
Neurons Regulate Schwann Cell Genes by Diffusible Molecules 
Laurel M. Bolin and Eric M. Shooter 
Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305 

Abstract. Successful peripheral nerve regeneration 
and functional recovery require the reestablishment of 
the neuron-Schwann cell relationship, in the regenerat- 
ing rat sciatic nerve, neurons differentially regulate 
Schwann cell genes. The message for the low-affinity 
NGF receptor, p75 N~rR, is induced in Schwann cells 
distal to the injury and is repressed as regenerating 
axons make contact with these cells. The inverse is 
true for mRNA of the myelin gene P0; expression 
decreases distal to injury and increases as new axons 
contact Schwann cells and a program of myelination is 
initiated. Using an in vitro co-culture paradigm in 

which primary neurons and adult Schwann cells are 
separated by a microporous membrane, we show that 
axon contact is not an absolute requirement for neu- 
ronal regulation of Schwann cell genes. In this system 
neurons but not other cell types, repress the expres- 
sion of Schwann cell p75 N°FR while inducing the ex- 
pression of the POU domain transcription factor, sup- 
pressed cAMP inducible POU, and myelin P0. These 
results demonstrate that regenerating axons can direct 
the Schwann cell genetic program from a distance 
through diffusible molecules. 

T 
HE peripheral nerve Schwann cell supports and mye- 
linates the neuron it subserves. When the established 
neuron-Schwann cell relationship is disrupted by a 

crush injury of the sciatic nerve, a series of well-defined cel- 
lular and molecular changes occur in the nerve (8) which re- 
sult in the re-establishment of that relationship. Schwann 
cells, that have responded to injury by proliferation (19, 40), 
absorption of myelin sheath debris (14), and synthesis of neu- 
rotrophins (13), must remyelinate regenerated axons before 
functional recovery is achieved. Defining mechanisms through 
which the neuron-Schwann cell relationship is reestablished 
during regeneration may permit intervention to increase func- 
tional recovery of injured nerve. 

Several Schwann cell genes are known to be differentially 
regulated during regeneration, mRNA encoding NGF (13, 
27), p75 N6FR (13), Glia Maturation Factor/3 (4), and neural 
cell adhesion molecule (N-CAM) ~ (15) increase distal to a 
crush injury. The expression of the myelin genes; myelin- 
associated glycoprotein (10, 30), myelin basic protein (9, 20, 
46), myelin Po (9, 24), and PMP22 (7, 44) decreases post- 
crush. Successful regeneration is accompanied by remyeli- 
nation and a return to normal expression levels. Regenerat- 
ing neurons are thought to regulate the expression of 
Schwann cell p75 s°FR (18, 45) and myelin P0 (20, 24, 37). 
This gene regulation, as well as Schwann cell proliferation, 
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1. Abbreviations used in this paper: CCM, co-cultured conditioned 
medium; CMF, calcium magnesium free; DEPC, diethylpyrocarbonate; 
DRG, dorsal root ganglia; N-CAM, neural cell adhesion molecule. 

apparently requires direct contact between neurons and 
Schwann cells (20, 41). For example, no Schwann cell 
proliferation occurs if these cells are separated from neurons 
by a permeable membrane (42). We have reexamined the re- 
quirement of neuron-Schwann cell contact for gene regula- 
tion in an in vitro paradigm in which confluent Schwann cells 
isolated from the injured adult sciatic nerve are co-cultured 
with primary neurons in the absence of neuron-Schwann cell 
contact. This system mimics regeneration in adult animals 
and permits the investigation of neuronal regulatory effects. 
In this report we show that neuronal co-culture results in a 
diminution in expression of p75 N°FR and an induction of 
suppressed cAMP inducible POU (SCIP) (32) and myelin 
P0 expression in Schwann cells through a diffusible interac- 
tion. This regulatory function is neural specific with other 
embryonic cells having no effect on these Schwann cell 
genes. This data indicates that neurons can influence 
Schwann cell genetic programs from a distance. Further, the 
data proves that axon contact is not an absolute requirement 
for neuronal regulation of Schwann cell p75 N~rR and myelin 
P0 expression. 

Materials and Methods 

Schwann Cell Culture 

Activated adult Schwann cells were isolated as described (3). Briefly, adult 
male Sprague-Dawley rats were anesthetized with an intraperitoneal injec- 
tion of ketamine (5 mg/kg) and 30% chloral hydrate (15 mg/kg). Bilateral 
5 ram, 45 ° incisions through muscles of the upper hindlimb were made and 
sciatic nerves were exposed at the sciatic notch. Nerves were crushed by 
compression with fine jewelers' forceps for three 15-s pulses. Wounds were 
clamped and the animals recovered. After 30 h, the injured rats were eu- 
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tbartized in a CO2 atmosphere. Using sterile procedure, 5 mm of the sciatic 
nerve distal to the crush was quickly removed to calcium-, magnesium-free- 
(CMF) PBS. The epineurial sheaths were stripped and the nerves were 
minced to 0.5-1-mm size. The CMF-PBS was removed and 0.15% col- 
lagenase A in CMF-PBS was added. The digest was incubated at 370C in 
a 5 % CO2 atmosphere. After 1 h, trypsin was added for a final concentra- 
tion of 0.015 %. After an additional 30-min incubation, the digest was tritu- 
rated five times through a 19-gauge syringe. The digest was diluted with 20 
ml culture medium (DME + 10% heat-inactivated horse serum + 100 
U/ml penicillin + 100 #g/ml streptomycin). This suspension was pelleted 
at 1,200 rpm/3 min, the digestion solution was removed, and the cells were 
resuspended in 10 ml culture medium. This cell suspension was passed 
through 60-t~m pore mesh and plated. Cells were allowed to adhere for 1 h 
at 37°C, and then unattached cells were replated as before. After a third 
preptating, non-adherent cells were passed to 35 mm plates that had been 
precoated with poly-L-ornithine (1 mg/ml) and incubated at 37°C in 5% 
CO2. 3 d later, plates were washed and new media was added. Schwann 
ceils were confluent 6 d after the initial isolation. A total of 12 sciatic nerve 
sections were collected for each experiment. 

Primary Embryonic Chick Cells 

E8 (Hamburger-Hamilton stage 34-35) White Leghorn chick embryos (11) 
were sacrificed by decapitation under sterile conditions. 

Dorsal Root Ganglia Culture. The body cavity was eviscerated and the 
spinal cord was exposed. Fine forceps were used to pluck 20-30 dorsal root 
ganglia (DRG) from the vertebral column of each embryo and place them 
in CMF-PBS. The ganglia were pelleted at 600 rpm for 3 rain. PBS was 
removed, ganglia were resuspended in 0.08 % trypsin, and then incubated 
in a 37°C circulating water bath for 10 min. A 2 x  volume of medium (DME 
+ 10% heat-inactivated horse serum + penicillin/Streptomycin) was 
added, the DRG were triturated 5 x with a flame-polished glass pipette and 
trituration was repeated with a smaller bore flame-polished pipette. Cells 
were pelleted as before, resuspended in medium, passed through nylon and 
preplated for 2 h on plastic at 37°C with 5% CO~. Contaminating non- 
neuronal cells accounted for <1% of the total cell population. The non- 
adherent neurons were pelleted as before, resuspended in serum-free DME, 
and counted. The remaining adherent cells (fibroblasts) were cultured over- 
night, removed from plates and counted. 

Retina. Chick E8 eyes were removed and sheets of neural retina cells 
were separated from the pigmented epithelium and placed in CMF-PBS. Af- 
ter mechanical disruption by trituration with a flame-polished glass pipette, 
neurons were washed in CMF-PBS, and pelleted at 800 rpm for 3 min. Cells 
were resuspended in serum-free DME, passed through nylon mesh, and 
counted. 

Liver. Chick E8 liver was removed to CMF-PBS, mechanically disrupted 
by trituration and cells isolated as described above for retina. 

Co-culture. Confluent Schwann cell cultures were washed twice with 
serum-free DME and 30-ram millicell inserts (Millipore Continental Water 
Systems, Bedford, MA) that had been precoated with laminin (10 #g/ml) 
were placed within the wells in a final volume of 3 ml. Cell suspensions 
at a concentration of 10 ~ cells/500 #1 were added to each insert. The cocul- 
tures were incubated for 2-6  d after which Schwann cell total cellular RNA 
was isolated. 

Scanning Electron Microscopy 
Schwann cell-E8 DRG cocultures were grown as described. After 2 d, mil- 
licells were fixed in 2 % glutaraldehyde and prepared for scanning EM by 
the method described (36). Microporous membranes were removed from 
their plastic support, the top or cellular side of the millicells were observed 
first and then turned to observe the underside. Specimens were examined 
with a Philips 505 scanning electron microscope. 

Northern Blot Analysis 
Total cellular RNA was purified from normal rat sciatic nerve as described 
(6). Primary Schwann cell RNA was prepared using the guanidinium thio- 
cyanate procedure (6). RNA was resuspended in diethylpyrocarbonate 
(DEPC)-treated water and quantitated by OD26o/2so. Methods used for 
electrophoresis of RNA, transfer to nylon (Hybond N [Amersham, ILl) and 
Northern blot hybridization were as described (28). The amounts of RNA 
loaded were: 1 #g unoperated rat sciatic nerve, 5 #g cultured Schwann cells 
(see Figs. 3 and 6). In experiments that were analyzed by densitometry, 10 
#g total RNA from cultured Schwann cells were electrophoresed (see Fig. 
4). Ethidium bromide (1 #g/ml) was added to the loading buffer so that the 

amount of transferred RNA could be visualized on the nylon membrane be- 
fore hybridization. 

Probes. The rat p75 NGFR eDNA was a 1.3-kb insert isolated from the 
original construct (38). The rat myelin P0 eDNA was a 1.9-kb insert iso- 
lated from a rat sciatic nerve crush library (7). The rat SCLP eDNA was 
a 1.5-kh insert containing the Yuntranslated sequence (32). Composite 
blots as seen in Figs. 4 and 6 were first probed with the 32P-labeled eDNA 
insert encoding p75 N°w. After development, blots were stripped by the 
method described (28) and reprobed with 32p-labeled eDNA encoding my- 
elin P0. This procedure was repeated before hybridization with labeled 
SCIP eDNA. All probes were labeled by random priming (GIBCO-BRL, 
Galthersburg, MD) and had specific activities of 1-3 x 109 cpm. 

Densitometry. Densitometric analysis was performed according to the 
procedures for the LKB Laser Densitometer (LKB Instruments, Bromma, 
Sweden). Three blots with total RNA from Schwann cells isolated from 
different groups of rats were analyzed. 

Results 

Schwann Cell-Neuronal Co-culture Permits Neuronal 
Influence without Contact 
A co-culture paradigm (Fig. 1) was designed to investigate 
neuronal regulation of Schwann cell genes. Primary Schwann 
cells (Fig. 1 c) that have been isolated from adult rat sciatic 
nerve after a conditioning crush injury and grown to a 
confluent monolayer, are cultured with E8 chick dorsal root 
ganglion neurons (Fig. 1 b). The neurons (N) are plated on 
a microporous membrane a millimeter above the Schwann 
cells (SC). In this paradigm neurons and Schwann cells com- 
municate through diffusion of ions, proteins or macro- 
molecules but not through cell contact. We confirmed that 
the 0.4-#m pore does not permit passage of cells or neurites 
by scanning EM (Fig. 2) and by toluidine blue staining of 
the underside of the membrane. After 2 d in co-culture, neu- 
rons have aggregated and extend fascicles of neurites (Fig. 
2 A). No cellular material was observed on the underside of 
the membrane (Fig. 2 C) which can be compared to the cel- 
lular side (Fig. 2 B) at the same magnification. At higher 
magnifications (10,000) the underside of the membrane was 
acellular (data not shown). These results are not surprising 
because neuronal growth cones require substrate attachment 
to grow (5) and they would not survive extension through 
the 1 mm of media solution to reach the Schwann cell 
monolayer. 

Neurons Regulate Schwann Cell p75 N°FR 
mRNA Expression 
Schwann cells present in unoperated sciatic nerve do not ex- 
press p75 N°FR (13). The induction of Schwann cell p75 n°n~ 
correlates with loss of axon contact in vivo in sciatic nerve 
distal to a crush or axotomy (13) and in vitro when Schwann 
cells are isolated from the nerve for primary culture (16, 24). 
Initial experiments were based on the assumption that an 
NGF-dependent population of sensory neurons would be 
most likely to interact with Schwann cells with which they 
are in contact in vivo (26). Chick E8 DRG neurons were cho- 
sen because of their accessibility. The co-culture paradigm 
permits an examination of the regulation of Schwann cell 
p75 N°~ expression because E8 DRG neurons that constitu- 
tively express this gene (12) are separated by the micropor- 
ous membrane. Results led us to test the regulatory effect of 
E8 neural retina cells which while not normally in contact 
with Schwann cells can be supported by them when trans- 
planted (1). As seen by Northern analysis in Fig. 3, a diminu- 
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Figure 1. The co-culture paradigm (a) allows neuron-Schwann cell 
interaction without cell contact. E8 chick dorsal root ganglia neu- 
tons, DRG, (N) are plated on a microporous filter 1 mm above a 
confluent monolayer of adult rat Schwann cells (SC). Neurons ag- 
gregate and extend fascicles of neurites (b) after 2 d in co-culture 
with rat Schwann cells. Adult rat Schwann cells (c) plated below 
the neurons are photographed through the mesh. Bar, 50/~m. 

Figure 2. Neurons cocultured on milliceU inserts do not extend 
processes through the micropotous mesh as determined by scan- 
ning electron microscopy. After 2 d in co-culture fascicles of neu- 
rites have attached to the lamiuln substrate (A and B). Neurites do 
not penetrate the membrane as no cellular material is visible on the 
underside of the filter (C). Bar, 50 #m. 
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Figure 3. Northern analysis of Schwann cell p75 NGFR mRNA ex- 
pression in response to neuronal co-culture. Total cellular mRNA 
isolated from Schwann cells that were cultured alone (lanes I and 
5) or co-cultured with E8 chick hepatocytes (lane 2) or fibroblasts 
(lane 3) indicates a constitutive p75 N~FR mRNA expression. A di- 
minished expression is evident in Schwann cells co-cultured with 
either E8 DRG (lane 4) or neural retina (lane 6). The Schwann cell 
mRNA was isolated after 2 d in culture. Autoradiographic exposure 
was for 48 h. Ethidium bromide indicates the amount of RNA trans- 
ferred to the nylon membrane. 

tion in Schwann cell expression of p76 N°~ mRNA is ob- 
served when Schwann cells are co-cultured with DRG 
neurons (Fig. 3, lane 4) or with E8 neural retina cells (Fig. 
3, lane 6). This regulation is neural specific as coculture with 
other chick embryonic cell types, E8 liver cells (Fig. 3, lane 
2) and fibroblasts (Fig. 3, lane 3), have no regulatory effect 
on Schwann cell expression of p75 NQFR (Fig. 3). Although 
there appears to be an increase in p75 s°~ mRNA when 
fibroblasts were co-cultured (Fig. 3, lane 3), the results of 
several experiments showed that levels of Schwann cell 
p75 Nant message remain essentially constant whether cells 
are grown alone or with embryonic hepatocytes or fibro- 
blasts. These results assign an exclusive regulatory function 
to neurons and suggest that this in vitro paradigm is a credi- 
ble model in which to study neuron-Schwann cell interac- 
tions. 

Neurons Induce Expression of  Schwann Cell 
Myelin Po mRNA 

The neuronal control of expression of Schwann cell myelin 
genes was also investigated. The gene encoding the myelin 
P0 is expressed exclusively in Schwann cells (22, 23). Its 
expression is reduced in vivo in response to peripheral nerve 
injury (9, 46) and in vitro when Schwann cells are cultured 
(24). Composite Northern analysis as seen in Fig. 4, shows 
that neuronal (chick E8 DRG neurons) co-culture results in 
a diminution in Schwann cell p75 NaF~ expression (Fig. 4, 
lanes 3 and 5) and a concomitant induction in Schwann cell 
myelin P0 expression (Fig. 4, lanes 3 and 5, middle panel). 
The Schwann cell p75 NG~ expression continues to decline 
with time in neuronal co-culture. This expression can be 
compared to that of Schwann cells cultured alone for similar 
time periods (Fig. 4, lanes 2 and 4). The Schwann cell my- 
elin Po expression increases with time in co-culture (Fig. 4, 
lanes 3 and 5). This myelin Po induction can be compared 
to very low constitutive levels of expression in Schwann cells 
cultured alone (Fig. 4, lanes 2 and 4). The densitometric 

Figure 4. Co-culture with chick E8 DRG neurons represses 
p75 NG~ expression while inducing myelin P0 mRNA expression in 
adult rat Schwann ceils. RNA isolated from unoperated rat sciatic 
nerve (lane 1), Schwann ceils that had been cultured alone for 3 d 
(lane 2), or 6 d (lane 4), Schwann cells co-cultured with E8 DRG 
for 3 d (lane 3) and 6 d (lane 5) were hybridized to p75 NG~ and 
Po eDNA inserts. The signal for p75 NGFR was developed after 40 h. 
After stripping, the blot was reprobed with labeled Po eDNA. The 
signal for the P0 message in the sciatic nerve was developed after 
6 h. The Po message in Schwann cells was developed after an ad- 
ditional 40 h. The ethidium bromide stain indicates the amount of 
RNA transferred. 

analysis seen in Fig. 5 reveals a consistent decline in 
Schwann cell expression of p75 N°~ message ([]) which 
diminishes to •60% (n = 6) at 6 d in co-culture with E8 
DRG neurons. Conversely, Schwann cell myelin Po expres- 
sion increases 100-fold (-)  during the same time period of 
neuronal co-culture. 

Regulatory Activities Are Active in Schwann 
Cell-Neuronal Co-culture Conditioned Medium 

Co-culture conditioned medium (CCM) induced neurite out- 
growth from primary chick E8 DRG neurons after 1 or 2 d 
in culture and this activity was blocked by antisera against 
NGF (data not shown). The CCM therefore, contains NGE 
not a surprising finding since Schwann cells synthesize and 
secrete NGF (2, 13, 27). The CCM was also transferred to 
naive Schwann cells that had been isolated from crushed 
sciatic nerve. Schwann cells that were grown 2 d in CCM did 
not exhibit a diminution in p75 N°~ or an increase in myelin 
Po mRNA expression as compared to Schwann cells grown 
alone (Fig. 6, lane 5). Because of the possible lability of 
regulatory activities present in co-cultures, initial regulatory 
events before myelin gene induction were examined. The in- 
duction of SCIP, a POU domain transcription factor (32), 
has been shown to precede myelin P0 and myelin basic pro- 
tein induction in development (25, 33) and in regeneration 
of sciatic nerve (33, 43). Analysis of Schwann cell SCIP 
mRNA induction in co-culture is shown in the composite 
Northern analysis in Fig. 6. SCIP mRNA is not expressed 
by confluent Schwann cells grown alone (Fig. 6, lane/) ,  but 
is transiently induced after 1 d in co-culture with DRG neu- 
rons (Fig. 6, lane 2). After 2 d in co-culture myelin Po 
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Figure 5. Densitometric analysis of p75 NGFR mRNA repression and 
the concomitant induction of myelin P0 mRNA expression in adult 
Schwann cell by co-culture with chick E8 DRG neurons. The rela- 
tive levels of p75 NGFR mRNA are expressed as a percentage of the 
message that is present in Schwann cells grown alone for the same 
periods of time ([]). The increase in Schwann cell myelin P0 
mRNA is expressed as fold increase over basal levels present in 
Schwann cells grown alone for the same periods of time (,,). The 
data represents six separate Northern analyses. Error bars = 
+SEM. 

mRNA is induced while SCIP mRNA expression is not de- 
tectable (Fig. 6, lane 3). If  the CCM from the 2 d neuronal 
co-culture is transferred to confluent naive Schwann ceils for 
1 d of culture, an induction of SCIP mRNA is evident (Fig. 
6, lane 4). I f  naive Schwann cells are grown in CCM for 
longer periods this SCIP mRNA induction is not detectable, 
p75 N°~ mRNA levels remain constant and myelin P0 
mRNA is not detectable (Fig. 6, lane 5). Thus, the titer of 
regulatory activities present in CCM is sufficient to induce 
neurite outgrowth from DRG neurons and a transcription 
factor in Schwann cells but not myelin protein gene expres- 
sion in Schwann cells. 

Discussion 

The goal of this work was an examination of neuronal 
influence on adult Schwann cell gene expression. The use of 
the millicell insert permits an investigation of neu- 
ronal-Schwann cell interactions in the absence of cell con- 
tact. In this paradigm, neurons and Schwann cells are sepa- 
rated as confirmed by scanning EM. Because of this 
separation, the requirement of axonal contact for neuronal 
regulatory mechanisms can be examined. This separation 
also permits analysis of the expression of the p75 NCFR gene 
in Schwann cells even though it is expressed by both cell 
types. The expression of the POU domain transcription fac- 
tor, SCIP, the myelin specific gene Po and p75 sGFR were de- 
termined by Northern analysis of Schwann cell RNA isolated 
after time in neuronal co-culture. 

The induction of Schwann cell p75 NCFR in sciatic nerve 
distal to an injury correlates with loss of axonal contact 
while its subsequent decrease correlates with the regrowth 
of nerve fibers and reestablishment of axon contact (13, 18, 
45). We find that neuronal co-culture without axon-Schwann 
cell contact also results in a diminished expression of 

Figure 6. Northern analysis of the induction of the POU domain 
transcription factor, SCIP mRNA. Schwann cells grown alone (lane 
/) express p75 N°FR but not myelin P0 or SCIP mRNA. Schwann 
cells transiently express SCIP mRNA after 1 d (lane 2) co-culture. 
This SCIP transcript expression is repressed after 2 d co-culture 
when myelin P0 is expressed (lane 3). If the conditioned medium 
(CM) from the 2 d co-culture is transferred to naive Schwann cells, 
after 1 d they express SCIP but not myelin P0 mRNA and the level 
of p75 NGFR mRNA is not diminished (lane 4). Schwann cell SCIP 
mRNA is not seen after 2 d culture in co-culture CM and the ex- 
pression of p75 N6FR is not diminished nor is P0 mRNA detectable 
(lane 5). 

Schwann cell p75 N°~ mRNA over time. The mechanism of 
this regulation is not yet understood. It has been suggested 
that expression of Schwann cell p75 N~FR mRNA diminishes 
with axonal contact as growth cone high-affinity NGF recep- 
tors remove Schwann cell p75N°FR-bound NGF (18). This 
hypothesis implies direct axon-Schwann cell membrane sig- 
nalling through occupancy of the Schwann cell p75 NGFR. In 
our experimental paradigm, Schwann cell-produced NGF is 
available through diffusion and could not contribute to the 
diminished p75 N°~ mRNA expression through a cell con- 
tact mechanism. The sensory neurons present in the co- 
culture express the high-affinity NGF receptor, trk (47), and 
their internalization of Schwann cell-derived trophic activi- 
ties that include NGF may be a component of the observed 
regulation of the Schwann cell p75 s~FR. 

Concomitant with the down regulation of Schwann cell 
p75 N°n~ mRNA in neuronal co-culture without cellular con- 
tact is the induction of myelin P0 mRNA. The expression of 
myelin P0 in vivo in response to injury (9) and regeneration 
(46) is the inverse of p75 NCFR mRNA expression. Schwann 
cells distal to a sciatic nerve crush (20, 21) or in culture (24) 
do not express myelin genes. Expression of myelin P0 in 
cultured neonatal Schwann cells is induced by forskolin and 
other agents that increase intracellular cAMP (21, 34) or by 
cell-cell contact with neurons from several sources (22, 35). 
Interestingly, cAMP and its analogues have also been impli- 
cated in the down-regulation of p75 N~Fa (31). These obser- 
vations in the literature, suggest that cAMP may be a second 
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messenger involved in the regulation of adult Schwann cell 
p75 N°FR and myelin P0 expression in the neuronal co-culture 
paradigm described here. The opposite effects that neuronal 
co-culture has on these two genes implies a Schwann cell 
production of regulatory transcription factor(s). 

Some of the diffusible substances involved in the observed 
gene regulation are labile. When transferred to naive con- 
fluent Schwann cells, CCM does not effect levels of expres- 
sion of the transcripts of p75 n°FR or myelin P0. Yet, both the 
action of Schwann cell-derived NGF and an initial regula- 
tory event, the derepression of SCIP, which has been shown 
to precede myelin P0 induction (25, 32, 33), occur in re- 
sponse to CCM. This SCIP mRNA expression induced by 
CCM is transient as is its induction after 1 d in co-culture 
(see Fig, 6, lane 4). SCIP induction may require a relatively 
low titer of regulatory molecule(s) such as might be neces- 
sary for the activation of the cAMP pathway. It is possible 
that neurons stimulate the Schwann cells to secrete autocrine 
"regulatory" molecule(s) that influence the derepression of 
the SCIP gene in the relatively short time period observed 
for activation, i.e., 24 h. Another possibility is that time is 
required to achieve an adequate titer of the "regulatory" mol- 
ecule(s) that would result in a complete activation of the my- 
elin genetic program. Alternatively, a continuous reciprocal 
exchange and uptake of molecules between neurons and 
Schwann cells may be necessary. Transfer of CCM would 
eliminate an essential component, i.e., the neurons. The 
identity of the diffusible substance(s) is as yet unknown. 

The observed regulation is neural specific as other cell 
types in co-culture have no effect on the expression of these 
Schwann cell genes. The regulatory capacity is not exclusive 
to neurons that would normally contact Schwann cells such 
as DRG or motoneurons. Neurons of the central nervous sys- 
tem, i.e., neural retina, have a similar effect on Schwann cell 
p75 NaFR and myelin P0 transcript expression. This result is 
in agreement with studies in which DRG, superior cervical 
ganglia and stellate ganglia neurons were all capable of in- 
ducing myelin P0 when their axons were in contact with 
neonatal Schwann cells in vitro (35). 

The regulatory events observed in the co-culture paradigm 
mimic what has been observed during regeneration in the 
adult. The Schwann cell gene regulation described is remi- 
niscent of developmental events. During neural crest migra- 
tion and peripheral nerve development, neurons in contact 
with glial precursors direct Schwann cell differentiation (16, 
17, 48), and myelin gene induction (29, 48). SCIP has been 
shown to be expressed in both the central and peripheral ner- 
vous systems before the induction of myelin genes and the 
subsequent expression of myelin proteins (22, 33; S. 
Scherer, submitted for publication). These other studies 
summarized above using cells or tissues in culture (39-42) 
or the crushed rat sciatic nerve model have provided abun- 
dant evidence that the regulation of myelination and of my- 
elin specific genes in Schwann cells and Schwann cell 
proliferation during Wallerian degeneration result from axon 
contact. The data reported here demonstrate that adult 
Schwann cells are also susceptible to diffusible neuronal sig- 
nals. How much of the myelination program can be reiter- 
ated in Schwann cells by these signals as compared to 
cell-cell contact signals has not yet been determined. The 
data presented here demonstrate neuronal regulation of three 
Schwann cell genes. Other myelin and cell adhesion proteins 
may be under similar control. The ability of neurons to direct 

an adult Schwann cell genetic program at a distance suggests 
a possible mechanism by which regenerating axons can initi- 
ate myelination in advance of the growth cone. 
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