the authors identified rare differential methyla-
tion in 23% of cases when compared to controls. When the par-
ents were able to be tested, ~40% of the methylation variants  
were de novo, suggesting that de novo methylation abnor-
malities may be causative in 5–10% of their cohort. When 
identified, the underlying causes of the methylation changes 
were varied and included CNVs, sequence variants in  
regulatory elements, or repeat expansions, each of which 
is easily missed by conventional (even next-generation)  
sequencing methods. In a second study of undiagnosed NDDs 
using a similar approach63, candidate differentially methylated  
regions in two individuals with epilepsy and intellectual  
disability of unknown etiology were identified.

Several techniques that enable longer read lengths (up to 200 
kb), such as nanopore-based “fourth-generation” sequencing64 
and single molecule, real time (SMRT) sequencing65, have 

recently emerged. The advantages of long reads include shorter  
sequencing time, ability to sequence AT- or GC-rich regions 
and repeat stretches, and the detection of large structural 
abnormalities including insertions, deletions, inversions,  
translocations, and tandem/interspersed regions66,67.

Conclusion
NGS-based technologies are a mainstay of clinical diagnos-
tic testing, and the applications and testing options will only 
increase as the technology, bioinformatics, and resources 
evolve. NGS successfully detects single nucleotide variations,  
structural rearrangements, and CNVs. Clinical phenotypes are 
now being defined by the underlying molecular basis. Inter-
pretation of NGS data is an iterative process involving for-
ward genetics along with a reverse phenotyping approach. The 
dynamic nature of data analysis should be explained to patients 
and their families. As more and more novel genetic and epige-
netic etiologies are unveiled in DEE, the challenge for clinical 
and research laboratories is to make sure the testing is clinically 
relevant, is cost effective, and can be integrated into clinical care.
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