

Advent of tirzepatide: boon for diabetic and obese?

Amrit Bhusal*

Dear Editor,

Obesity is defined by WHO as 'an abnormal or excessive fat accumulation that may impair health'^[1,2]. It is defined as the BMI over 30 kg/m² in adults^[2]. Obesity affecting approximately 600 million people, is the most prevalent chronic disease worldwide^[3]. Type 2 Diabetes Mellitus (T2 DM) is a chronic progressive disease associated with microvascular and macrovascular complications and increased cardiovascular mortality^[4]. In the year 2021, 537 million adults across the globe were suffering from T2 DM and this number is estimated to rise to 783 million by the year 2045^[2]. In this 21st century, DM and obesity are considered as twin epidemics causing significant morbidity and mortality by negative socioeconomic and environmental impacts by combination with genetic, epigenetic, and lifestyle factors^[2].

Tirzepatide is a 39-amino acid linear synthetic peptide based on the sequence of native glucose-dependent insulinotropic polypeptide (GIP). It shares 19 amino acids with human GIP, conjugated to a C20 fatty diacid moiety through a hydrophilic linker at the lysine at position 20, allowing albumin binding, prolonging its half-life to approximately 5 days, thus allowing for once-weekly dosing. It is a single molecule with agonistic activity at both the GIP receptor and glucagon-like peptide-1(GLP-1) receptor^[5].

GLP-1 agonism stimulates insulin secretion in hyperglycemic states, suppressing glucagon secretion in hyperglycemic or euglycemic states, delaying gastric emptying, decreasing appetite, and reducing body weight. GIP, the main incretin hormone in healthy individuals, is glucagonotropic in a glucose-dependent manner. Under hyperglycemic conditions, GIP stimulates the release of insulin, thereby lowering glucagon levels, and under euglycemic or hypoglycemic conditions, glucagon levels are increased. GIP receptors being abundant in adipose tissue, enhances both the postprandial lipid-buffering capacity of white adipose tissue and the sensitivity of adipose tissue to insulin, which may prevent ectopic fat deposition^[5,6]. The GIP component of dual GIP-GLP-1 agonism is hypothesized to act centrally to potentiate

Department of Internal Medicine, BP Koirala Institute of Health Sciences, Bagmati, Nepal

Sponsorships or competing interests that may be relevant to content are disclosed at the end of this article.

*Corresponding author. Address: BP Koirala Institute of Health Sciences, Dharan, 56700, Nepal. E-mail address: amritbhusal51@gmail.com (A. Bhusal).

Copyright © 2023 The Author(s). Published by Wolters Kluwer Health, Inc. This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

Annals of Medicine & Surgery (2023) 85:71–72
Received 6 November 2022; Accepted 25 December 2022
Published online 7 February 2023
http://dx.doi.org/10.1097/MS9.00000000000000173

a GLP-1-induced reduction in food intake^[6]. Not only this, dual agonism has an additive effect in healthy individuals with a significantly increased insulin response compared with separate administration of each hormone and also significant glucagonostatic effect while separate administration of either GLP-1 or GIP did not suppress glucagon secretion more than glucose alone^[4].

In a study to confirm the efficacy of tirzepatide compared to semaglutide, tirzepatide was found to be superior and noninferior to semaglutide with respect to weight reductions and dosedependent reductions in glycated hemoglobin level^[5]. A study of 12 weeks showed clinically significant reductions in glycated hemoglobin from the baseline as compared to placebo, suggesting that lower starting doses and smaller dose increments of tirzepatide are associated with a more favorable side effect^[6]. In phase 1 and phase 2 trials, tirzepatide demonstrated dose-dependent reduction in HbA1c (up to 2.4%) and body weight (up to 11.3 kg) in patients with T2 DM, suggesting its superiority to dulaglutide^[4]. In one of the studies, homeostatic model assessment 2-B significantly increased with dulaglutide and tirzepatide 5, 10, and 15 mg compared with placebo. Proinsulin/insulin and proinsulin/C-peptide ratios significantly decreased with tirzepatide 10 and 15 mg compared with placebo and dulaglutide and markers of improved insulin sensitivity adiponectin, insulin like growth factor binding protein-1 (IGFBP-1) and insulin like growth factor binding protein-2 (IGFBP-2) significantly increased by one or more doses of tirzepatide^[7]. In phase 3 double-blind, randomized, controlled trial involving 2539 adults, which was done for 72 weeks where escalating doses (5, 10, and 15 mg) of tirzepatide was administered subcutaneously, including a 20 weeks dose escalation period showed significantly decreasing weight and improvement in glycated hemoglobin with the escalating doses of tirzepatide as compared to placebo^[3]. Another study of 26 weeks to know about lipid profile change following the administration showed that tirzepatide dose-dependently decreased levels of apoprotein C-III (ApoC-III) and apoprotein B (ApoB) with escalating doses (10 and 15 mg) even reducing large triglyceride-rich lipoprotein particles, small low-density lipoprotein particles, suggesting a net improvement in atherogenic lipoprotein profile^[8]. The most common side effects were related to the gastrointestinal system (nausea, vomiting, and diarrhea), with the second most common side effect being reduced appetite, with some rare ones including cholecystitis, pancreatitis, injection site reactions, and hypersensitivity reactions^[4–10].

By taking all the above facts into consideration, it can be implied that tirzepatide could be a boon for obese patients and patients with T2 DM because of improvement in physical profile (weight reduction), sugar profile (reduction in glycated hemoglobin), and atherogenic profile (reduction in low-density lipoprotein particles and triglyceride-rich lipoprotein particles). Widespread access of tirzepatide could be a challenge for a socioeconomically deprived country like ours (Nepal). This can

be well taken into control by the interplay of multiple factors like stakeholders including the manufacturer, healthcare policy, the health insurance industry and pharmaceutical benefit managers, and the WHO.

Ethical approval

Not applicable.

Sources of funding

Since the author is a medical student under supervision, he does not have any financial support for this research.

Conflicts of interest disclosure

There are no conflicts of interest.

Author contribution

A.B.: first author; literature review, writing the manuscript, and final approval of the manuscript.

Research registration unique identifying number (UIN)

- 1. Name of the registry: none.
- 2. Unique identifying number or registration ID: none.
- 3. Hyperlink to your specific registration (must be publicly accessible and will be checked): none.

Guarantor

A. Bhusal.

Provenance and peer review

Not commissioned, internally peer reviewed.

References

- [1] Abdelaal M, Roux CW, Docherty NG. Morbidity and mortality associated with obesity. Ann Transl Med 2017:5:161.
- [2] Chavda VP, Ajabiya J, Teli D, et al. Tirzepatide, a new era od dual-targeted treatment for diabetes and obesity: a mini-review. Molecules 2022;27:4315.
- [3] Jastreboff AM, Aronne LJ, Ahmad NN, et al. Tirzepatide once weekly for the treatment of obesity. N Engl J 2022;387:205–16.
- [4] Min T, Bain SC. The role of tirzepatide, dual GIP and GLP-1 receptor agonist, in the management of type 2 diabetes: the SURPASS clinical trials. Diabetes Ther 2021;12:143–57.
- [5] Frías JP. Tirzepatide: a glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) dual agonist in development for the treatment of type 2 diabetes. Expert Rev Endocrinol Metab 2020;15:379–94.
- [6] Frias JP, Nauck MA, Van J, et al. Efficacy and tolerability of tirzepatide, a dual glucose-dependent insulinotropic peptide and glucagon-like peptide-1 receptor agonist in patients with type 2 diabetes: a 12-week, randomized, double-blind, placebo-controlled study to evaluate different dose-escalation regimens. Diabetes Obes Metab 2020;22:938–46.
- [7] Thomas MK, Nikooienejad A, Bray R, *et al.* Dual GIP and GLP-1 receptor agonist tirzepatide Improves beta-cell function and insulin sensitivity in type 2 diabetes. J Clin Endocrinol Metab 2021;106: 388–96.
- [8] Wilson JM, Nikooienejad A, Ms DAR, *et al*. The dual glucose-dependent insulinotropic peptide and glucagon-like peptide-1 receptor agonist, tirzepatide, improves lipoprotein biomarkers associated with insulin resistance and cardiovascular risk in patients with type 2 diabetes. Diabetes Obes Metab 2020;22:2451–9.
- [9] Manghi FCP, Landó LF, Bergman BK, et al. Tirzepatide versus semaglutide once weekly in patients with type 2 diabetes. N Engl J Med 2021;385:503–15.
- [10] Hartman ML, Sanyal AJ, Loomba R, et al. Effects of novel dual GIP and GLP-1 receptor agonist tirzepatide on biomarkers of nonalcoholic steatohepatitis in patients with type 2 diabetes. Diabetes Care 2020;43: 1352–5.