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Abstract: Models of genetic effects integrate the action of genes, regulatory regions and interactions among alleles across 
the genome. Such theoretical frameworks are critical for applied studies in at least two ways. First, discovering genetic 
networks with specific effects underlying traits in populations requires the development of models that implement those 
effects as parameters—adjusting the implementation of epistasis parameters in genetic models has for instance been a 
requirement for properly testing for epistasis in gene-mapping studies. Second, studying the properties and implications of 
models of genetic effects that involve complex genetic networks has proven to be valuable, whether those networks have 
been revealed for particular organisms or inferred to be of interest from theoretical works and simulations. Here I review 
the current state of development and recent applications of models of genetic effects. I focus on general models aiming to 
depict complex genotype-to-phenotype maps and on applications of them to networks of interacting loci. 
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INTRODUCTION 

 Models of genetic effects are maps relating phenotypes to 
parameters with genetic meaning and biological insight. The 
phenotypes enter these models as genotypic values—the 
expected phenotype for each genotype—and the latter ones 
are the genetic effects. This connection between phenotypes 
and genetic effects enabled Fisher [1] to merge Mendel’s 
laws with the observations of the biometricians on the 
inheritance of quantitative traits. Thus, the genetic effects 
entail the core of the quantitative genetics theory, providing 
a basis for fundamental concepts and applications as 
breeding values, resemblance between relatives, heritability 
and response to selection (e.g. [2, 3]). 
 It is noteworthy, however, that traditional applications of 
quantitative genetics were (and may keep on being) carried 
out using information about individual phenotypes and 
relatedness among individuals alone. Genotypes entail the 
pivotal ingredient of models of genetic effects but they were 
largely out of reach of researchers for a long time. The 
quantitative genetics theory was founded on individual 
genotypes, but initially treated them from a black-box 
perspective while allowing researchers to compute 
parameters of interest from visual observations. Two such 
parameters are heritability and the best linear unbiased 
predictor (BLUP) for breeding values. Restricted maximum 
likelihood (REML) has allowed estimation of heritabilities 
and BLUP under a wide range of experimental situations 
(e.g. [2, 4]). 
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 The advent of quantitative trait loci (QTL) analysis in the 
1990s opened new fields for research. Many genetics 
research lines shifted focus to genes and genotypes as 
mapping phenotypes became available [5]. The ultimate goal 
of this approach is to locate the (most important) underlying 
genes and regulatory regions (the QTL) of a trait and to 
estimate the different effects of their allelic variants at the 
nucleotide level (the QTN) so that individual genotypes can 
be assessed and anticipated [2, 4]. Two decades later, both 
refined experimental designs and advanced statistical tools 
have been developed to aid this aim (see e.g. [6]). Similarly, 
progress has been and keeps on being made on models of 
genetic effects for both more efficiently mapping QTL, 
estimating their effects and analysing their role in evolution, 
disease impact or breeding programs. 
 In this communication, I review models of genetic effects 
with epistasis and current applications of them. I concentrate 
on models aiming to depict general genotype-to-phenotype 
maps and in applications of them to more or less particular 
cases. I begin by stressing the importance of implementing 
epistasis in genetic modelling. Next, I focus on models that 
are meant to analyse genetic properties at the population 
level, both from the perspective of traditional quantitative 
genetics and in the more recent context of QTL experiments. 
I draw special attention to the application of population-
referenced genetic effects to genetic filtering. Then, I focus 
on genetic effects aiming to depict the genotype-to-
phenotype map at the organism level. I recall why these 
models are necessary and review the terminology that has 
been used to express the duality between population- and 
individual-referenced genetic effects. I also develop an 
example to illustrate how individual-referenced genetic 
effects can be applied to model genetic networks entailing 
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molecule interactions. Finally, I discuss current challenges in 
the development of models of genetic effects and their 
applications. 

GENETIC NETWORKS OF INTERACTING LOCI 

 The genetic architecture of a trait is the network of loci 
affecting that trait plus the effects of their alleles, both 
additive and interaction effects. The latter ones include 
within-locus interactions, like dominance and imprinting, 
and between- and among-locus interactions, which are 
pairwise and higher order epistasis, respectively. Sex-
interaction effects may also occur and when different 
environments are considered, putative gene-by-environment 
interactions are included as well. Finally, pleiotropy should 
also be taken into account when considering more than one 
trait. It must be kept in mind that the genetic architecture of a 
trait cannot be detached from the population in which it is 
studied—which we will retake in the next section of this 
article. In other words, the loci affecting a trait in a 
population are the ones for which that population entails 
genetic variability affecting that trait. There could be, for 
instance, a gene holding great potential for functionally 
affecting a trait value that is fixed for one allele in a 
particular population. Such a gene could comprise an 
important component of the genetic architecture of the trait 
potentially, but it would show no effect on the trait in that 
population. 

Mapping Epistasis 

 Epistasis is known to also be able to conceal effects of 
genes—in this case, variable genes—in a population [7, 8]. 
Sign epistasis consists in one allele substitution increasing a 
phenotype under one genetic background and decreasing it 
under a different one, which is known to occur both in 
natural and experimental populations [9, 10]. This 
phenomenon may make the average marginal effect of allele 
substitutions within a locus to average out in an experimental 
population (with a particular set of genotype frequencies) so 
that it may be missed out in a standard QTL mapping study. 
As a consequence of this, epistatic effects between loci shall 
be estimated and tested when aiming to detect such loci, for 
which models of genetic effects with epistasis are required 
(e.g. [8]). This strategy of searching for epistasis genome-
wide implies two-dimensional scans of the genome, which 
are associated to higher computational burdens and more 
severe multiple-testing problems than the conventional one-
dimensional genome scans of marginal effects. Despite that, 
epistatic searches have in many cases mapped pairs of QTL 
that were dismissed in one-dimensional searches (e.g. [11, 
12]) and examples of even higher order epistasis are known 
[13-15]. This exemplifies that even when the objective is to 
just locate QTL, geneticists profit from models of genetic 
effects that are more complex than the ones with only 
marginal effects. 
 Recently, epistasis has also been pointed out as an 
important issue to look at in genome-wide association 
studies (GWAS) [16-18]. A multiplicity of methods have 
already been developed and used for finding small groups of 
interacting loci (reviewed in [19-21]) and larger pathways 
[22]. As the availability of denser marker maps rapidly 
boosts, more efficient computational methods are developed 

that enable researchers to handle and take advantage from 
them in the quest for epistasis [23]. Whether loci are mapped 
through QTL analysis or GWAS, inspecting epistasis may 
aid our understanding of phenomena that are critical for both 
evolutionary genetics and genetic breeding—examples 
follow. 

Mechanisms Involving Epistasis 

 Midparent heterosis occurs when F1 and F2 hybrids are 
on average more vigorous than the midpoint of the two 
parental populations. Geneticists have tried to understand 
and exploit heterosis since long [24] and keep on meeting 
this challenge using nowadays latest molecular and statistical 
tools. Initially, dominance and overdominance were 
proposed as the simplest mechanisms that could underpin 
heterosis (e.g. [25, 26]). However, the genetic architecture of 
heterosis has recently been addressed using genetic 
modelling of QTL experiments and additive-by-additive 
epistasis has been identified as a major component of 
midparent heterosis. Based on this, a special parameter 
called augmented dominance effect of a locus has been 
defined from the dominance effect of that QTL and the 
additive-by-additive interaction effects with other QTL [27] . 
Melchinger and colleagues have used this parameter to 
improve QTL detection and dissect the genetic architecture 
of heterosis in plant populations (e.g. [28-32]). Several other 
research groups have also found epistasis to underpin 
heterosis (e.g. [33-36]). 
 Transgressive segregation (TS) is another deviation from 
what is expected under blending inheritance. It occurs when 
there are hybrid genotypic values lying outside the interval 
between the two parental populations. TS is frequent in both 
plant and animal populations [37] and it has been suggested 
that it occurs under additive genetic architectures due to 
antagonistic QTL, whose alleles are in the opposite direction 
to parental differences [38]. Although the presence of 
antagonistic QTL seems to be the rule rather than the 
exception, crosses exhibiting the highest levels of TS have 
not been found to be associated to an increased frequency of 
antagonistic QTL [38]. It is thus sensible to once again resort 
to epistasis as a likely causative genetic mechanism for 
phenotypic explanation and prediction. Indeed, traces have 
recently been found from experimental chicken populations 
supporting this proposal (Álvarez-Castro et al., in 
preparation). 
 Hybrid incompatibilities occur when the offspring 
coming from the cross of two lines display reduced viability 
or fertility. This can also be described as TS on fitness since 
the offspring has lower fitness than any of the parental lines. 
Bateson, Dobzhansky and Muller [39-41] stressed the 
importance of hybrid incompatibilities for speciation and 
separately concurred in pointing out that epistasis must be a 
major factor in the evolution of hybrid incompatibilities in 
allopatric populations coming from the split of a common 
ancestral population—which is called the Bateson-
Dobzhansky-Muller (BDM) model [42, 43]. Some cases of 
BDM incompatibilities are already studied at the molecular 
level [44]. We retake hybrid incompatibilities below, as well 
as other situations that emphasize the importance of epistasis 
in quantitative genetic studies. 
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POPULATION-REFERENCED GENETIC EFFECTS 

 As initially formalized by Fisher [1, 45], genetic effects 
can be set up as regression coefficients and residuals that 
typify the properties of a trait in a particular population, with 
a given set of genotype frequencies. This way the genetic 
effects are defined from a least-square principle that makes 
them be statistically independent, i.e. orthogonal, at the 
population in question. Population-referenced models are 
thus functions of the population frequencies and they would 
optimally be general in terms of both the genetic effects and 
the population frequencies they can implicate. Kempthorne 
[46] and Cockerham [47] took up Fisher’s baton by 
implementing epistasis in orthogonal models of genetic 
effects with multiple alleles and departures from the Hardy-
Weinberg proportions, respectively. These models, entailing 
additive-by-additive, additive-by-dominance and dominance-
by-dominance effects, are the basis on which orthogonal 
decompositions of the genetic variance in epistatic systems 
can be derived (e.g. [3, 4, 48-51]). 

Additive Variance Under Drift and Selection 

 Assessing the behaviour of the components of the genetic 
variance under selection and drift has comprised a striking 
example of the use of those models. As a general principle 
for additive genetic architectures, the additive genetic 
variance should decrease and even eventually vanish in the 
face of drift [52]. It is also since long known, however, that 
this principle does not necessarily apply to nonadditive gene 
action—specifically to the presence of dominance [53]. 
Pioneering theoretical works have also shown that epistasis 
may cause an increase of additive genetic variance after a 
population bottleneck [54, 55], which led to a quantity of 
follow-up literature (e.g. [56-61]). There actually exists 
empirical evidence for the release of additive genetic 
variance after bottlenecks (see [62, 63]). It must also be kept 
in mind, though, that a recent simulation study has suggested 
that in the presence of purifying selection (under a mutation-
selection-drift scenario) conversion of nonadditive into 
additive genetic variances due to bottlenecks occurs in 
specific situations only and that, due to inbreeding 
depression, this is unlikely to lead to a net increase of the 
adaptive potential of a population [64]. 
 The theoretical study of the additive variance under 
selection has led to results similar to the aforementioned case 
of drift. Directional selection is initially assumed to remove 
genetic variation (e.g. [65]). However, several theoretical 
and simulation studies have shown that additive variance can 
be maintained or even temporarily increased in spite of 
directional selection when nonadditive gene action takes 
place [66-70]. As for the case of drift above, empirical work 
exists in accordance with these results [71-73]. The release 
of additive genetic variance of a trait under stabilizing 
selection after mutation or environmental changes can also 
be explained by the action of epistasis [74, 75]. 

What the Epistatic Variance Tells Us 

 Following Fisher’s statistical theory [1, 3, 45], the 
decomposition of the genetic variance is performed in a 
hierarchical way so that as much variance as possible is 
accounted for by the additive effects (regression coefficients) 

and decreasing amounts of variance are available to be 
accounted for by within, between and among locus 
interaction effects (residuals of increasingly higher order). 
Consequently, the epistatic genetic variance of a trait is in 
general expected to be relatively small. Being able to 
compute the different components of the genetic variance, 
from the additive component to the epistatic ones (additive-
by-additive, additive-by-dominance and so on) has proven to 
be valuable as a basis for concepts like the dissection of the 
resemblance between relatives (e.g. [3]). But it is necessary 
also keeping in mind that it would be misleading to try to use 
the decomposition of the genetic variance to infer all kinds 
of evolutionary properties. Indeed, the relative amount of 
epistatic variance of a trait is very poorly informative about 
the evolutionary role epistasis may be playing in a 
population (see e.g. [76]). I find the cases reviewed just 
above to be paradigmatic counterexamples supporting this 
claim—since they show that the presence of epistasis may 
actually mediate a boost of additive variance under several 
conditions. 
 On the other hand, multilocus random genotype-to-
phenotype maps can be built by assigning genotypic values 
to genotypes using a random distribution. It has very recently 
been shown that doing so generates rates of epistatic 
variance that are higher than the ones often measured in 
empirical situations [77]. Therefore, empirical epistatic 
variance rates also tell us that real genotype-to-phenotype 
maps are not equivalent to completely random maps. 
Introducing order preservation as a constraint when 
artificially building the maps (i.e. precluding overdominance 
and preserving the order of allele substitutions across 
backgrounds, at least in some loci) has been found to 
generate more realistic rates of epistatic variance [77]. It 
would be interesting to inspect the rates of epistatic variance 
of architectures that are constrained by other reasonable 
biological assumptions, like modularity. 

POPULATION-REFERENCED MODELS AND QTL 
ANALYSIS 

 Beyond classical applications of the decomposition of the 
genetic variance to population and quantitative genetics, the 
advent of QTL analysis further fuelled the improvement of 
models of genetic effects. Orthogonal models of genetic 
effects have in general been found convenient for QTL 
analysis. I hereafter address three particular advantages of 
them. 

Model Selection 

 First, they are convenient for estimation of genetic 
effects, particularly when studying epistasis. Kao and Zeng 
[78] elaborated on Cockerham’s model [47]—built on a set 
of eight orthogonal scales for describing and estimating 
additive, dominance and epistatic effects of two interacting 
loci with two alleles each—for the particular case of an F2 
population and particuarly stressed this point. Estimation of 
genetic effects with orthogonal models will not be affected 
by the presence/absence of other genetic effects in the 
model, which for instance makes estimates of marginal 
effects of particular loci to remain constant regardless of 
whether putative epistatic effects with other loci are 
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considered in our model or not (see also [79, 80]). Therefore, 
orthogonality is an extremely convenient property for 
straightforward model selection in QTL mapping—neither 
the estimated genetic effects nor their variances are modified 
by adding/removing other putative effects from the model. 

Genetic Filtering 

 As a second advantage of orthogonal models of genetic 
effects, we here elaborate on why and how to use them to 
perform genetic filtering of genotypic values in a QTL study. 
After a model selection procedure in a QTL mapping 
experiment, a genetic architecture will optimally have been 
chosen entailing the putative genetic factors that underlay the 
expression of a trait in a population. This includes not only a 
set of loci but also a set of genetic effects, namely (data 
permitting) additive, dominance, imprinting, and epistatic 
effects as well as gene-sex and gene-environment 
interactions. It is worth noting that not all possible effects of 
the selected loci will be included in the resulting genetic 
architecture. Some loci may for instance show dominance 
effects whereas others may not; some epistatic loci may even 
show no additive effects under a certain genetic background, 
as pointed out above. Similarly, some epistatic effects 
between/among the selected loci shall be found to be 
significant whereas others shall not. 
 Focussing now on the genotypic values, they may be 
computed for each genotype as the mean phenotype of the 
individuals having that genotype. Two different problems 
may arise when doing so. On the one hand, the genotypic 
values computed this way will entail all kinds of genetic 
effects, including those that we may have discarded by a 
model selection procedure. Had for instance four loci been 
selected to significantly affect a trait, the genetic effects 
would entail up to four-order epistasis. This can be due to 
four order epistasis to actually occur—in which case we will 
most surely not be able to prove statistically—and/or just 
because our genotypic values are affected by sampling errors 
that show up, amongst other things, as all levels of genetic 
interaction. Therefore, researchers may often be interested in 
filtering out those genetic effects from our genotypic values. 
 On the other hand, above it has been assumed that it will 
be possible to compute the mean phenotype of each group of 
individuals with a particular genotype, that is, that in the data 
there are individuals with all possible genotypes. With a 
network of just four loci and two alleles per locus, the 
number of possible genotypes is 34=81 and the expected 
number of individuals of each of the 22 possible complete 
homozygotes in an F2 population of 800 individuals is just 
3.125—hence, some empty genotypic classes will most 
surely occur. Thus, it will often not be possible to compute 
all genotypic values directly from the phenotypic data. 
Opportunely, it will still be possible to compute them using 
genetic modelling from the set of genetic effects picked up 
by the model selection procedure. 
 Indeed, genetic filtering consists in using a set of genetic 
effects selected for a set of loci of interest to (re-)compute 
the genotype-to-phenotype map (see diagram in Fig. 1). By 
doing so all genotypic values will be obtained entailing all 
genetic effects considered, and only those. However, this 
procedure will not make complete sense when the genetic 

effects that have been selected into our model change 
drastically after removing the ones discarded in the model 
selection procedure. Orthogonal models of genetic effects 
thus warrant genetic filtering to be performed in a consistent 
manner. As an example, applying genetic filtering with the 
natural and orthogonal interactions (NOIA) model, Le 
Rouzic et al. [81] have shown that the age at which some 
genes produce their effects in chicken growth are highly 
dependent on the genetic background. 

Interpretation 

 Finally, orthogonal models of genetic effects aid the 
interpretation of estimates obtained in QTL analyses. 
Orthogonal additive effects are average effects of allele 
substitutions in populations [1, 2]. These are the basis for the 
definition of breeding values and they enable performing a 
decomposition of the genetic variance with no genetic 
covariances, which in its turn sets the basis for the 
mathematical description of heritability (e.g. [2]). Thus, 
estimates of genetic effects from a QTL study have a clear 
interpretation as they are descriptors of the genetic properties 
of the mapping population [78-80]. 
 Further, note that mapping populations are often ad-hoc 
experimental constructs that have been built with the only 
purpose of identifying a set of loci underlying a trait. 
Researchers will thus often be interested in additional 
information about the genetic properties of populations 
different from the mapping population. Conveniently, 
estimates of genetic effects associated to a population can be 
straightforwardly transformed into the genetic effects of 
another population (with a different set of genotype 
frequencies) as long as orthogonal models of genetic effects 
have been described for both populations [82]. Overall, 
orthogonal models of genetic effects aid mapping and 
interpretation of the genetic architecture detected in a QTL 
study beyond the framework of the particular population 
used for mapping the QTL. 

INDIVIDUAL-REFERENCED GENETIC EFFECTS 

 We have just discussed why models of genetic effects 
based on average effects of allele substitutions over 
populations are the core of quantitative genetics theory and 
we have in particular mentioned that, in QTL analyses, 
obtaining genotypic values that are coherent with a particular 
genetic architecture is one of the advantages we can gain 
from those models. It is at this point worth noting that 
genotypic values are however assumingly independent of the 
genotypic frequencies of the population in which they are 
measured. Consequently, it could be considered that 
providing genetic effects also in a population-independent 
way could enable researchers to attain further interpretation. 
Actually, Fisher [1] already proffered a simple non-
population-referenced model, using sort of arbitrary additive 
and dominance effects as an initial yardstick on which to 
root further statistical developments. Somehow 
paradoxically, those arbitrary effects were later called the F∞ 
model because they can also be interpreted population-
wise—they are orthogonal at an ideal population resulting 
after infinite generations of brother-sister mating [80, 82, 
83]. From the point of view of a QTL experiment, this F∞ 



Epistasis: Models And Applications Current Genomics, 2012, Vol. 13, No. 2    167 

population does not allow estimation of dominance effects—
nor any kind of epistatic effects involving dominance, like 
additive-by-dominance effects. 
 In any case, the early attempts to map QTL [84] already 
gave rise to the need of models of genetic effects that were 
not focused on population gene or genotype frequencies. 
Indeed, Jana [85] found the non-population-referenced 
model by Seyffert [86] to be more adequate than population-
referenced ones in aiding “physiological and biochemical 
interpretation of dominance and epistasis”. In the more 
recent context of interval mapping [5, 87, 88], the same 
concern has been put forward by Cheverud and Routman 
[89, 90]. They developed their physiological model aiming 
to depict functional interactions between molecules resulting 
from the expression of loci at the organism level, rather than 
the averages of the effects of those loci within particular 
populations as depicted in the statistical models. As well as 
Fisher’s [1] average (statistical) genetic effects, Cheverud 
and Routman’s [90] can be obtained as regression 
coefficients and residuals, the difference being that the first 
ones result from a regression weighted by the genotypic 
frequencies of a population whereas the later ones result 

from an unweighted regression—thus being population-
independent. 

Multilinear Epistasis 

 Hansen and Wagner [91] further developed Cheverud 
and Routman’s [90] ideas into an individual-referenced 
model framework. Their multilinear model implements 
epistasis using a multilinear framework in which functional 
genetic effects are given a biological, population-
independent meaning as effects of allele substitutions from 
reference individual genotypes. Further, Hansen and Wagner 
[91] introduced the concept of change of reference of genetic 
effects and developed expressions to transform the 
(multilinear) genetic effects from the reference of an 
individual genotype into the ones from a different reference 
genotype. The multilinear model can also be linked to 
population-referenced genetic effects through constructing 
hypothetical individuals whose alleles have effects that are 
averages of the effects of the alleles present in a population. 
 The multilinear model implements epistasis in an 
analytical tractable manner and it has proven to be useful for 
analyzing the potential evolutionary properties of the genetic 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. (1). This diagram illustrates genetic filtering. After having selected a set of loci underlying a trait in a population, the genotypic values 
can be computed simply as means of the genotypic classes. It must be noted that this leads to genotypic values involving all genetic 
interactions, whether they reflect actual interactions or just arbitrary effects due to noise. In other words, there will presumably be a 
mismatch between the genotypic values obtained from the selected QTL positions and the selected genetic effects. Moreover, this map will 
often be incomplete because of lacking classes in the data. Alternatively, genetic filtering consists in computing the genotypic values using 
information from not only the selected positions and their genotypic probabilities (that are used to obtain the genetic-effect design matrix, S) 
but also from the selected set of genetic effects (the vector E), through the expression G=SE, so that all genetic effects discarded in the 
model selection procedure get to be filtered out. Using this alternative method, the resulting genotype-to-phenotype map is complete and 
perfectly matches the selected genetic effects. Orthogonality of the matrix S warrants that the selected genetic effects remain unchanged 
when removing the discarded ones. 
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architecture of a trait. In particular, Hansen and colleagues 
[69, 92] have found directionality to be a key property in 
determining the outcome of a population’s response to 
directional selection pressures along many generations. A 
parameter has been described to measure directionality, the 
directional epistasis coefficient [69]. This parameter can 
be—and has actually already been—used to obtain empirical 
estimates of directionality [93, 94]. Directionality is thus, 
similar to heritability, a predictor of the kind of response to 
selection of a trait in a population. Further, it is noteworthy 
that directionality conditions response to selection in a 
longer timeframe than heritability does. 
 The multilinear model has also been applied to studies 
involving stabilizing selection. The expected equilibrium 
genetic variance under mutation-selection-drift balance has 
been found to decrease with multilinear epistasis [95, 96]. 
On the other hand, Fierst and Hansen [97] have pointed out 
that opposed directional selection is not a necessary 
condition at all for hybrid incompatibilities to evolve under 
the BDM model. To the contrary, they may occur between 
isolated populations under stabilizing selection—even when 
sharing the same optimum—with weak or moderate 
multilinear epistasis. 

A General Functional Formulation 

 Functional genetic effects can also be modelled as natural 
effects of allele substitutions from individual genotypes in a 
theoretical framework with completely general—e.g. not 
necessarily multilinear—epistasis. The traditional, statistical 
models cannot be accommodated to do this because their 
reference points are intercepts of regressions weighted by the 
population frequencies—hence, setting the population 
frequencies to use one individual genotype as intercept is 
equivalent to trying to perform a regression to a single point. 
Thus, a new set of formulae had to be developed for this 

task. For the biallelic case, Álvarez-Castro and Carlborg [82] 
modelled the natural effects of allele substitutions of the 
functional models in an analogous way to the orthogonal, 
averaged effects of allele substitutions of the statistical 
models. Using a consistent notation enabled Álvarez-Castro 
and Carlborg [82] to make functional and statistical models 
of genetic effects to be straightforwardly interchangeable—
in a way similar to how Van der Ween [98] connected a few 
genetic models that were used at the time. Functional and 
statistical genetic effects are this way unified into NOIA, a 
model integrating both natural (single substitution effects) 
and orthogonal parameters. Yang and Álvarez-Castro [99] 
extended the functional formulation of the NOIA model to 
arbitrary numbers of alleles at each locus. Table 1 shows a 
summary of the properties of several models of genetic 
effects. 
 Free software (noia [93]) has been released for the 
application of NOIA to empirical data. Estimates of effects 
of allele substitutions from an ancestral chicken genotype to 
a domesticated one have been obtained using this software 
[100]. Several other publications have applied noia to study 
epistasis in the domestication and selection response of 
chicken [13, 81, 101, 102] and also to understanding the 
genetics underlying tameness in rats [101, 103]. Also using 
the noia software, Pavlicev et al. [94] have obtained 
estimates of coefficients of directional epistasis in mice. 

NOMENCLATURE 

 One of the premises that enormously smoothes the 
progress of a field is to establish a common, unambiguous 
terminology. Above, we have on the one hand labelled the 
population-referenced models of genetic effects as statistical 
models, which describe the genotype-to-phenotype map 
orthogonally as a set of averaged allele substitutions from 
the mean of a population. On the other hand, we have 

Table 1. Summary of properties of models of genetic effects. All models shown have parameterized statistical formulations 
although not all have been mathematically expressed in matrix notation or in terms of allele substitutions from individual 
genotypes (functional formulations). Alternatively, different models describe different genetic architectures (epistasis 
types, numbers of loci or alleles) and provide orthogonal decompositions of the genetic variances under different 
population facts (HWD or LD). Actually no model is orthogonal under LD but there are two models assessing the impact 
of LD on orthogonality 

 Multilinear1 Yang’s2 G2A3 Wang and Zeng’s4 NOIA5 

Matrix notation No Yes* Yes No Yes 

Functional Yes No No No Yes 

Epistasis Multilinear Yes Yes Yes Yes 

Multiple loci Yes Two Yes Two Yes 

Multiple alleles Yes No No Yes Yes 

HWD No Yes No Yes* Yes 

LD No Assesses No Assesses No 
1By Hansen and Wagner [91].  
2Yang’s model [79] is based on Cockerham’s setting [47].  
3By Zeng et al. [80].  
4Wang and Zeng’s model [112, 113] is based on Kempthorne’s setting [46].  
5By Álvarez-Castro, Carlborg and Yang [48, 82, 99]. 
*Yang’s model notation is based on matrices, although different from the G=SE formulation. Wang and Zeng’s model initially considers HWD although not for the main results 
attained. 
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labelled as functional models the ones describing the 
genotype-to-phenotype maps as sets of natural allele 
substitutions from the reference of individual genotypes. 
Indeed, epistasis raised a debate concerning the different 
approaches to formulating genetic effects (e.g. [80, 82, 90, 
91]) and it is interesting to note that the duality between 
functional and statistical parameters also concerns models 
with only marginal genetic effects [82, 99]. 
 Both the above mentioned physiological [90] and 
multilinear [91] models focus on the phenotypic effects of 
alleles at the organism level in a non-population-referenced 
way. This angle has been referred to as functional 
formulations of genetic effects or functional epistasis (e.g. 
[10, 82, 91])—especially when using individual genotypes as 
reference points—but it has also been referred to as 
biological [104] and even split into genetical and biological, 
for distinguishing interactions between DNA sequences and 
between proteins, respectively [105]. More recently, also the 
label compositional has been proposed to track effects of 
allele substitutions from reference individual genotypes 
while suggesting to keep the label functional for more 
explicitly referring to how molecules function and interact 
[106]. Indeed, functional epistasis was used to refer to 
phenotype and fitness effects of physiological facts since 
long (e.g. [107]) and keeps on being used in that sense at 
present [108-111]. 
 The duality between formulations of genetic effects has 
also been expressed as Cockerham type versus F∞ type 
models [112]. Although not completely clearly defined, this 
divide seems to match the one mentioned above—statistical 
versus functional (or compositional) formulations. The 
choice of Cockerham to name the first type of models seems 
somehow arbitrary since Cockerham [47] developments are 
on the one hand extensions of Fisher’s [1] and on the other 
hand less general than Kempthorne’s [3, 46] (see e.g. [113]). 
More importantly, the F∞ model has been regarded both as a 
sort of arbitrary, population-independent model and as a 
population-dependent one, as explained above, which makes 
it confusing to use it as a label for one of these two types. 
 To sum up, a huge gap seems to be perceived between 
some self-proclaimed functional formulations of genetic 
effects and the modelling of the action of molecules at the 
physiological level (see e.g. [16, 106, 114, 115]). When 
initially proposing the label functional for individual-
referenced models, Hansen and Wagner [91] deemed effects 
of allele substitutions from reference individuals to certainly 
be more informative about how gene products function than 
average effects over populations could be. To further clarify 
this point, I devote the next section of this communication to 
develop an example illustrating how the flexibility of those 
functional formulations aids the modelling of specific 
molecule interactions of evolutionary significance, leading in 
particular to hybrid incompatibilities. Currently lacking a 
general consensus, throughout this communication I keep on 
using the label functional sensu Hansen and Wagner [91]. 

MODELLING MOLECULE INTERACTIONS WITH A 
FUNCTIONAL FORMULATION 

 Let us here consider a case of hybrid incompatibilities in 
accordance with the BDM model, with two loci, A and B, 

which code for two different protein monomers that bind 
into a functional enzyme dimmer. It will be assumed that one 
population is initially fixed for alleles “1” at both loci, A1 
and B1. Next, that population splits into two isolated 
populations where new alleles at the two loci, A2 and B2, 
arise by mutation and get eventually fixed—one allele in 
each population. Then, the two isolated populations merge 
and the “2” alleles of loci A and B, which were compatible 
with the “1” alleles, happen not to be completely compatible 
with each other. Two possible types of molecule interaction 
are considered that can underpin this lack of compatibility. 
 First, let us consider the possibility that alleles A2 and B2 
lead to enzyme monomers that bind easily but lead to non-
functional enzyme dimmers—case C1. In this case, the 
concurrence of alleles A2 and B2 in one individual leads to a 
disadvantage due to a waste of resources in the production of 
non-functional enzyme dimmers. Second, consider that the 
monomers produced by alleles A2 and B2 bind difficultly—
case C2. In this case, a disadvantage arises whenever an 
allele “2” is present at one locus only—either A2 or B2 but 
not both of them together—due to a waste of resources in the 
production of a certain amount of useless monomers. 
 These two cases are illustrated in Fig. (2). Both charts 2A 
and 2B show that, in accordance with the assumptions, the 
populations in which the mutations appear and eventually get 
fixed (leading to genotypes A1A1B2B2, A2A2B1B1) keep the 
same trait value as the ancestral population (A1A1B1B1). By 
chosing that trait value to be one, it can be regarded as a 
relative fitness value. In Figs. (2A and 2B) it can also be 
observed that some of the genotypes resulting from the 
hybridization of the two populations with fixed mutations get 
penalized phenotypes (particularly, to a value of ½). The 
only difference between the two cases is the double 
heterozygote, which is penalized when considering the first 
case of molecule interaction, C1 (Fig. 2A), but not when 
considering the second one, C2 (Fig. 2B), in accordance with 
our assumptions. It is thus obvious that the two cases may 
have different evolutionary outcomes, since an F1 population 
would be penalized in one of the cases but not in the other 
one. 
 Sets of genetic effects that reflect the two extreme cases 
considered, C1 and C2, and also all intermediate cases, are 
shown in Table 2. The first two rows of this table gather the 
genetic effects for the two extreme cases as natural effects of 
allele substitutions from the reference of the ancestral 
population using the functional formulation of the NOIA 
model [82]. In the third row of Table 2, the two cases are 
generalized by adding two parameters. The first parameter, 
e1, stands for the strength of the penalization. It ranges from 
zero (no penalization) to one (the phenotype of the penalized 
individuals drops to zero). Thus, this parameter takes a value 
of ½ in the examples of Fig. (2). Using the second 
parameter, e2, it is possible to consider the two extreme 
cases, C1 and C2 (for values zero and one, respectively), 
plus all intermediate instances. Let us now consider a 
population at equilibrium in which the frequencies of alleles 
coming from the population where B2 got fixed are half of 
the frequencies of the alleles coming from the population 
where A2 got fixed (Table 3). The statistical genetic effects 
for that population can easily be obtained using the 
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    A        B 
Fig. (2). Two-locus (A and B) two-allele (1 and 2) genotype-to-phenotype maps that are consistent with the cases of hybrid incompatibility 
considered in the text. The genotypic values (G) consistent with cases C1 and C2 are in charts 2A and 2B, respectively. The only difference 
between the two cases affects the double heterozygote, which is penalized by hybrid incompatibilities in case C1, but not in case C2. 

Table 2. Genetic effects of hybrid incompatibilities due to molecule interactions of gene-products of loci A and B. The first three 
rows are functional formulations from the reference of A1A1B1B1, the third one being a generalization of the particular 
cases shown in the other two. The fourth row is a statistical formulation from the reference of the population shown in 
Table 3 that also generalizes the two cases considered (see text for details). To be precise, the names of the parameters for 
the statistical case (fourth row) should actually be Greek letters (µ instead of R, α instead of a and δ instead of d) 

 R aA dA aB dB aa ad da dd 

Case C1 1 0 0 0 0 -1/8 -1/8 -1/8 -1/8 

Case C2 1 0 0 0 0 -1/8 -1/8 -1/8 3/8 

Functional 1 0 0 0 0 -e1/4 -e1/4 -e1/4 e1(e2-1/4) 

Statistical 1+(23/34) 
e1(2e2-5) 

(1/33) 
e1(22e2+5) 

(1/18) 
e1(23e2-5) 

(24/33) 
e1(e2-22) 

-(1/32) 
e1(e2+2) 

(1/3) 
e1(e2-1) 

(22/33) 
e1(e2-1) 

-(1/6) 
e1(2e2+1) 

e1(e2-1/4) 

 
transformation tool of NOIA [82] and they are shown in the 
fourth row of Table 2. 
 I have developed this example in order to stress three 
points. First, note that the functional formulation from the 
reference of the ancestral genotype leads to simpler 
expressions for the genetic effects than the statistical 
formulation does (rows 3 and 4 in Table 2). I have used a 
functional formulation from an appropriate reference 
because this can be extremely helpful in modelling genetic 
architectures in general, and situations expressed in terms of 
molecule interactions in particular. Second, in spite of 
having used a particular (and convenient) reference point to 
formulate our model, we are not restricted to that choice. To 
the contrary, having obtained a particular formulation of 
genetic effects from a particular reference point, the 
transformation tool of the NOIA model allows easy 
transformation of these genetic effects into the ones fitting to 
a different formulation that could be convenient for the 
analysis—in this example, the statistical formulation at the 
mean of the population shown in Table 3. Finally, the 

expressions of the genetic effects obtained in this example 
could now be used to test whether genetic effects of pairs of 
loci detected through QTL analyses or GWAS could fit to 
the kind of interactions that I have considered in this model. 
Table 3. Genotype frequencies of an equilibrium population 

with double the amount of alleles A2 and B1 than A1 
and B2 (see text for details) 

 A1A1 A1A2 A2A2 

B1B1 22/34 24/34 24/34 

B1B2 22/34 24/34 24/34 

B2B2 1/34 22/34 22/34 

PERSPECTIVE 

 Significant progress in the understanding of the evolution 
of genetic architectures has been and will keep on being 
made by developing ad hoc models fitting specific situations 
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of interest. For instance, the evolution of epistasis under 
selection has been analyzed using loci that act as modifiers 
of the marginal effects of other loci or of the interaction 
effects between other loci [116-121]. In this communication, 
I have chosen to focus instead on models of genetic effects 
aiming to represent a wide range of genetic architectures and 
that can then be applied to analyze numerous particular 
instances. 

Unifying Prospects 

 Several models that were initially proposed for restricted 
situations have later on been generalized in different ways. 
The F2 model is the most renowned case of Fisher’s [1, 45] 
population-referenced formulations of genetic effects. Its 
name reflects that it is orthogonal at (and thus it entails the 
genetic properties of) an ideal F2 population, with allele 
frequencies of ½. Fisher’s theory of genetic effects already 
was more general than that, actually parameterized to 
account for any biallelic frequencies so that it could be 
applied to different populations under the Hardy-Weinberg 
proportions. As mentioned above, Cockerham [47] 
introduced genotype frequencies in his two-locus models 
with epistasis—thus extending their use to nonequilibrium 
populations—while Kempthorne [3, 46] developed epistatic 
models with multiple alleles. All these approaches have 
recently been generalized under the framework of the NOIA 
model [48] (see Table 1). 
 Also Fisher’s [1] initial proposal of a non-population-
referenced yardstick for genetic effects—the F∞ model (see 
[83])—eventually evolved into parameterized formulations. 
In this case, the parameters take different values in order to 
represent genetic effects of multiple multiallelic loci as 
effects of allele substitutions from individual genotypes [91]. 
This approach has also been generalized to account for 
arbitrary dominance and epistatic interactions under the 
framework of the NOIA model [82, 93, 99]. NOIA has not 
only been intended for generalizing previous statistical and 
functional models of genetic effects with epistasis, but also 
for unifying them under a common framework, thus enabling 
researchers to transform genetic effects between different 
meanings (see Table 2 and related text for an example). The 
different formulations of genetic effects are required to be 
interchangeable because different ways of measuring genetic 
effects are required for addressing different particular issues 
and many issues are always involved in the resolution of a 
broad research query [106]. 

Current Theoretical Challenges 

 Extending such a unifying framework to further genetic 
architectures and population facts remains a challenge. 
Concerning genetic effects, Wolf et al. [122] have recently 
pointed out imprinting as a significant component of genetic 
architecture in mice. In this work, a fixed (i.e. not 
parameterized by e.g. population frequencies) set of indexes 
was chosen to develop a model to test for imprinting. That 
such a model could also have been built from Cheverud and 
Routman’s [90] physiological model, automatically entailing 
an extension to physiological epistatic interactions involving 
imprinted loci. In any case, parameterized expressions for 
imprinting effects—both statistical and functional and 

including the one by Wolf et al. [122] as a particular case—
would aid detection and interpretation of imprinting effects 
in QTL analyses. There also is a lack, to the best of my 
knowledge, of appropriate parameterized models for gene-
by-environment interactions. 
 Concerning now population facts, several works have 
addressed the implementation of linkage disequilibrium (LD) 
in models of genetic effects. Cockerham [47] already 
mentioned the difficulty of developing models 
simultaneously accounting for LD and epistasis. More 
recently, Yang [79] derived a parameter to measure the 
deviation from orthogonality caused by the presence of LD 
in models of genetic effects with epistasis. Wang and Zeng 
[112, 113] studied the same issue through the covariances 
that occur in the decomposition of the genetic variance due 
to LD. Mao et al. [123] extended Kempthorne’s [46] 
epistatic model to estimate genetic effects independently in 
populations with departures from the Hardy-Weinberg 
proportions and LD. Similar to the previous attempts, their 
model is however not orghogonal in the presence of LD, 
which remains a challenge in genetic modelling. 
 Overall, considering epistasis largely increases the 
conceptual and mathematical complexity of models of 
genetic effects. However, this turns out to be an inescapable 
endeavour because of the combination of two facts. First, as 
pointed out throughout this communication, the effects of 
epistasis on response to selection and other agents are in 
general far from negligible. Second, evidence has been 
gathered that points to epistasis as a ubiquitous phenomenon 
in natural and experimental populations (also pointed out 
through some examples in this communication and 
extensively reviewed in the last few years [14, 17, 89, 105, 
106, 124-131]). 

Dissecting Genetic Networks 

 Products of genes from all over the genome are known to 
interact through regulatory processes and physiological 
pathways in the assembly of traits. In the light of this 
biological reality, it would signify an enormous surprise that 
genes underlying traits showed in general scarce interaction 
effects. From this angle, epistasis may be considered as a 
null hypothesis—lack of interaction must be proven rather 
than assumed—whenever aiming to dissect the genetic 
architecture of any particular trait. At which specific point 
has an analysis reached enough power to demonstrate that 
significant epistatic interactions have not been found because 
they actually do not exist remains, however, not completely 
clear. The same kind of problem arises for being able to 
assess the true pattern of epistatic interactions among loci 
(even when having evidences for the presence of some kind 
of epistasis) and even to detect marginal effects with 
relatively small contributions to the trait variance. The 
arrival of routine QTL analysis about two decades ago might 
have made some researchers believe that mechanically 
disentangling biological systems would be just around the 
corner and, particularly, that genetic applications to human 
disease and to livestock production would spring out 
naturally (see e.g. [132]). But in time, several difficulties of 
using genome scans for portraying phenotypes at the 
molecular level were pointed out (e.g. [133]). Currently, 
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effort is being made to keep on stepping forward in 
dissecting genetic architectures of traits—and further 
developing models of genetic effects provides us with one of 
the pieces required to solve that puzzle. 
 In the meantime, from the pioneering developments by 
Meuwissen et al. [134], genomic selection has emerged as a 
novel way of harnessing the rapidly growing information 
available on molecular markers across the genome, 
particularly for alleviating costly phenotyping of sex-limited 
traits. Genomic selection could be regarded as applying the 
force of vastly dense marker panels over enhanced statistical 
machinery for catapulting the black-box perspective of 
quantitative genetics towards improved genetic breeding of 
large commercial populations. It is noteworthy that this 
involves in principle no way of dissecting genetic networks 
since that black box contains the very practical, although 
biologically unrealistic, Fisher’s infinitesimal model—a 
large number of additive loci with small effects [135]. It is 
however remarkable that some contributions with more 
complex models of genetic effects have already been applied 
to genomic selection—Toro and Varona [136] have 
implemented dominance and several other authors have 
considered epistatic interactions using the NOIA model [137, 
138]—supposedly at the cost of increasing data demands. It 
is for sure that, as QTL analysis and GWAS did before, 
genomic selection opportunely constitutes a breath of fresh 
air for the molecular-biology industry. Other than that, the 
quantitative genetics community has after almost a century 
of experience learnt to embrace with cautious optimism 
(sensu Dekkers [139]) the expectations of commercial and 
scientific applications coming from the successive 
innovative tools that are from time to time proposed to 
enrich this field. 
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ABBREVIATIONS 

BDM = Bateson-Dobzhansky-Muller 
BLUP = Best unbiased linear predictor 
GWAS = Genome-wide association study 
NOIA = Natural and orthogonal interactions 
QTL = Quantitative trait loci 
QTN = Quantitative trait nucleotide 
REML = Restricted maximum likelihood 
TS = Transgressive segregation 
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