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Abstract: The metabolome offers a dynamic, comprehensive, and precise picture of the phenotype.
Current high-throughput technologies have allowed the discovery of relevant metabolites that
characterize a wide variety of human phenotypes with respect to health, disease, drug monitoring,
and even aging. Metabolomics, parallel to genomics, has led to the discovery of biomarkers and
has aided in the understanding of a diversity of molecular mechanisms, highlighting its application
in precision medicine. This review focuses on the metabolomics that can be applied to improve
human health, as well as its trends and impacts in metabolic and neurodegenerative diseases, cancer,
longevity, the exposome, liquid biopsy development, and pharmacometabolomics. The identification
of distinct metabolomic profiles will help in the discovery and improvement of clinical strategies
to treat human disease. In the years to come, metabolomics will become a tool routinely applied
to diagnose and monitor health and disease, aging, or drug development. Biomedical applications
of metabolomics can already be foreseen to monitor the progression of metabolic diseases, such as
obesity and diabetes, using branched-chain amino acids, acylcarnitines, certain phospholipids, and
genomics; these can assess disease severity and predict a potential treatment. Future endeavors
should focus on determining the applicability and clinical utility of metabolomic-derived markers
and their appropriate implementation in large-scale clinical settings.

Keywords: metabolomics; obesity; diabetes; neurodegenerative diseases; pharmacometabolomics;
exposome; extracellular vesicles; longevity

1. Introduction

Technological developments have significantly accelerated medical discoveries. In
biomedical research, many have been supported by the omics revolution. Relevant
metabolic information can be tracked through the different omics levels, including ge-
nomics, transcriptomics, proteomics, and metabolomics, in an order adopted to classify
biochemical processes as depicted by the central dogma of molecular biology [1]. These
omic strategies, in turn, describe the layout of the biochemical organization of the human
body. Genomics and transcriptomics have been extensively reviewed and focus mainly
on nucleic acids [2,3]. For several decades, proteomics research has paralleled that of ge-
nomics. The advent of the Human Genome Project has boosted genomic technologies, but
up-to-date comprehensive investigation of the proteome has remained challenging, both
financially and technically. Metabolites and proteins can define an individual’s metabolic
state by reflecting what has been encoded by the genome and modified by environmental
factors at a specific point in time [4]. In this review, we focus on the metabolome, which
is the closest representation and a dynamic and sensitive measure of a phenotype at the
molecular level (Figure 1). The metabolome depicts the last stage of metabolism at a
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specific time. It has been widely accepted to be at the forefront of biomedical discoveries,
whose promise is to define easy-to-measure biomarkers and to explain mechanisms of
pathophysiological relevance [5].

Figure 1. Application of metabolomics for the characterization of complex diseases. The technological
advancement during the past 25 years has generated the capability to characterize the complete
genome, transcriptome, proteome, and metabolome. In the clinical setting, its ability to monitor
degrees of progression of complex and rare diseases is promising.

The highly complex metabolome entails thousands of different connected metabolic
reactions and, hence, small and large molecules [6]. Metabolomics has evolved as a
technological tool for measuring and analyzing a wide variety of compounds, such as
amino acids, carbohydrates, and lipids, from biological matrices, fluids, tissues, and a
diversity of cellular fractions [7,8]. Scientists in Canada characterized and catalogued the
first version of the metabolome, including 2500 metabolites, 1200 drugs, and 3500 food
components [9,10]. This represented one of the first efforts to characterize the human
metabolome on a large scale.

2. The Potential of Metabolomics in Biomedical Applications

The dissection of the metabolome provides, and will continue to provide, a collection
of distinct metabolites and the integration of their profiles for medical use. This will inform
clinicians, at certain points in time, about a disease’s onset, progression, or improvement.
This practice will enhance diagnosis, prognosis, surveillance, and personalized drug treat-
ments. In addition, metabolomic research has the potential to aid in the discovery of
biomarkers for common and rare diseases [11]. In the next sections, we describe several
applications of metabolomics in complex diseases, such as obesity, diabetes, and cancer.
For rare diseases, current clinical applications already involve newborn screening that
can diagnose more than 50 inherited metabolic disorders, including aminoacidopathies,
organic acidemias, disorders of fatty acid oxidation, and lysosomal storage disorders [12].
A promising approach in the field of inborn errors of metabolism is the identification of
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disease-causing variants and its application in combination with an integrated analysis
of untargeted metabolomics and whole-exome sequencing, or whole-genome sequenc-
ing. Furthermore, this strategy will expand gene–metabolite annotations [13,14]. The cell
metabolome is represented by a signature of metabolites that reflect the cellular physiology
at one point in time and that may or may not be representative of a disease state [15,16].
The list of interacting metabolites could hint toward molecules acting as modulators of
biological processes and phenotypes and could prompt the development of new drug
targets or clinical and dietary interventions [17].

Ortmayer et al. constructed a global network model across three layers of biological
information: the transcriptome, the proteome, and the metabolome [18]. They explored the
naturally occurring phenotypic diversity using an in vitro cell line system by integrating
intracellular metabolic profiles of 54 cancer cell lines from different tissue types or in differ-
ent conditions. Through this approach, they investigated the bi-directional exchange of
signaling information between transcription regulators and metabolic pathways. The term
transcription regulator is used for any regulator capable of modulating gene expression,
including transcription factors, chromatin remodelers, and co-regulators [19]. Endogenous
metabolites prone to modulate transcription regulator activity could turn into invaluable
chemical scaffolds to model new therapeutic molecules targeting oncogenic regulators.
The researchers found new regulatory associations of several transcription regulators with
key metabolic pathways that suggest a large space of transcriptional solutions by which
cells can achieve anabolic and catabolic requirements for fast proliferation and adapta-
tion to nutrient constraints. The metabolites that affect transcription regulator activity
are significantly enriched for key signaling molecules that allosterically regulate multiple
enzymatic reactions, such as glutathione, glutamate, or ATP. They also observed a global
coordination between glucose and one-carbon metabolism, which indicated a selective
sensitivity to antifolate drugs in cell lines with low glucose uptake. This metabolic response
might potentially be used as a diagnostic marker for cancer cells that are more likely to
respond to folate synthesis inhibitors [18].

Metabolites have a wide range of biochemical functions, hence the growing motiva-
tion to better depict the whole human metabolome and to accelerate the generation of
a comprehensive collection of clinically valid and useful metabolite profiles. This will
aid investigations into in-depth, specific functions and physiological roles in health and
disease, in the role of genes and metabolic pathways actionable to drug therapy or diet, i.e.,
pharmacogenomics and nutrition, in aging, and in acute or chronic diseases. It would be
possible to improve research in metabolomics by complementing and standardizing several
technologies. For example, there are efforts to fully depict a specific phenotype in time,
through the creation of analytical and statistical tools to identify metabolites and metabolic
pathways that are associated with particular diseases and their onset and progression [5].

One major challenge in the study of metabolomics is the existence of a substantial
number of metabolites with significant chemical complexity, i.e., different functional groups,
physical and chemical properties, a wide range of lipophilicity and pKa, carbon length,
and chirality, among others. For example, the lipidome represents two-thirds of the plasma
metabolome and consists of several thousands of lipids of at least 15 different chemical
classes. Moreover, it is not fully clear if a specific metabolomic signature represents the
metabolism of a specific organ, tissue, dietary intake, microbiome activity, or interaction of
the microbiome with the environment [20].

Finally, this review aims to depict the current role of human metabolomics and its
application in human biomedical research, including its potential to treat chronic diseases,
such as cancer and diabetes, as well the likelihood of it making improvements in aging,
and pharmacogenomics. Additionally, we explore the effect of metabolomics research in
molecular biology, including the metabolome of the exposome and extracellular vesicles
and its potential for diagnostic and therapeutic applications. Since the study of the human
metabolome, unlike genomics or proteomics, must rely on several analytical platforms to
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tackle most of the metabolites in a clinical sample, we have also included a review of some
of the analytical strategies available for this study [21].

3. General Strategies in Metabolomics

A thorough description of the analytical techniques used to identify small and large
metabolites is beyond the scope of this review. Nevertheless, we provide a general descrip-
tion of the major techniques and some of their intricacies. A wide variety of matrices can be
investigated from all available tissues and body fluids, including plasma [22], serum [23],
cerebrospinal fluid (CSF) [24], pus [25], saliva [26], feces [27], cervicovaginal secretions [28],
and urine [29]. Nonetheless, many other types of biofluids have been used in the clinic.
These include sputum, bronchial washings, saliva, sweat, tears, CSF, pleural or ascitic
effusions, fecal water, bile, breast milk, amniotic fluid, seminal plasma, expressed prostatic
secretions, and others [30–35]. The Metabolomics Society has established guidelines for
reporting details about biospecimen source, collection, and processing [36].

Broadly used for metabolomics, there are well established methods based on nuclear
magnetic resonance (NMR) and mass spectrometry (MS), which can be coupled with gas or
liquid chromatography, capillary electrophoresis, or ultra-performance liquid chromatog-
raphy (UPLC) [37,38]. Physical and chemical properties of the metabolites of interest and
their matrices will define the analytical platform for their determination.

The identification of a metabolome as a long metabolite list through an accurate
spectrometry-quantification is complex due to the metabolome chemical complexity, and
the dynamic range of metabolites, varying concentrations, and its challenging simultaneous
quantification within complex mixtures. This causes a significant bottleneck in the field
decelerating the generation of valuable biomedical information. Alseekh et al. published
informative guidelines for mass spectrometry for metabolomic research, this review covers
sample preparation, replication randomization, quantification, recovery, and recombination,
ion suppression, and peak misidentification, as a means to enable high-quality reporting
of liquid and gas chromatography (LC/GC) and mass spectrometry-based metabolomics-
derived data [39].

For example, sphingolipid quantification requires prior LC/GC separation from other
lipids. If double-bond information is key, then chiral columns are needed, followed by
MS analysis, which may be a triple quadrupole for routine applications or a time-of-flight
spectrometry, for method development or research purposes since it analyzes with a
higher precision and mass resolution. Hydrophilic compounds and matrices, such as the
identification of purine bases in urine, plasma, or CSF, are efficiently analyzed by NMR, but,
if the interest is to identify lipids in these hydrophilic matrices, then, a chromatographical
separation is needed followed by MS analysis and identification. Another key step in
metabolomics is to choose between targeted or untargeted analysis [40]. The former seeks a
predefined set of metabolites and can be used to identify and validate specific metabolites.
The latter will detect hundreds or thousands of metabolites without a defined target list.
Everything that the analytical platform can detect could be considered for further analysis.
This strategy allows not only the characterization of changes in the general metabolic profile
but also the detection of previously unknown metabolites thereby, promoting biomedical
discovery. Here, we aim to highlight the current trends in metabolomics and the needs
that ought to be addressed to implement its tools in the clinic. We have left the chemistry
and analytical details out of the scope of this revision as it can be found in several seminal
reports, such as those by Sanchez-Lopez, Losacco, and Theodoridis [41–43].

4. Metabolomics in Current Disease Research

The precise, consistent, and accurate assessment of myriad metabolites that may
lead to biomarker discovery is still a challenge, since most matrices encompass dozens
of chemically different compounds, followed by an intricate chemical or mass validation,
annotation, and identification of new compounds. This list of hundreds of compounds
ought to be stratified and classified for meaning and interpretation according to hypothesis-
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based or hypothesis-free research, in addition to the analytical strategy selected for targeted
or untargeted metabolomics [44]. In this review, we describe some examples in which
metabolomics has been used to search for markers of prevalent human diseases.

4.1. Obesity

According to the World Health Organization, obesity is a current pandemic, with
40% of adults and 340 million children being overweight or obese worldwide [45]. The
major implication of obesity is that it is associated with the development of metabolic
syndrome, type 2 diabetes mellitus (T2D), cardiovascular diseases (CVD), and cancer. A
current challenge is to determine the metabolic changes related to the different outcomes of
obesity in both humans and animal models [46]. Metabolomics has created the opportunity
to establish metabolite patterns that differentiate between metabolically unhealthy obese
individuals and metabolically healthy obese individuals. For example, markers of insulin
resistance, a decrease in the uptake of branched-chain amino acids (BCAAs), and their
accumulation in blood have been observed in obese subjects. In the case of BCAAs, their
plasma concentration may be considered an early marker, since it is a feature of an increased
risk of metabolic syndrome [47–49] (see Table 1).

Table 1. Selected metabolomic profiles in biomedicine.

Species Metabolomic Platform Trait Fluid/Tissue Refs.

Diabetes

Phe, Gly,
diacyl-phosphatidylcholines
SM(C16:1), acyl-alkyl-PC, etc.

Metabolomics, LC-MS Predictive of T2D serum [50]

PC (34:2), PC (36:2), TG (52:1), long
chain PUFA, total TG,

ceramide (22:0)
Lipidomics, LC-MS/MS Associated with T2D plasma [51]

Ile, Phe, Ser, Tyr, Gly, palmitoyl
SM stearoylcarnitine, etc.

Metabolomics, GC/MS
LC/MS/MS,

fatty acids
Predictive of T2D plasma [52]

Leu, Ile, Val, γ-glutamyl-derivates,
PC aa (OH, COOH) C28:4, etc.

Metabolomics, NMR, GC- MS,
FIA-MS, LC/MS Associated with T2D plasma [53]

Diabetes kidney disease

C8:1, C10:1 LC-MS Increases prediction
clinical models blood/urine [54]

C0, C10:2 and urinary C12:1 s LC-MS Albuminuria urine [54]

Gly, Phe, citrate, glycerol NMD spectroscopy, amino acids,
metabolites

Negatively associated
with eGFR urine [55]

Ala, Val, pyruvate NMD spectroscopy, metabolites Positive association serum [55]

Cancer

C16:1, C18:2, C20:4, and C22:6 CBDI- nanoESI-FTICR MS, FFA Colorectal cancer
diagnosis. serum [56]

PC, Glu, Arg, hypoxanthine,
α-glucose Metabolomics, NMR, LC/MS Prostate cancer tissue [57]

Obesity

Arg, Leu/Ile, Tyr, Val, Pro MS/MS Childhood obesity and
serum triglycerides serum [58]
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Table 1. Cont.

Species Metabolomic Platform Trait Fluid/Tissue Refs.

Leu, Ile, Val, and Tyr Metabolomics, NMR Abdominally obese
females serum [59]

Val, Phe, Tyr, and Gln Metabolomics, NMR Insulin resistance serum [59]

BCAA catabolites
Insulin resistance and

abnormal brain
function

serum [47]

Pharmacometabolomics

ACs Metabolomics, HILIC LC-MS/MS Elevated in irinotecan
exposure plasma/serum [60]

SM, dihydroceramide, PC, PS,
PE, cys Metabolomics/LC-MS/MS Higher in lorlatinib

treatment plasma/serum [31]

Palmitoleate (C16:1n-7), DHA;
22:6n-3 and EPA; 20:5n-3 Lipidomics/LC-MS/MS Associated with fish oil

antiobesity effects plasma/serum [61]

Proteobacteria and Firmicutes Microbiome/metagenomics
Associated to beta
lactam antibiotic

resistance
feces [62]

Akkermansia muciniphila Microbiome/metagenomics

Increased efficacy of
programmed cell death

1 protein (PD-1)
immunotherapy

plasma/feces [63]

Escherichia coli Microbiome/metagenomics
Associated to

metformin efficacy and
toxicity

plasma/feces [62]

B. thetaiotaomicron LC-MS/MS, microbiome analysis Diltiazem and 46
different drugs plasma/feces [64]

Longevity

PC (O-34:3, O-34:1, O-36:3), SM
(d18:1/14:0), PE (38:6) Lipidomics, LC-MS/MS, Familial longevity,

higher in females plasma [51]

Lipids in chylomicrons, VLDL
HDL, VLDL size, PUFA, Val,
histidine, Leu, and albumin

Metabolomics LC-MS/MS Longevity, decrease
mortality plasma [65]

Alzheimer’s disease

Prostaglandin, diacylglycerols and
oleamide Lipidomics, LC-MS/MS Altered NT systems &

membrane integrity serum [66]

3-hydroxyisovalerate Metabolomics, NMR
Increased plasma

levels; mitochondrial
dysfunction

plasma [67]

Biogenic amine, citrulline, Pro Arg,
Ala, Thr, ACs Metabolomics, LC-MS/MS

Nitric oxide pathway
alterations;

mitochondrial function
plasma [68]

Bile acid metabolites,
glycolithocholic acid
taurolithocholic acid

Metabolomics, LC-MS/MS

Reduced glucose
metabolism in the brain

& structural atrophy;
levels associated with

Aβ1–42, p-tau181, t-tau

bile, serum [69]
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Table 1. Cont.

Species Metabolomic Platform Trait Fluid/Tissue Refs.

Gln, serotonin, and sphingomyelin
C18:0 Metabolomics, LC-MS/MS Memory impairment brain cortex [70]

Parkinson’s disease

Phe, Tyr, His, Gly, acetoacetate,
taurine, TMAO, GABA,

N-acetylglutamate, acetoin,
acetate, Ala, Ile, Val, Cys, Pro,
ornithine, fucose, propionate,

and PE

Metabolomics; UPLC-MS, NMR Disease onset serum,
saliva [71,72]

Tricarboxylic acid cycle and purine
pathway metabolites

Metabolomics, LC-Ms, GC-MS,
UPLC-MS

Alteration of energy
metabolism and
neurotransmitter

regulation

whole brain,
striatum [73–75]

FFA: free fatty acids, PUFA: polyunsaturated fatty acids, TG: triglycerides, PC: phosphocholine lipid species,
PS: phosphoserines SM: sphingomyelins, PE: phosphoethanolamine species, DHA: docosahexaenoic fatty acid,
eicosapentaenoic fatty acid: EPA.

Pathologic changes in adipose tissue promote peripheral inflammation, which alters
the integrity of the blood-brain barrier and alters synaptic plasticity and cognitive func-
tions [76–78]. These changes resemble the molecular events underlying the development of
dementia and Alzheimer’s disease (AD) [79]. The increased inflammation promoted by
an obesogenic environment is associated with increased catabolism of BCAAs, which has
been related to insulin resistance and abnormal brain function [47]. Interestingly, decreased
levels of BCAAs in the blood were associated with an increased risk of developing dementia
and AD in a prospective study including eight cohorts (22,623 participants) [80]. Further
research is needed to understand the interplay between obesity and BCAA levels and
the mechanisms underlying cognitive impairment [81]. BCAAs, acylcarnitines (AC), and
certain phospholipids have also been associated with other metabolic diseases; thus, it is
important for future research in obesity to include these metabolites, characterize their
biochemical pathways, and follow up with their catabolites and cometabolites [46,58].

Interestingly, the gut microbiome has also been explored in obesity [82–85]. Obesity
displays a specific microbiome profile which, in turn, correlates with aspects of brain
activity, including short-term memory, working memory, and changes in the volumes of
the hippocampus and frontal regions of the brain [86]. The transplantation of microbiota
from obese patients can decrease memory scores in mice, a feature also observed in humans.
The RNA sequencing of the medial prefrontal cortex in a rodent model demonstrated a
correlation between short-term memory and the expression of inflammatory genes, aro-
matic amino acid routes, and clusters of bacterial species [87]. These observations highlight
the relevance of the microbiome and the potential relationship between therapeutically
targeting the gut microbiota for memory deterioration in obese individuals [86].

An understanding of the metabolic signatures of obesity and its dynamics should
lead to the categorization of obese patients to procure better characterization, improved
treatment, and proper monitoring, as has been suggested by the subclassification of breast
cancer and diabetes mellitus [46]. In summary, these metabolomic observations have shed
some light on the physiology of the obese. Future research should focus on analyzing
specific metabolites and critical pathways to address clinical challenges related to obesity,
or even prevent its development and complications. This is the case of the baseline levels
of BCAAs and related metabolites. They both predict and respond to improvements in
insulin resistance in behavioral weight loss [31,88].

The use of polygenic risk scores, metabolomic biomarkers, and related outcomes in
obesity have highlighted biological pathways, such as the BCAA pathway, that is dysregu-
lated in this disease. These biomarkers may help in personalizing obesity interventions
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and mitigating of future cardiometabolic risk. A holistic approach is necessary to affect the
growing epidemic of obesity and its comorbidities. For this, it is necessary to incorporate
precision medicine approaches with omics strategies, such as genomic and metabolomic
biomarkers, to personalize interventions and improve risk indicators.

In addition, it is important to make a metabolomic characterization of the different
types of obesity and to study their relationship with comorbidities. This would allow for a
better view of the most common diseases that affect humankind.

4.2. Diabetes

Approximately 425 million people worldwide have either type 1 (T1D) or type 2
diabetes (T2D) [45]. Thus, it is essential to apply new methodological approaches to
identify molecular pathways that lead to the complications associated with diabetes. High-
throughput metabolomics has contributed to the understanding of the pathophysiological
pathways of T2D, including the clinical management of its complications. Several reports
have shown an association between certain metabolites and T1D and T2D [89–91]. Most of
the research in this area has used NMR or MS coupled with gas- or liquid-phase chromatog-
raphy. These studies have started to reveal the metabolite changes that can help in the early
identification of prediabetes, T1D, and T2D. Knowing which metabolites can modulate the
effect of dietary intake and how diet affects metabolites in the body is crucial for the design
of strategies, interventions, and treatments for T2D [91,92]. For example, increased levels
of BCAAs and the aromatic amino acids phenylalanine and tyrosine can predict insulin
resistance and T2D development [50,59,93]. Yengo et al. used a non-targeted metabolomics
approach to develop a model that predicted T2D incidence 4.5% better than the known
clinical markers, describing up to 90% of the parameters of the total receiver operating
characteristic curve (AROC) [52] (see Table 1). Suhre et al. investigated the metabolic
profiles associated with T2D and reported different metabolites depending on the tissue
analyzed. For instance, they identified BCAAs in the liver and muscle tissue, cholesterol
in the heart, and 3-hydroxybutirate in the blood [94]. In addition, Gudmundsdottir et al.
recently reported 15 proteins as playing causal roles in T2D, including TNF superfamily
Member 12, WAP/kazal/immunoglobulin/Kunitz and NTR domain-containing protein
2, growth differentiation factor 8/11, fatty acid-binding protein 4, colectan sub-family
member 11, and kininogen, with several showing sexual dimorphism. This study is of
relevance because it succeeded in determining which proteins had causal effects on T2D
and which were affected by T2D [95].

Diabetic kidney disease (DKD), the most severe complication of T2D, and end-stage
renal disease are the major causes of diminished lifespan in individuals with T2D [96].
Ibarra-Gonzalez et al., using targeted metabolomics, found that body mass index (BMI), uric
acid, and tetradecenoyl carnitine (C10:2) levels were all associated with decreased estimated
glomerular filtration rate (eGFR). They also found an association between albuminuria
and T2D duration, A1C, uric acid, creatinine, protein intake and serum-free carnitine
(C0), and tetradecenoylcarnitine (C10:2), and urinary 3-hydroxy-tetradecanoylcarnitine
(C12:1) levels. DKD was correlated with age, A1C, uric acid, BMI, and carnitines C0,
C10:2, and octenoylcarnitine in the plasma and C12:1 in the urine. This shows that clinical–
metabolomic models increase the predictive and informative capacity to identify kidney
dysfunction and DKD-related outcomes more than clinical characteristics alone [54] (see
Table 1).

Similarly, Barrios et al. used serum-targeted NMR spectroscopy and found distinctive
profiles in amino acid, energy metabolism, modifications of lipoprotein composition, and a
broad spectrum of metabolic changes in patients with kidney disease and renal function
in diabetic versus non-diabetic patients from four independent cohorts. These findings
suggest that specific markers for each condition might be able to differentiate between
kidney disease and renal dysfunction [55] (see Table 1).

Plasma metabolites help to predict the development of T2D [50]. For instance, in
a cross-sectional study comprised of 2380 participants, it was found that a high intake
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of meat and low intake of whole-grain bread and tea was linked to a metabolomic sig-
nature associated with a higher risk of T2D [97]. The metabolites altered by this diet
included increased hexose and diacyl-phosphatidylcholines and reduced acyl-alkyl- and
lyso-phosphatidylcholines, and sphingomyelins [97].

Evidence suggests that branched-chain amino acids, ACs, and aromatic amino acids
may play an early role in insulin resistance, exposing defects in amino acid metabolism,
β-oxidation, and the tricarboxylic acid cycle. Diabetes risk prediction has been improved
when adding metabolomic markers of dysglycemia to standard clinical and biochemical
factors [98]. Metabolomics has revealed several dysregulated metabolites involved in
metabolic pathways between diabetes and control samples. This knowledge could lead to
multiple clinically useful biomarkers.

We agree with Regan and Shah [99], that actionable applications in the field of
metabolomics will allow for a more personalized control of diabetes, in agreement with the
patient’s metabolomic profile. The clinician would be able to make decisions according to
the patient’s metabolomic information, individual behavior, and demographic features.

4.3. Cardiovascular Disease

CVD is a general term for conditions affecting the heart or blood vessels. It is usually
related to fatty acid deposits inside the arteries, hypertension, increased risk of blood
clots, and vascular damage to arteries and organs, such as the brain, heart, kidneys, and
eyes [45]. Predicting the risk of CVD is an important element of a preventive medical
strategy. Metabolomics has helped to define changes in both global and cardiac-specific
metabolism in diverse cardiovascular disease states. For example, in heart failure and
ischemic heart disease, metabolomics, together with other omics, including genomics, tran-
scriptomics, and epigenetics, have offered some insight into the molecular underpinnings
of the short-chain dicarboxylacylcarnitine species (SCDA) metabolite cluster. Genomic
analyses have associated SCDA levels with variants in genes that regulate components of
endoplasmic reticulum (ER) stress. Importantly, these genetic variants can independently
predict cardiovascular events [100]. Moreover, SCDA levels have also been associated
with differentially methylated genes related to ER stress. Expression quantitative trait loci
(eQTL) analyses have also linked SCDA to ER-stress pathways, specifically those reporting
on the ubiquitin proteasome pathway, highlighting the relevance of integrative strategies
for multiple molecular datasets [101].

The integration of metabolomics and proteomics has helped us to understand metabolic
regulation of cellular processes in relation to CVD [102]. For instance, protein kinase C-
delta (PKCδ), a marker of inflammation, can regulate cardiac glucose metabolism during
ischemic preconditioning. These observations were made possible by the comparison
of the proteome and the metabolome of PKCδ+/+ and PKCδ−/− mouse hearts [103–105].
Similar studies integrating such omics have helped to increase the metabolic knowledge in
atherosclerosis using apoE−/− mice [106].

These integrated omic analyses have the potential to unveil mechanisms underlying
the molecular remodeling in disease states. For example, a hyperpolarized 13C NMR-based
approach has been used to simultaneously assess the metabolic flux across organs in a
diabetic rat. Diabetes reduced the pyruvate dehydrogenase flux by 80% in the heart and
40% in the liver. The incorporation of 13C to alanine was reduced by 55% in the liver but
not changed in the heart [107]. Bernini et al. (2011) used NMR and observed changes in
the metabolome that correlated with CVD risk factors, such as triglycerides, low density
lipoproteins (LDL), and high density lipoprotein [108]. They also identified new metabolite
markers, such as 3-hydroxybutyrate, α-ketoglutarate, threonine, and dimethylglycine, but
the metabolic pathways for high cardiovascular risk were shifted toward LDL, threonine,
and acetoacetate.

The adrenergic signaling molecule phenylacetylglutamine in the plasma may rep-
resent a metabolite of a healthy gut microbiota. This metabolite was discovered using
untargeted metabolomics and coupled with gain- and loss-of-function studies employing
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genetic and pharmacological data [109]. The authors revealed that phenylacetylglutamine
mediates cellular events through G-protein-coupled receptors, including α2A, α2B, and
β2-adrenergic receptors, which may protect against cardiovascular events [109].

The CardioNet study has reconstructed a metabolic network of human cardiomyocytes
using a systems biology approach to analyze the flux balance to determine the capacity
of the network to respond to different conditions of fuel supply. This network has been
used to model the flux rates of substrate metabolism in working hearts under several
conditions [110]. The use of these strategies will widen the capability to move from
metabolomics static discoveries to dynamic models that can evaluate metabolic-based
hypotheses of disorders. McGranaghan et al., in their systematic review and meta-analysis
of 22 studies, found that metabolomic biomarkers, mainly lipid species, have the potential
to add value to the prognosis of CVD events. Thirty-nine of the 41 metabolites were
significant with a combined effect size of 1.14 (1.07–1.20) [111]. Several of these results
are not conclusive; thus, it is important to replicate and validate them and to obtain a
clear picture of the metabolome of CVD to generate the markers needed for its accurate
diagnosis, prognosis, and treatment.

4.4. Cancer

Cancer has numerous effects on metabolism. These include rewiring intracellular path-
ways to facilitate the cancer’s proliferation and adaptation to the tumor microenvironment,
and changes in normal tissue metabolism [21]. Metabolomics has the potential to identify
cancer biomarkers and drivers of tumorigenesis [17]. For example, cancer metabolomics has
pinpointed an upregulation of glycolysis, glutaminolysis, lipid metabolism, mitochondrial
biogenesis, and the pentose phosphate pathway, as well as other biosynthetic and bioen-
ergetic pathways [112]. In particular, in proliferating cells, mitochondrial metabolism is
reprogrammed to meet the challenges of macromolecular synthesis [113]. Cancer metabolic
reprogramming promotes tumorigenesis by facilitating and enabling rapid proliferation,
survival, invasion, metastasis, resistance to therapies, and other central cellular processes
of tumorigenesis. As tumorigenesis advances, cancer cells acquire more genetic mutations
that further enhance metabolic reprogramming and, in turn, accelerate tumor growth
and progression. The tumor suppressors p53 and AMP-activated protein kinase (AMPK)
suppress cancer’s metabolic alterations by blocking the function, activation, and expression
of essential cancer metabolic genes. For example, 14-3-3σ, a downstream target gene of
p53, effectively opposes and reverses cancer’s metabolic reprogramming by accelerating
the degradation of MYC proto-oncogene and bHLH transcription factor (c-Myc), a protein
that promotes cancer’s metabolic reprogramming. By contrast, oncogenes, such as c-Myc,
hypoxia Inducible Factor 1α (HIF-1α), rat sarcoma virus (Ras), and protein kinase B (PKB or
Akt), act as major inducers of tumor bioenergetic alterations by upregulating the expression
or activation of key metabolic enzymes, such as hexokinase 2 (HK2), glutaminase 1 (GLS1),
and lactate dehydrogenase A (LDHA), among others [114].

Using a metabolomic strategy to classify tumors to later design customized ther-
apies represents the most “cutting-edge” example of metabolomics enabling precision
medicine [115]. Schmidt et al. analyzed a database, from The Cancer Genome Atlas, of
>10,000 tumors across 32 cancer types, and they found at least one metabolic gene alteration
per tumor, with a varied number of metabolic gene alterations among cancer types [21].

In-vitro models have been used to study processes, such as transformation, progres-
sion, proliferation, and metastasis. In whole organisms, metabolomic approaches suffer
additional challenges and a lack of robustness for appropriate cell and tissue sampling
because of the continually expanding cancer landscape. Hence, it is important to be able
to discriminate between the signals of certain types of cells and those that are cancerous,
in addition to being able to discern signals that are systemic. On the other hand, there are
multiple challenges in the search for the identities of cell lines, as well as the standardiza-
tion of culture media. In addition to looking for the Warburg effect, the citrate cycle, and
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lactate metabolism, it is essential to identify and develop technologies that can be used to
accurately and effectively sample the heterogeneous tumor environment [44].

Another important area of opportunity for the application of metabolomics is the
design of cancer treatments. For example, cancer immunotherapy has recently changed the
paradigm in multiple solid and hematologic malignancies. However, the responses remain
limited in a significant number of cases, with tumors developing innate or acquired resis-
tance to checkpoint inhibition. Certain immune-sensitive tumors become immune-resistant
with resultant tumor growth and disease progression. The tumor microenvironment is
the environment that contributes the most to immune resistance. Nutrient deficiency,
hypoxia, acidity, and the secretion of various inflammatory markers all contribute to pro-
or anti-inflammatory phenotypes by modulating immune metabolism and reprogramming
immune cells.

Human metabolomics in cancer immunotherapy could provide us with key molecules
for understanding, predicting, treating, and controlling immune system responses. An-
ticipating the metabolism of immune cells would allow clinicians to implement effective
dietary or therapeutic interventions and target checkpoint inhibitors [116]. It is impor-
tant to realize the connection between tumor cells and immune cell compartments within
the tumor microenvironment, as well as the different nutrient-sensing mechanisms and
the different metabolic switches. These factors play an important role in controlling the
response of the immune system against tumors, with or without checkpoint inhibitors
treatment [117].

The development of tumors is extremely dependent on the neighboring tumor mi-
croenvironment, where numerous immune metabolic factors play an important role in
the crosstalk, modulation, and reprogramming of infiltrating immune cells [116]. It is
well known that nutrients affect the cellular activity of immune cells and the tumor micro-
biome. Glucose, amino acids, and lipid metabolism contribute to tumor aggressiveness
and checkpoint inhibitor resistance. This highlights remarkable cellular plasticity. Amino
acid metabolism is indispensable for immune-cell activation and differentiation. Tumor
and immune cells compete for amino acids, such as tryptophan (trp), glutamine, and
L-arginine [118]. Additionally, the role of lipids in modulating cancer-related inflammation,
myeloid cells, and reprogramming has recently been recognized and will require additional
research [119]. Targeting the mentioned aspects of metabolism may be key to finding the
means of reversing the immune process in different kinds of cancer.

Mass spectrometry imaging has three potential applications in cancer research:

(i) the identification of next-generation prognostic and therapeutic biomarkers by estab-
lishing a chemical and morphological mapping of regions of interest,

(ii) the evaluation of the molecular efficacy of chemotherapeutic agents, and
(iii) the classification of tissue types based on molecular patterns to understand their

pathways and therapeutic prognoses [120].

ACs have been associated with the early stages of different cancers. For example, the
ratios of serum 3-hydroxy-octadecanoylcarnitine, (C18:2)/octadecenoylcarnitine (C18:1),
and C18:3/C18:1 can differentiate early-stage pancreatic cancer from pancreatitis, with a
sensitivity of 86.7% and specificity of 88.6%. An AC panel composed of decenoylcarnitine
(C16:1), octadecadienyl-L-carnitine (C18:3), C18:2, C18:1, arachidonoyl carnitine (C20:4),
and docosahexaenoic acid (C22:6) has shown an outstanding diagnostic ability to differen-
tiate advanced-stage pancreatic cancer from controls and pancreatitis with an AUC value
of 0.989, a sensitivity of 91.7%, and a specificity of 98.6% [121]. Furthermore, this same
panel of C16:1, C18:3, C18:2, C18:1, C20:4, and C22:6 lipids and AC could differentiate
early-stage breast cancer from healthy controls with an AUC value of 0.953, a sensitivity of
83.3%, and a specificity of 87.1% [56]. Similarly, a combination of C16:1, C18:2, C20:4, and
C22:6, as a biomarker panel, has shown excellent diagnostic ability to differentiate early-
stage colorectal cancer from healthy controls plus benign colorectal disease. Colorectal
diseases are accompanied by decreased serum levels of unsaturated fats fatty acids (FFAs).
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This indicates that the detection of serum unsaturated FFAs might have important clinical
significance for the early detection of colorectal cancer [56] (see Table 1).

The use of saliva, serum, and tumor tissues have defined metabolic signatures that
enable clinicians to detect oral cancer and several tumor-specific metabolites that could
differentiate oral cancer from healthy controls or precancerous lesions. These metabolic
signatures, with the appropriate validation, can be used as potential biomarkers for the
screening or early diagnosis of oral cancer. Future research in oral cancers should aim to
build routine laboratory protocols for assessing the metabolic signatures. It should also aim
to predict the metabolic responses of cancer cells to chemotherapy [122]. Hartmann et al.
developed an innovative strategy for characterizing the metabolic regulome of single-
cells. The strategy is called single-cell regulome profiling. It uses high-dimensional,
antibody-based technologies to quantify proteins that regulate metabolic pathway activity.
They applied this process to metabolically repressed cytotoxic T-cells in human colorectal
carcinoma. This uncovered an abundance of metabolic regulators and found associations
with metabolic flux and pathway activity. The application of this approach should enable a
better understanding of human immune cell biology and help to identify disease-associated
metabolic alterations that could serve as potential biomarkers and therapeutic targets for a
variety of human diseases [123].

Prostate cancer is one of the most prevalent cancers and a significant cause of mor-
bidity and mortality in men [124]. A comprehensive metabolomic analysis identified a
group of metabolites that not only constitute potential biomarkers for aggressive PC but
also provide molecular information about the underlying biochemical mechanisms. The
information generated can be useful for the future design of diagnostic and therapeutic
approaches for further validation in large patient cohorts. The detected metabolic dif-
ferences between ERG-positive and ERG-negative prostate cancer demonstrate that the
increment in β-oxidation and purine metabolism regularly described for prostate cancer
could be principally attributed to TMPRSS2-ERG-negative (transmembrane serine protease
2 (TMPRSS2)) tumors. These results agree with the view that ERG-positive (ETS-Related
Gene (ERG)) and ERG-negative prostate tumors should be considered partly different
diseases, which may require different treatment strategies.

MacKinnon et al. described the metabolites involved in an androgen-dependent
prostate cancer cell line [125]. Methyltrienolone (an androgen receptor agonist) treatment
resulted in a metabolic signature characteristic of aggressive prostate cancer. Specifically,
researchers observed a decrease in myoinositol, altered glutathione levels, a perturbation
of amino-acid levels, a decreased level of methionine, a high level of phosphocholine (PC),
and an increase in the phosphocholine/glycerophosphocholine ratio. These metabolites
may be useful for monitoring cancer development and aggressiveness [125].

The in vivo detection of clinically relevant prostate cancer can be improved using
metabolomics-derived markers related to Gleason score with non-invasive methods, as
is the case for magnetic resonance imaging or positron emission tomography imaging.
Analogues of PC, glutamate, and glucose, as identified here, are already applied in prostate
cancer studies and have been approved by the U.S. Food and Drug Administration (FDA)
for the positron emission tomography imaging of recurrent prostate cancer. The researchers
discovered two additional metabolites associated with prostate cancer: hypoxanthine and
arginine. Both are associated with prostate cancer recurrence and progression [57]. (see
Table 1).

Although it is used less frequently than the other omics approaches, metabolomics has
the potential to significantly affect core areas of oncology, including screening, diagnosis,
and therapy. However, such applications require a better understanding of how these
measurements are connected to human physiology and cancer biology. In biofluids that are
readily accessible clinically, most notably, plasma, our understanding of which metabolites
can be measured to reflect cancer status is in its early stages. Even though some incursions
have been made in this field, the extent to which a metabolite profile in the plasma reveals
the metabolic activity of the cancer is unclear. Additional metabolomic studies in fluids
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that harbor the cancer and connect these measurements to both metabolism and the biology
of the tumor are necessary to understand how to interpret cancer metabolism from these
measurements [21].

Metabolomic approaches may help to have a better understanding of cancer signal-
ing [5] by providing new knowledge to develop therapeutic interventions with current
drugs to target different stages and types of cancer. The actual knowledge of which metabo-
lites can be measured to reflect cancer status is in an early stage, but some progress has been
made; for instance, potential metabolomic biomarkers have been found in metabolomic
urine studies in urogenital cancer [126], prostate cancer [113,114,127,128], bladder can-
cer [129], urinary tract infections [116,130], and pancreatic ductal adenocarcinoma [131]. In
particular, lipid metabolism seems to be increasingly important in the modulation of cancer-
related inflammation, expansion of myeloid cells, and reprogramming of inflammatory
phenotypes [119], but follow up studies are needed. The comparison of saliva metabolomic
profiles in various cancer types using capillary electrophoresis coupled with time-of-flight
mass spectrometry has identified phenylalanine, valine, and leucine associated with oral,
breast, and pancreatic cancer-specific profiles [132]. It is still unclear to what extent a
metabolite profile reveals the metabolic activity of the cancer. Much remains to be learned
about how to interpret cancer metabolism from these measurements.

Many of the mechanisms involved in tumorigenesis remain elusive; pursuing a global
understanding of them using metabolomics presents many opportunities and challenges.
There is a need to understand how metabolites interact and are able to influence individ-
ual cancer progression or survival. The integration of cancer metabolomics, with other
omics, will allow us to better understand the several steps of cancer development, progres-
sion, treatment effectiveness, and remission. A successful example of the integration of
metabolomics with other omics approaches is the study by Bonanomi. The study reported
that cancer cells challenged by genetic or chemical down-regulation of the C-terminal
binding proteins 1 and 2 (CtBP1,2) show significant transcriptional and metabolic plasticity
regulating the crosstalk between their biochemical pathways and the cell’s demands. This
could potentially cause drug resistance. This highlights the relevance of considering the
effects of drug treatment when designing metabolism-based anti-cancer therapeutic regi-
mens [133]. Further research is needed for a better understanding of how those adaptive
mechanisms are connected to human physiology and pathophysiology in this field.

4.5. The Metabolomics of Neurodegenerative Diseases

Although the exact causes of neurodegeneration are not well defined, research efforts
during the last three decades have revealed the general cellular mechanisms that underlie
neuronal death. The cellular processes altered during neurodegeneration include mito-
chondrial function, the management of oxidative stress, the modulation of proteostasis
pathways, and neurotransmission systems. It is proposed that the consequences of these al-
terations gradually lead to the degeneration of specific neuronal nuclei. Neurodegenerative
diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), are usually diag-
nosed when overt symptoms are displayed. This implies that neurodegenerative processes
have occurred during the previous years or decades. There is a need to develop non-
invasive diagnostic methods for the early detection of these pathologies. The emergence
of metabolomics as a tool to analyze the dynamic interactions between the organism and
environment has opened the possibility to identifying subtle chemical changes associated
with AD and PD progression and the influence of the gut microbiota [134–137].

In the case of AD, there is documentation of alterations in the levels of small and lipid
metabolites, in both human samples and animal models, that are related to oxidative stress,
energy metabolism and mitochondrial dysfunction. In serum from AD patients, there is a
decrease in oleamide levels and an increase in prostaglandin and diacylglycerols, which
may be related to alterations of neurotransmitter systems and membrane integrity, respec-
tively [66]. Evidence of mitochondrial dysfunction has been associated with increased
levels of 3-hydroxyisovalerate in the plasma of AD patients [67]. Due to the complexity of
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neurodegenerative diseases, metabolomic information has been correlated with classical
markers of neurodegeneration. For AD, extracellular amyloid-β (Aβ) deposits, phosphory-
lated tau, and increased levels of neurofilament light chain (NF-L) in the CSF are associated
with late stages of the disease. The levels of plasma metabolite species belonging to the
biogenic amine, amino acids, and AC classes are positively correlated with the levels of
NF-L. This suggests disturbances in the nitric oxide pathway, neurotransmitter regulation,
and mitochondrial function [68]. In addition, certain bile acid metabolites are associated
with central markers of neurodegeneration, including the levels of Aβ1–42, p-tau181, and
t-tau, in the CSF, as well as reduced glucose metabolism in the brain [69]. Interestingly, the
levels of glycolithocholic acid and taurolithocholic acid, which are produced by bacteria,
are correlated with high levels of t-tau in CSF. This indicates reduced glucose metabolism
and structural atrophy [69].

Animal models offer the advantage of allowing the simultaneous monitoring of
metabolite levels in different biofluids and tissues. A tauopathy transgenic rat model
(SHR72) found that the brain presents increased purine nucleotide catabolism, the plasma
contains decreased levels of citric-acid-cycle intermediates and glucose, and the CSF
presents decreased levels of arginine and proline. Together, these data indicate impaired
energy metabolism that might be connected to events of neurodegeneration [138]. Simi-
larly, a tauopathy mouse model (rTg4510) found that changes in the levels of metabolites
(glutamine, serotonin, and sphingomyelin C18:0) in the brain cortex correlate with memory
impairment [70]. Future studies with animal models should validate metabolite profiles
using different time points and transgenic models.

PD patients also present a different metabolite signature when compared to healthy
individuals. Saliva and serum contain increased concentrations of several amino acids and
other metabolites, including phenylalanine, tyrosine, histidine, glycine, acetoacetate, tau-
rine, trimethylamine N-oxide, gamma-aminobutyric acid (GABA), N-acetylglutamate, ace-
toin, acetate, alanine, isoleucine, valine, cystine, proline, ornithine, fucose, propionate, and
phosphoethanolamine [71,72]. These biochemical changes could result from the presence
of altered or mutated proteins that have been linked to PD development (e.g., a-synuclein,
leucine rich repeat kinase 2, parkin, and PTEN-induced kinase 1). The overexpression of mu-
tant a-synuclein A53T in mice alters the brain concentration of adenine nucleotides, taurine,
nicotinamide adenine dinucleotide, and metabolites from the tricarboxylic acid cycle and
purine metabolic pathway [73,74]. Overall, these metabolic changes detected in PD patients
and models indicate an alteration of energy metabolism and neurotransmitter regulation.
The metabolomic profiling of chemical models of PD supports this notion [139,140]. The
striatum of mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and
lipopolysaccharide showed dysregulated levels of metabolites from the purine metabolism
pathway. This highlights the possibility of adenosine deaminase becoming a promising
therapeutic target [75].

Using metabolomic analysis to understand the pathogenesis and progression of neu-
rodegenerative diseases has complemented the search of classical biomarkers that indicate
advanced neuronal damage. It is expected that, in the near future, a better characteri-
zation of altered levels of several lipid species and amino acid derivatives in biofluids
will reveal a list of biomarkers that would indicate risk or early phases of neurodegenera-
tion [134,141–143] (see Table 1).

5. New Directions in Metabolomics
5.1. The Exposome

The exposome refers to all the environmental, biological, and physical factors that
may surround an individual from conception. It includes exposures from all sources, such
as radiation, stress, infections, pollution, lifestyle factors, oxidative stress, diet, social influ-
ences, geographical factors, weather, etc. [144]. Currently, an estimated 7–10% of all human
diseases are attributable to environmental and occupational factors, but it is likely that this
has not been fully assessed [145]. Modifying various environmental descriptors, such as
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diet, weight, inactivity, and smoking, has shown to reduce the risk of stroke, colon cancer,
coronary heart disease, and T2D by approximately 70–90%. Therefore, the exposome may
be playing a role that has not been fully accounted for [146]. Child Health and Development
Studies (CHDS) provide a successful example of exposome research. They followed a birth
cohort of more than 15,000 pregnant women from 1959 to 1967 in California. Researchers
collected exposure data and health records in multiple generations between 2007 and 2019
and reported a link between early-life exposure to dichlorodiphenyltrichloroethane (DDT)
and breast cancer risk [147–150]. Recently, Li et al. investigated the relationship between 39
environmental chemicals and the serum metabolome. These exposures only account for a
few percentages of variance in the metabolome. This analysis revealed that the metabolite
communities associated with the exposures were non-specific and shared among exposures;
a small number of metabolic phenotypes may account for the response to a large class of
environmental chemicals. This compendium of chemicals is the beginning of the exposome
and a static view that excludes the possibility of disease causality to be manifested at a dif-
ferent time or by a different data type. Because the exposures can modify the metabolome,
and vice versa, it is useful to view them as an interaction model, which can be applied to
investigate outcomes, such as breast cancer [151].

The Helix Project was designed to gain an insight into the impact of multiple envi-
ronmental hazards in an early life exposome. Children and mothers from Spain, Norway,
Greece, Lithuania, England, and France have now completed an extensive study. There are
measurements for outdoor exposures for a total of 28,000 mother-child pairs in Europe. For
example, Lau et al., as part of the Helix Project, characterized the major determinants of the
child metabolome in urine and serum samples from 1192 children from birth cohorts in six
European countries. They correlated metabolite abundances with age, sex, BMI, and dietary
habits in European children. Metabolites were measured using high-throughput 1H NMR
spectroscopy and a targeted LC-MS/MS metabolomic assay. Urinary and serum creatinine
were positively associated with age. Metabolic associations to BMI z-score included a novel
association with urinary 4-deoxyerythreonic acid in addition to valine, serum carnitine,
short-chain AC (C3, C5), glutamate, BCAAs, lysophosphatidylcholines (LPC a C14:0, LPC
a C16:1, LPC a C18:1, and LPC a C18:2), and sphingolipids (SM C16:0, SM C16:1, SM C18:1).
Dietary-metabolite associations included urinary creatine and serum phosphatidylcholines
with meat intake, serum phosphatidylcholines with fish, urinary hippurate with vegeta-
bles, and urinary proline, betaine, and hippurate with fruit intake [152,153]. Population-
specific variances, such as age, sex, BMI, ethnicity, diet, and country of origin, were better
captured in the serum than in the urine profile. These factors explained a median of
9.0% variance among serum metabolites versus a median of 5.1% among urinary metabo-
lites. Metabolic pathway correlations were identified, and concentrations of corresponding
metabolites were significantly correlated (r > 0.18) between urine and serum (Lau CE, 2018)
(http://www.projecthelix.eu; accessed on 19 November 2021).

High-resolution mass spectrometry (HRMS) has been useful in measuring the expo-
some; however, there is currently no universal approach to measuring it. At present, the
development of analytical methods for the complete characterization of the exposome
presents a challenge. It is hoped that it will provide new opportunities in the field of
epidemiology to support the discoveries that will help to improve public health [154].

High-tech advances, such as HRMS and network science, have generated the first
steps to enable a comprehensive evaluation of the exposome. Given the recognition of the
dominant role non-genetic factors play in disease, its further evaluation has the potential to
identify environmental contributors to health and disease in a manner complementary to
the genome [155].

The information that will be delivered by the study of the exposome will eventu-
ally contribute to understanding the environmental causes of disease to discern between
heredity and environment, or to unravel differences between nature and nurture [156].
Metabolomics has been investigating the exposome looking for a diversity of molecules re-
lated to external exposures, such as those related to diet, medication, and pollution, as well

http://www.projecthelix.eu
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as those associated with biological responses (e.g., endogenous processes), throughout the
lifespan [157,158]. The goal is to connect and associate different metabolites with metabolic
modifications. This would facilitate informed choices for diagnosis and prevention [159].
The heritability of 30 of the most prevalent diseases ranged from 0.166 to 0.561 h2, sug-
gesting that the exposome has a major effect on disease [32]. The vast majority of human
exposures have not been explored. Research on the exposome will help to understand
the effects of the environment on human health and disease. Li et al. tried to understand
mixed environmental exposures as a hierarchical community between the metabolome and
mixed exposures to DDT, poly and perfluoroalkyl substances (PFAS), and polychlorinated
biphenyls in CHDS. Their network model revealed that most metabolite communities were
not specific to the association with a particular exposure and that many are shared between
exposures. That is, a small number of metabolic phenotypes may account for the response
to a large class of environmental chemicals [151].

A detailed assessment of all the exposome molecules associated with health and
disease may have the potential to assess and improve our environment as humans in
several ways. It could provide tools to ensure chemical safety. It could challenge our
current views on the origin and pathogenesis of disease. It could generate public policies
and health guidelines to affect daily human health and, thus, quality of life and even
life expectancy.

The investigation of the exposome is a huge endeavor. We ought to depict it by its
parts: (i) the external exposure of all human factors, including the socioeconomic environ-
ment, i.e., social capital, education level, urban–rural environments, and climate factors,
(ii) more specific exposures, such as stress, specific contaminants, diet, physical activity,
drug consumption, allergens, and infections, and (iii) the internal exposure translated into
changes in the metabolism, the immune system, and the gut microbiome. The integration
of the diversity of exposures will have to consider that these are individual, dynamic, and
interdependent [160].

Metabolomics is one of the most powerful tools for investigating the relation between
the genetic background and the exogenous and endogenous factors within human health.
In order to use this kind of complex approach, it is necessary to develop multianalyte
targeted metabolomics platforms for large-scale quantitative exposome research, such as
the one developed by González-Domínguez et al. They cover a broad range of chemical
classes, including amino acids and derivatives, organic acids, biogenic amines, vitamins,
fatty acids, acylcarnitines, and steroids (~500 endogenous metabolites). They built an en-
dometabolome library and monitored 450 additional metabolites to obtain a representative
overview of the food metabolome and other lifestyle habits. The library also includes other
common xenobiotics; among them are pollutants, household chemicals, and commonly
consumed drugs. This allows for a comprehensive exposure assessment. To investigate
the role of microbiota in this complex interplay between external factors and endogenous
processes, several microbiota-derived metabolites were considered. These included bio-
transformed food components, aromatic amino acid derivatives, short-chain fatty acids,
bile acids, vitamins, and others. The platform simultaneously detected 1019 metabolites in
short run times (<30 min. per sample). They described, for the first time, the optimization,
validation, and application of a multi-metabolite platform for comprehensive and quantita-
tive metabolomics-based exposome research. This approach is of great utility in diverse
research fields, such as health research, nutrimetabolomics, toxicometabolomics, and phar-
macometabolomics. This kind of approach is challenging because of its complexity. Despite
that, this research has several strengths; for example, it has the ability to simultaneously
quantify more than 1000 metabolites in different types of samples, in short-run times, by
using simple and automatable extraction methods, and using small-sample volumes. This
facilitates its implementation in large-scale epidemiological studies [161]. This kind of
metabolomic approach should be implemented in diverse fields of biomedicine to address
the complexity of the exposome, thus helping to improve human health.
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5.2. Pharmacometabolomics

The interindividual variability in drug response and safety has prompted investiga-
tions to search for markers to predict and personalize drug prescription, minimize toxicity,
and detect a lack of efficacy. In the last 70 years, pharmacogenetics and pharmacogenomics
(PGx) have converged in the publication of 26 PGx guidelines officially approved for direct-
ing drug prescriptions for more than 60 drugs. Their clinical implementation is paving the
way to a clear strategy for identifying useful gene–drug associations. However, adverse
drug reactions represent the fourth leading cause of death in the USA, and PGx makes
72% of these preventable [162]. Similar statistics have been reported for the UK [163],
Spain [164], and Italy [165]. The incidence of adverse drug reactions will only increase as
the population ages and the number of drugs prescribed increases. This points toward
a need for the identification of better tools for personalizing drug treatment. PGx has
identified genotypes associated with drug responses for about 60 drugs, and the FDA
has approved around 3000 drugs. Therefore, several hundred drugs still need markers to
improve their efficacy and safety, especially those with narrow therapeutic indices.

A metabolomic profile reflects the impact of genetic and environmental factors on a
certain phenotype. This brings us closer to a real-time phenotype capable of predicting the
actual state of a patient’s drug response. Weinshilboum et al. agreed that metabolomics
can inform pharmacogenomics to ultimately identify genetic variants of more specific
phenotypes [4]. Beyond genetics, it is within the scope of pharmacometabolomics to pin-
point metabolites for drug monitoring and personalized medicine in addition to collecting
genetic information. Metabolomics can offer a more immediate metabolic status whose
application has been widely acknowledged for newborn screening programs around the
world, although technology has been the limiting factor for its broader implementation.
Metabolic information has already guided drug response. For example, clinicians measure
the presence of receptor on the surface of some cancer cells (HER2) biochemically (not
genetically) prior to prescribing trastuzumab. Some physicians prefer thiopurine methyl-
transferase (TPMT) phenotyping to genotyping for the administration of thiopurines as the
former may be more precise for identifying potential toxicities [166]. Changes in oxidative
states in health versus disease, or due to drug treatment, are rarely adequately defined by
genomics, whereas metabolic assessments can provide a comprehensive picture. In a recent
case study, the metabolome of a patient suffering from a rare cancer and recurrent infections
showed significantly higher homocysteine/methionine and homocysteine/thiodiglycolic
acid ratios compared to that of healthy aged-matched controls. These differences high-
lighted a lower antioxidant capacity, guiding medical decisions toward a personalized
protocol involving a 10-fold increase in vitamin C supplementation, which improved the
efficacy of anticancer drugs and antimicrobial control [167].

Another example showed that, during cancer chemotherapy, the accumulation of AC
and specific amino acids partly reflects a patient’s exposure to SN38, the most abundant,
active, and toxic metabolite of irinotecan [60]. Consequently, a threshold level of AC
could be used to assess and monitor irinotecan’s dosing and toxicity risk. Similarly, the
interindividual variation in the response to aspirin’s antiplatelet effects is likely due to
plasma variations of amino acids and serotonin levels. Measuring these metabolites could
prevent hemorrhages and increase antiplatelet efficacy in high-risk patients [168]. Metabolic
signatures involving amino acids, carbohydrates, and lipids already provide information
differentiating between gemcitabine-resistant and sensitive pancreatic cancer patients. The
above shows that metabolomics is a key complement for determining drug safety and
efficacy and that support for research and development in the field ought to be granted.

Moreover, metabolomics research on pharmacokinetics and pharmacodynamics may
guide drug development, efficacy, and safety. Alterations of the metabolic profile of a
disease can be due to the disease itself, the patients’ genotype, or the drug’s effects. This
supports the notion that we need metabolomic strategies to determine each stage of pro-
gression from the exposome, to health and disease, to treatment efficacy. Lipidomics, for
example, has been used to identify lipogenesis inhibitors that target specific lipids that may
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be used in anticancer treatment to hinder the progression of cancer [61]. However, care
should be taken when considering metabolic profiles as biomarkers of drug efficacy for
prognosis since most diseases are still limited in their molecular characterization, and new
disease subtypes are being characterized every day. In this regard, Koch et al. identified
a list of glutaminolysis-related metabolites whose decrease indicates drug effectiveness
against glioblastoma stem-like cells, but the inhibition of glutaminolysis was observed only
for glioblastoma stem-like cells, a cell subpopulation in glioblastoma [169]. In addition,
as technology evolves and prices decrease, the personalization of drug prescription will
comprehensively and individually improve to assess genomics, metabolomics, the expo-
some, the microbiome, and other omic strategies. The field of pharmacomicrobiomics can
inform clinical pharmacogenomics, as the microbiome has been associated to drug response,
the pharmacokinetics and pharmacodynamics of several drugs, including metformin [64],
antibiotics [62], antihypertensives, and anticancer immunotherapeutics [63].

Future endeavors in pharmacometabolomics will seek to understand drug safety
and efficacy by generating a metabolomic and genomic signature for each medication.
This is particularly urgent for illnesses related to aging, such as diabetes, hypertension,
dyslipidemia, cancer, and mental diseases. This will only be attained as technological
advances facilitate access to metabolomic analyses and statistical platforms enable clinical
testing integrating biomedical research.

5.3. Metabolomics and Extracellular Vesicles

The relevance that extracellular vesicles (EVs) have gained in the past few years lies in
their potential for diagnostic and therapeutic applications. EVs comprise a heterogeneous
group of membrane-bounded nanoparticles released to the extracellular space that reflects
the physiological state of the cell of origin. The two main types of EVs involved in cell-
to-cell communication events are generated through the invagination of the membrane
of the multivesicular bodies of the endosomal pathway (i.e., small EVs and exosomes)
and through the outward budding of the plasma membrane (i.e., large EVs, ectosomes,
or microvesicles). Both types of EVs transport RNA, proteins, lipids, and metabolites
that influence the functioning of recipient cells. Alterations in their molecular cargo have
been documented, especially through transcriptomic and proteomic approaches in several
pathologies, including cancer and metabolic, cardiovascular, and neurological diseases.
Recently, the analysis of lipids and small metabolites has proven to be a useful strategy for
identifying biomarker candidates that cannot be measured directly in biofluids [170–172].

Small and large EVs display a metabolic profile that is highly correlated with their
parental cells [170,173]. Thus, lipidomic analyses are a useful strategy for identifying novel
biomarkers and determining the source of circulating EVs. An analysis of the lipid compo-
sition of serum-derived EVs from healthy individuals revealed the existence of different
EV subpopulations distinguished by their phospholipid or ceramide contents and protein
markers [174]. Similarly, urinary small EVs from healthy individuals show a unique content
of diverse types of sphingolipids, excluding phosphatidylinositol ceramides, which were
detectable only in large EVs [175]. In response to tissue damage, there is a dysregulation
of specific metabolic markers in EVs that cannot be traced in whole plasma or serum. For
instance, after cranial irradiation in a mouse model, there is an increase in plasma-derived
EVs of inflammatory markers, including triglycerides, platelet activating factor (PAF),
carnitine, and C-16 sphinganine [176]. The transport of inflammatory mediators has also
been confirmed in EVs from humans. Pro-inflammatory metabolites, such as prostaglandin
F2-alpha (PGF2α), are transported in the plasma and have been related to an increased risk
of thrombotic events in patients with paroxysmal nocturnal hemoglobinuria [177].

The metabolomic characterization of EVs in the cancer field has been directed to-
ward determining if there is a molecular fingerprint associated with the degree of ag-
gressiveness of the tumor and to predicting on drug sensitivity. These studies have con-
firmed a specific enrichment of lipids and metabolites that is distinguishable from cell
metabolomes [178–180]. Moreover, it seems that there is a molecular signature that allows
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the differentiation of metastatic cell lines from primary tumors. The EVs from colorectal
cancer cell lines show an alteration of glycerophospholipid subtype levels and a shift of
arachidonic and docosahexaenoic acid to diacylphosphatidyl-ethanolamine plasmalogen,
according to the degree of malignancy [178]. In prostate cancer cell lines, there is also
evidence of a lipidome signature for metastatic cell lines. The PC-3 cell line, which is highly
metastatic, generates vesicles enriched in sterol lipids, sphingolipids, glycerophospholipids,
and monounsaturated fatty acids [181,182]. These differences in lipid content affect tumor
progression. EVs derived from highly metastatic breast cancer with increased levels of
unsaturated diacylglycerol species stimulate angiogenesis through the activation of en-
dothelial cells [180]. Moreover, the drug resistance of tumors has been associated with the
presence of a particular phospholipid signature of EVs from lung cancer cell lines [183].

In addition to transporting metabolites that directly affect the physiology of target cells,
EVs contain a variety of enzymes that confer the ability to alter metabolite concentrations
in the blood [184]. Hepatocyte-derived EVs contain the enzyme arginase I, whose levels
increase under hepatotoxic conditions, both in vitro and in vivo. These hepatic EVs alter
the oxidative environment in the bloodstream and regulate endothelial function through
the modification of the levels of arginine and ornithine [185]. These studies highlight the
need to determine the relevance of metabolic enzymes that have been documented in the
proteome of EVs derived from multiple cell lines and patient samples.

Although the metabolomic analysis of EVs requires further standardization and valida-
tion, there have been significant advances in the identification of relevant biomarkers [186].
The levels of phenylalanine, leucine, phosphatidylcholine 35:0, and sphingomyelin 44:3 in
large pleural EVs help to differentiate tuberculosis pleural effusion from malignant pleural
effusion [172]. The abundance of ceramides, ceramide-phosphates, phosphatidylglycerol,
and sphingomyelins allows for the differentiation of healthy subjects from asthmatics. It can
also identify lipid metabolites that exacerbate inflammation [187]. Regarding the prediction
of preterm birth, low levels of phosphatidylserine (PS 34:0), PS (O-42:0), phosphatidylinos-
itol (O-36:1), C24 (OH) sulfatide, and phosphoethanolamine (O-33:0) in plasma-derived
EVs are sufficient to distinguish preterm birth from healthy pregnancy in the early second
trimester [188]. Future studies should address the functional implications of changes in
the EV metabolome and compare its diagnostic and prognostic informative value relative
to the information obtained from the transcriptome and proteome of EVs. The challenge
is to determine whether EV metabolome would reveal unique biomarkers that indicate
functional alterations in diverse pathologies and escape from analysis of unfractionated
biofluids [186,189].

5.4. Metabolomics and Longevity

According to the United Nations, human life expectancy is still increasing. Japan and
several developed countries have an average lifespan of more than 80 years. Longevity
is a complex trait that is difficult to predict, and its high interindividual variability has
encouraged researchers to analyze the biology underlying aging with the goal of predicting
lifespan and mortality risk, as well as improving the quality of human life. Human aging
is accompanied by a gradual decline in physiological functions. This has been the focus
of a plethora of studies, from genetics to biochemistry, animal models, and, more recently,
metabolomics [190].

The genomics of aging include the investigation of genes related to DNA repair,
ROS, apoptosis, epigenetics, autophagy, mitochondria, adduct formation, and telomere
protection. Genetic variation on TOR, AKT, FOXO, APOE, SIRT1/6, and several others
has shown to impact life expectancy in animal models [191–193]. Currently, genomics can
predict the heritability of longevity between 15 and 33%, although recent calculations barely
reached 10% [194]. Consequently, other approaches have been explored to better depict
and predict longevity. Calorie restriction, for example, did not demonstrate a direct impact
on life extension but showed improvements on healthy aging, leaving many questions to be
answered for humans [195]. More recently, metabolomic profiling has made some progress
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in identifying pathways for healthy aging, disease delay, and the physiological status of
the long-lived. A thorough review by Parkhitko et al. included at least six independent
pathways, such as glucose catabolism and anabolism, amino acids, the pentose cycle, the
Krebs cycle, and pathways of mitochondrial function, that can describe metabolic activity
and lifespan across species [196]. The shift in reporting metabolomic signatures instead
of metabolic cycles and physiological pathways would offer a broad and comprehensive
understanding of the aging phenotype by pinpointing specific compounds or a useful
metabolomic signature embedded in a whole organism.

The wide array of physicochemical properties of the metabolome have guided its ana-
lytical detection and quantification, so that progress in the field is reported separately, ac-
cording to the instrumental/technological methodology. Amino-acid profiling, lipidomics,
and glycomics preferentially use liquid chromatography coupled with triple quadrupole
or time-of-flight mass spectrometers with a diversity of separating columns. To analyze
this signature, we could suggest different platforms; free fatty acids can be derivatized and
detected using gas chromatography and mass spectrometers, hydrophilic metabolites may
rely on NMR or capillary electrophoresis, and, for amino acids or proteins, one could use
ion trap mass spectrometers coupled with liquid chromatography. The output of these
strategies is currently analyzed independently as metadata, generating long lists of organic
molecules and developing testable hypotheses on human longevity or mortality risk. For
example, animal models present some evidence of amino acid alterations affecting the
lifespan of marmosets [197]. In C. elegans, a signature of metabolites related to phospho-
choline, protein biosynthesis, the urea cycle, glutathione, amino acids, betaine, and biotin
metabolism has been significantly associated with a longer life span. This may be due to
an increased activity of the Krebs cycle and augmented phosphocholine levels, as well
as decreased nucleotide metabolism [198]. A metabolomic profile, including vitamin E,
betaine, and other polyamines, was observed in higher concentrations in the naked mole rat,
an iconic animal model of longevity compared to the short-lived mouse [199]. Proteomics
has delivered 25 peptides associated with longevity in men. These peptides are present
in inflammation and immunity processes, including C-reactive protein, the complement
components C7 and C9, immunoglobulin heavy constant mu chain (IGHM), neuropilin-1,
alpha-2-macroglobulin, and cell surface glycoprotein MUC18, among others [200]. Sim-
ilarly, glycomics has listed N-glycans as inflammaging markers [201], while lipidomics,
the largest part of the metabolome, has identified specific ether-phosphocholines and plas-
malogens with antioxidant capacity, serving as promoters of cardiovascular health and
healthy aging in women. All these studies highlight the importance of a detailed profiling
of individual small metabolites, amino acids, nucleic acids, and protein, and lipid species
not yet broadly achieved nor integrated [51,53]. To consider the whole metabolome and its
association with longevity or mortality risk, it is critical to tackle several analytical plat-
forms simultaneously for a diversity of populations or to perform metadata analyses. For
the latter, Fischer et al. developed a model to predict the short-term risk of death from all
causes using only four plasma metabolites: albumin, very low density lipoprotein (VLDL)
particle size, alpha-1-acid glycoprotein, and citrate [202]. This study was recently validated
in 44,148 Europeans. It listed 11 metabolites, including the total lipids in chylomicrons,
VLDL and small HDL, the mean diameter for VLDL particles, the ratio of polyunsaturated
fatty acids to total fatty acids, histidine, leucine, valine, and albumin, for which a higher
level was associated with decreased mortality. Higher levels of glucose, lactate, isoleucine,
phenylalanine, acetoacetate, and alpha-1-acid glycoprotein were associated with increased
mortality [65].

Noteworthy are the differences in the results and theories published depending on
the study design. Some studies compared familial longevity to individual longevity, while
others compared nonagenarians to centenarians, or males to females, proteomics versus
lipidomics, glycomics versus NMR hydrophilic metabolomics, targeted and untargeted
metabolomics, and their overlapping associations. Moreover, all the studied populations
lack age-matched control groups, making it difficult to consolidate a metabolic profile [203].
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To date, there are a few potential markers of healthy aging, such as lipoproteins, amino
acids, and ether phospholipids, that may have biomedical utility in the near future. The
coming decades will see the development and validation of tools to comprehensively inte-
grate chemically distinct metabolite signatures from a variety of analytical platforms and
different cohorts for the prediction of mortality risk, longevity, or healthy aging and their im-
plementation for precision medicine applications [204]. Finally, these approaches will only
be enriched as they develop with the consideration of additional determinants of longevity,
such as diet, the microbiome, mental health, and the interactions among them [205]. This
may, ultimately, serve to deliver models of mortality risk scores using succinct but specific
information from diet, human and microbial genomics, and metabolomics.

6. Discussion

The discovery of metabolomic signatures for health and disease will deliver biomedical
applications to facilitate the efficient differentiation of pathophysiological states, diagno-
sis, personalized treatment, and drug development. Human metabolomics research is
focused on depicting, in real time, small and large molecules that characterize health
and disease states. The identification of metabolomic signatures could lead to prevention
and better health care treatment. Metabolomics research encompasses a wide variety
of analytical tools and samples, mostly based on the physicochemical properties of the
biological matrices and the metabolites of interest [206]. Metabolomics analyses can be
targeted or non-targeted, hypothesis-free or hypothesis-generating, with the purpose of
discovering, defining, validating, and implementing molecular signatures to aid in the
progress of medicine.

Current efforts are directed at integrating metabolomic data from different sources to
obtain a broad and comprehensive phenotype of a specific health or disease state. Sources
include the following:

(i) different analytical platforms, such as NMR, gas chromatography, liquid chromatog-
raphy, and MS;

(ii) various identified metabolites, such as lipids, amino acids, proteomics, glycomics, etc.;
(iii) different matrices, such as blood, plasma, CSF, urine, tissue, tumors, etc.

It is also important to consider that the metabolome varies with time, pathology,
developmental stage, progression, drug treatment, dietary intervention, environmental
factors, and even the microbiome. It is acknowledged that the simultaneous and accurate
analytical quantification of the metabolome remains a challenge [21].

The integrated use of metabolomics, together with other omics technologies, will
overcome some of these challenges and will determine a better pattern of recognition
and association of a comprehensive human phenotype. This also presents mathematical
and statistical difficulties, as a wide array of data from several omic sources ought to be
integrated [207]. One example of successful omics integration is in T2D, where genomics
and metabolomics, together with pathway analysis, identified BCAA levels as potentially
causing diabetes mellitus. First, metabolomics identified the BCAA levels associated with
the pathway of the enzyme, alpha-keto acid dehydrogenase (BCKD) complex, as the rate-
limiting step in BCAA catabolism. Next, the PPM1K gene, a mitochondrial phosphatase
gene, was associated with the formation of BCAAs, leading to the relationship between
these three [208]. The availability of multi-omic data does not always allow for direct
conclusions on disease or phenotype causality. Nevertheless, integrated omics have demon-
strated several layers of evidence confirming and validating independent results directed
at the consolidation of biomedical hypotheses [209,210].

Progress in analytical techniques is also warranted for metabolomics to fully emerge
as a clinical tool. Classical metabolomics requires large sample volumes, from milliliters to
microliters, which imposes a clear difficulty for certain biofluids [211]. Fortunately, novel
strategies, such as triboelectric nanogenerator inductive (TENGi) MS, can work in the
subnanoliter volume range. In fact, it has been used in a targeted and non-targeted mode
and was useful in analyzing of exosomes, tissue-derived cells, needle biopsies, tears, and
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sweat, all of which can be collected in small amounts. It seems that TENGi MS coupling
would further increase metabolite coverage and can be applied to almost every type of
sample where the amount collected is limited [211].

In addition to the development of better analytical platforms, there is a need for the
global standardization of metabolomic analyses. As has happened for clinical studies, drug
development, genomics, and pharmacogenomics in the past, metabolomics currently lacks
official protocols for reporting and validating discoveries. Hence, a unified consensus
as to how to define a clinically useful and valid metabolomic signature is still missing.
Schmith et al. commented that there is a need for the use of standardized protocols, low-
cost affordable instruments, and user-friendly analytical platforms so that metabolomics
can be broadly used in research and implemented in clinical laboratories to meet the
increasing demands for diagnostic and prognostic tests [21]. Moreover, the algorithms
involved in pathway analysis also require the standardization of methods, sample prepara-
tion, instrument specifications and settings, and quality controls. In this regard, OmicsDI
(www.omicsdi.org) may address some of these intricacies. OmicsDI is an open-source
platform that integrates and stores a diversity of omics data, publicly available for down-
load and analysis [212]. This repository promotes data-driven research, thus diminishing
redundancy in experiments. Future efforts should tackle computational and statistical
challenges to homogenize metabolomic analysis and reporting, to capitalize on the promise
offered by integrated metabolomics and systems biology [213].

Ultimately, integrated omics analyses aim to establish genome-scale metabolic models
combining phenotype data for every disease or health state. Systems biology can already
provide maps of metabolic networks in physiological systems. Linking it with actual
metabolomic data will not only validate previous reports but will also consolidate current
theories and hypotheses for a better understanding of tissues, organs, or even whole
organisms in human disease and health [214].

The most prevalent health problems today are chronic diseases and those of an ag-
ing population. These include T2D, as well as cardiovascular and neurodegenerative
diseases. Metabolomics may improve the treatment of these diseases, as well as improve
longevity itself and help to personalize drug treatment. To date, there are several vali-
dated metabolomic signatures for T2D and its complications, including kidney disease and
cardiovascular and neurodegenerative diseases. Metabolites, such as VLDL, AC, BCAA,
mono- and polyunsaturated fatty acids, and ether phospholipids, have been consistently
reported for the last decade as key metabolites of T2D, CVD, and neurodegeneration. These
metabolites have been consolidated and, even validated, as specific metabolomic signatures.
Next steps include finding ways to implement metabolomic signatures in clinical practice
and finding a better cost-benefit balance so that metabolomics can be used to improve
diagnosis, prognosis, and treatment.

The diverse, complex, and sensitive nature of the metabolome means studies should
be consistent, with reduced variation between subjects. They should also prioritize infor-
mation delivery and reports.

Metabolomics has provided some clear markers of disease progression and drug
efficacy. For example, ACs and aromatic amino acids in insulin resistance, specific phos-
phocholines in cardiovascular disease, an increase of drug metabolites in risk of adverse
drug reactions, and long chain sphingolipids and polyunsaturated fatty acids in female
longevity. Current endeavors ought to replicate these observations and validate them to
provide, in the near future, a list of useful and clinically valid metabolomic signatures to
improve human health.

7. Conclusions

Metabolomics continues to make important contributions in biomedical research, such
as the identification of markers for diagnosis, disease monitoring, and drug efficacy, all of
which improve the patient’s quality of life. Analytical techniques have broadly assisted
with the identification and, in some instances, are used in the clinic. The main limitation of

www.omicsdi.org
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any metabolomic analytical platform is that it cannot characterize the whole phenotype.
Therefore, it seems that future metabolomic goals will include the development of more
comprehensive analytical platforms and the integration of metabolomic data from different
instruments. It is possible that future technological advances will create instruments that
can analyze all or most metabolites, regardless of their chemical nature, requiring only one
instrumentation setting. Eventually, multi-omic approaches will enable a more detailed
molecular understanding of human metabolomics in health and disease. This is essential
for guiding novel diagnoses and therapies [215]. Novel or integrated analytical techniques,
such as metabolite imaging, statistical, and computational algorithms, are urgently required
for metabolomics to emerge as a tool with analytical validity and clinical utility.
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Abbreviations

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 3-hydroxy octadecanoylcarnitine (C18:2),
3-hydroxy-tetradecanoylcarnitine (C12:1), 6-hidroxidopamine (6-OHDA), acido docosahexaenoico
(C22: 6), acylcarnitines (AC), adverse drug reactions (ADRs), alanine (ALA), Alzheimer’s disease
(AD), AMP-activated protein kinase (AMPK), amyloid-β (Aβ), androgen-dependent prostate cancer
cell line (LnCAP), apolipoprotein E (APOE), arginine (ARG), arachidonoyl carnitine (C20:4), area
under the curve (AUC), branched-chain amino acids (BCAAs), benign colorectal disease (BCD),
blood–brain barrier (BBB), body mass index (BMI), capillary electrophoresis (CE), cardiovascular
diseases (CVD), cerebrospinal fluid (CSF), checkpoint inhibitors (CPI), Child Health and Devel-
opment Studies (CHDS), cysteine (Cys), colectan sub-family member 11 (COLEC11), C-terminal
binding proteins 1 y 2 (CtBP1,2), colorectal cancer (CRC), decenoylcarnitine (C16:1), docosahexaenoic
(C22:6), diabetic kidney disease (DKD), dichlorodiphenyltrichloroethane (DDT), dehydrogenase
(BCKD), endoplasmic reticulum (ER), estimated glomerular filtration rate (eGFR), extracellular
vesicles (EVs), fatty acid-binding protein 4 (FABP4), free carnitine (C0), free fatty acids (FFA), gamma-
aminobutyric acid (GABA), glycine (GLY), glutaminase 1 (GLS1), growth differentiation factor 8
(GDF8), growth differentiation factor 11 (GDF11), GS??, hexokinase 2 (HK2), high density lipoprotein
(HDL), high-resolution mass spectrometry (HRMS), histidine (His), hypoxia Inducible Factor 1α
(HIF-1α), isoleucine (ILE), immunoglobulin heavy constant mu chain (IGHM), kininogen (KNG)
lactate dehydrogenase A (LDHA), leucine (LEU), leucine + isoleucine (ILE), leucine rich repeat kinase
2 (LRKK2), liquid chromatography (LC), liquid chromatography/mass/mass (LC-MS/MS), low
density lipoprotein (LDL), lysophosphatidylcholines (LPC), neurofilament light chain (NF-L), nuclear
factor kappa B subunit 1 (NFKB1), nuclear magnetic resonance (NMR), mass spectrometry (MS),
member of the class O of forehead (FOXO), MYC proto-oncogene, bHLH transcription factor (c-Myc),
octadecanoylcarnitine C18:0, octadecadienyl-L-carnitine (C18:3), octadecenoylcarnitine (C18:1), oc-
tanoylcarnitine (C8), operating characteristic curve (AROC), ornithine (ORN), Parkinson’s disease
(PD), pharmacogenetics and pharmacogenomics (PGx), phenylalanine (PHE), phenylacetylglutamine
(PAGln), phosphocholine lipid species (PC), phosphoethanolamine species (PE), phosphoserines (PS),
polyunsaturated fatty acids (PUFA), positron emission tomography (PET), proline (PRO), protein
Phosphatase, Mg2+/Mn2+ Dependent 1K (PPM1K) protein kinase B (PKB), also (Akt), prostate cancer
(PC), protein kinase C-delta (PKCδ), PTEN-induced kinase 1 (PINK1), polyunsaturated fatty acids
(PUFA),quantitative trait loci (eQTL), rat sarcoma virus (Ras), receptor 2 of human epidermic growth



Metabolites 2022, 12, 194 24 of 32

factor (HER2), receptor tyrosine kinase (ROS), target of rapamycin (TOR), serum-free carnitine (C0),
short-chain dicarboxylacylcarnitine species (SCDA), single-cell metabolic regulome profiling (scMEP),
sirtuin1/6 (SIRT1/6), sphingomyelins (SM), tauopathy transgenic rat model (SHR72), tauopathy
mouse model (rTg4510), tetradecenoylcarnitine (C10:2), thiopurine methyltransferase (TPMT), TNF
superfamiliy Member 12 (TNFSF12) transcription factors (TF), transcription factor p65 (RELA), trans-
membrane serine protease 2 (TMPRSS2), triboelectric nanogenerator inductive nanoelectrospray
ionization (TENGi MS), ion mobility mass spectrometry (IM-MS), triglycerides (TG), trimethylamine
N-oxide (TMAO), tryptophan (trp), tumoral protein 53 (TP53), tumor microenvironment (TME), type
2 diabetes (T2D), type 1 (T1D), tyrosine (TYR), ultra-performance liquid chromatography (UPLC),
U.S. Food and Drug Administration (FDA), valine (VAL), very low densityl lipoprotein (VLDL),
WAP/kazal/inmunoglobulin/Kunitz and NTR domain-containing protein 2 (WFIKKN2), whole-
exon sequencing (WES).

References
1. Crick, F. Central dogma of molecular biology. Nature 1970, 227, 561–563. [CrossRef]
2. Brem, R.B.; Kruglyak, L. The landscape of genetic complexity across 5700 gene expression traits in yeast. Proc. Natl. Acad. Sci.

USA 2005, 102, 1572–1577. [CrossRef] [PubMed]
3. Oresic, M.; McGlinchey, A.; Wheelock, C.E.; Hyotylainen, T. Metabolic Signatures of the Exposome-Quantifying the Impact of

Exposure to Environmental Chemicals on Human Health. Metabolites 2020, 10, 454. [CrossRef] [PubMed]
4. Neavin, D.; Kaddurah-Daouk, R.; Weinshilboum, R. Pharmacometabolomics informs pharmacogenomics. Metabolomics 2016, 12,

121. [CrossRef] [PubMed]
5. Johnson, C.H.; Ivanisevic, J.; Siuzdak, G. Metabolomics: Beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol.

2016, 17, 451–459. [CrossRef]
6. Nielsen, J. Systems Biology of Metabolism. Annu. Rev. Biochem. 2017, 86, 245–275. [CrossRef] [PubMed]
7. Powers, R. NMR metabolomics and drug discovery. Magn. Reson. Chem. 2009, 47 (Suppl 1), S2–S11. [CrossRef]
8. Zhang, G.F.; Sadhukhan, S.; Tochtrop, G.P.; Brunengraber, H. Metabolomics, pathway regulation, and pathway discovery. J. Biol.

Chem. 2011, 286, 23631–23635. [CrossRef]
9. Wishart, D.S.; Tzur, D.; Knox, C.; Eisner, R.; Guo, A.C.; Young, N.; Cheng, D.; Jewell, K.; Arndt, D.; Sawhney, S.; et al. HMDB: The

Human Metabolome Database. Nucleic Acids Res. 2007, 35, D521–D526. [CrossRef]
10. Harrigan, G.G.; Goodacre, R. Introduction. In Metabolic Profiling: Its Role in Biomarker Discovery and Gene Function Analysis;

Harrigan, G.G., Goodacre, R., Eds.; Springer: Boston, MA, USA, 2003; pp. 1–8.
11. Wishart, D.S. Emerging applications of metabolomics in drug discovery and precision medicine. Nat. Rev. Drug Discov. 2016, 15,

473–484. [CrossRef] [PubMed]
12. Mussap, M.; Zaffanello, M.; Fanos, V. Metabolomics: A challenge for detecting and monitoring inborn errors of metabolism. Ann.

Transl. Med. 2018, 6, 338. [CrossRef] [PubMed]
13. Spratlin, J.L.; Serkova, N.J.; Eckhardt, S.G. Clinical applications of metabolomics in oncology: A review. Clin. Cancer Res. 2009, 15,

431–440. [CrossRef] [PubMed]
14. Griffiths, W.J.; Koal, T.; Wang, Y.; Kohl, M.; Enot, D.P.; Deigner, H.P. Targeted metabolomics for biomarker discovery. Angew.

Chem. Int. Ed. Engl. 2010, 49, 5426–5445. [CrossRef]
15. Jacob, F.; Monod, J. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 1961, 3, 318–356. [CrossRef] [PubMed]
16. Yang, Q.; Vijayakumar, A.; Kahn, B.B. Metabolites as regulators of insulin sensitivity and metabolism. Nat. Rev. Mol. Cell Biol.

2018, 19, 654–672. [CrossRef]
17. Rinschen, M.M.; Ivanisevic, J.; Giera, M.; Siuzdak, G. Identification of bioactive metabolites using activity metabolomics. Nat. Rev.

Mol. Cell Biol. 2019, 20, 353–367. [CrossRef] [PubMed]
18. Ortmayr, K.; Dubuis, S.; Zampieri, M. Metabolic profiling of cancer cells reveals genome-wide crosstalk between transcriptional

regulators and metabolism. Nat. Commun. 2019, 10, 1841. [CrossRef] [PubMed]
19. Han, H.; Shim, H.; Shin, D.; Shim, J.E.; Ko, Y.; Shin, J.; Kim, H.; Cho, A.; Kim, E.; Lee, T.; et al. TRRUST: A reference database of

human transcriptional regulatory interactions. Sci. Rep. 2015, 5, 11432. [CrossRef] [PubMed]
20. Shevchenko, A.; Simons, K. Lipidomics: Coming to grips with lipid diversity. Nat. Rev. Mol. Cell Biol. 2010, 11, 593–598.

[CrossRef] [PubMed]
21. Schmidt, D.R.; Patel, R.; Kirsch, D.G.; Lewis, C.A.; Vander Heiden, M.G.; Locasale, J.W. Metabolomics in cancer research and

emerging applications in clinical oncology. CA Cancer J. Clin. 2021, 71, 333–358. [CrossRef] [PubMed]
22. Beger, R.D.; Schnackenberg, L.K.; Holland, R.D.; Li, D.; Dragan, Y. Metabonomic models of human pancreatic cancer using 1D

proton NMR spectra of lipids in plasma. Metabolomics 2006, 2, 125–134. [CrossRef]
23. Bathe, O.F.; Shaykhutdinov, R.; Kopciuk, K.; Weljie, A.M.; McKay, A.; Sutherland, F.R.; Dixon, E.; Dunse, N.; Sotiropoulos, D.;

Vogel, H.J. Feasibility of identifying pancreatic cancer based on serum metabolomics. Cancer Epidemiol. Biomark. Prev. 2011, 20,
140–147. [CrossRef] [PubMed]

http://doi.org/10.1038/227561a0
http://doi.org/10.1073/pnas.0408709102
http://www.ncbi.nlm.nih.gov/pubmed/15659551
http://doi.org/10.3390/metabo10110454
http://www.ncbi.nlm.nih.gov/pubmed/33182712
http://doi.org/10.1007/s11306-016-1066-x
http://www.ncbi.nlm.nih.gov/pubmed/27516730
http://doi.org/10.1038/nrm.2016.25
http://doi.org/10.1146/annurev-biochem-061516-044757
http://www.ncbi.nlm.nih.gov/pubmed/28301739
http://doi.org/10.1002/mrc.2461
http://doi.org/10.1074/jbc.R110.171405
http://doi.org/10.1093/nar/gkl923
http://doi.org/10.1038/nrd.2016.32
http://www.ncbi.nlm.nih.gov/pubmed/26965202
http://doi.org/10.21037/atm.2018.09.18
http://www.ncbi.nlm.nih.gov/pubmed/30306077
http://doi.org/10.1158/1078-0432.CCR-08-1059
http://www.ncbi.nlm.nih.gov/pubmed/19147747
http://doi.org/10.1002/anie.200905579
http://doi.org/10.1016/s0022-2836(61)80072-
http://www.ncbi.nlm.nih.gov/pubmed/13718526
http://doi.org/10.1038/s41580-018-0044-8
http://doi.org/10.1038/s41580-019-0108-4
http://www.ncbi.nlm.nih.gov/pubmed/30814649
http://doi.org/10.1038/s41467-019-09695-9
http://www.ncbi.nlm.nih.gov/pubmed/31015463
http://doi.org/10.1038/srep11432
http://www.ncbi.nlm.nih.gov/pubmed/26066708
http://doi.org/10.1038/nrm2934
http://www.ncbi.nlm.nih.gov/pubmed/20606693
http://doi.org/10.3322/caac.21670
http://www.ncbi.nlm.nih.gov/pubmed/33982817
http://doi.org/10.1007/s11306-006-0026-2
http://doi.org/10.1158/1055-9965.EPI-10-0712
http://www.ncbi.nlm.nih.gov/pubmed/21098649


Metabolites 2022, 12, 194 25 of 32

24. Beckonert, O.; Coen, M.; Keun, H.C.; Wang, Y.; Ebbels, T.M.; Holmes, E.; Lindon, J.C.; Nicholson, J.K. High-resolution magic-
angle-spinning NMR spectroscopy for metabolic profiling of intact tissues. Nat. Protoc. 2010, 5, 1019–1032. [CrossRef]

25. Bharti, S.K.; Jaiswal, V.; Ghoshal, U.; Ghoshal, U.C.; Baijal, S.S.; Roy, R.; Khetrapal, C.L. Metabolomic profiling of amoebic and
pyogenic liver abscesses: An in vitro NMR study. Metabolomics 2012, 8, 540–555. [CrossRef]

26. Ramadan, Z.; Jacobs, D.; Grigorov, M.; Kochhar, S. Metabolic profiling using principal component analysis, discriminant partial
least squares, and genetic algorithms. Talanta 2006, 68, 1683–1691. [CrossRef]

27. Monleon, D.; Morales, J.M.; Barrasa, A.; Lopez, J.A.; Vazquez, C.; Celda, B. Metabolite profiling of fecal water extracts from
human colorectal cancer. NMR Biomed. 2009, 22, 342–348. [CrossRef] [PubMed]

28. Auray-Blais, C.; Raiche, E.; Gagnon, R.; Berthiaume, M.; Pasquier, J.-C. Metabolomics and preterm birth: What biomarkers in
cervicovaginal secretions are predictive of high-risk pregnant women? Int. J. Mass Spectrom. 2011, 307, 33–38. [CrossRef]

29. Khamis, M.M.; Adamko, D.J.; El-Aneed, A. Mass spectrometric based approaches in urine metabolomics and biomarker discovery.
Mass Spectrom. Rev. 2017, 36, 115–134. [CrossRef]

30. Wishart, D.S.; Jewison, T.; Guo, A.C.; Wilson, M.; Knox, C.; Liu, Y.; Djoumbou, Y.; Mandal, R.; Aziat, F.; Dong, E.; et al. HMDB
3.0–The Human Metabolome Database in 2013. Nucleic Acids Res. 2013, 41, D801–D807. [CrossRef] [PubMed]

31. Chen, W.; Li, C.; Shi, Y.; Zhang, Y.; Jin, D.; Zhang, M.; Bo, M.; Li, G. A Comprehensive Analysis of Metabolomics and
Transcriptomics Reveals Novel Biomarkers and Mechanistic Insights on Lorlatinib Crosses the Blood-Brain Barrier. Front.
Pharmacol. 2021, 12, 722627. [CrossRef]

32. Wang, K.; Gaitsch, H.; Poon, H.; Cox, N.J.; Rzhetsky, A. Classification of common human diseases derived from shared genetic
and environmental determinants. Nat. Genet. 2017, 49, 1319–1325. [CrossRef] [PubMed]

33. Delgado-Povedano, M.M.; Calderon-Santiago, M.; Luque de Castro, M.D.; Priego-Capote, F. Metabolomics analysis of human
sweat collected after moderate exercise. Talanta 2018, 177, 47–65. [CrossRef] [PubMed]

34. Gardner, A.; Carpenter, G.; So, P.W. Salivary Metabolomics: From Diagnostic Biomarker Discovery to Investigating Biological
Function. Metabolites 2020, 10, 47. [CrossRef] [PubMed]

35. Serkova, N.J.; Van Rheen, Z.; Tobias, M.; Pitzer, J.E.; Wilkinson, J.E.; Stringer, K.A. Utility of magnetic resonance imaging and
nuclear magnetic resonance-based metabolomics for quantification of inflammatory lung injury. Am. J. Physiol. Lung Cell Mol.
Physiol. 2008, 295, L152–L161. [CrossRef] [PubMed]

36. Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.; Fiehn, O.; Goodacre, R.; Griffin, J.L.;
et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics
Standards Initiative (MSI). Metabolomics 2007, 3, 211–221. [CrossRef] [PubMed]

37. Dettmer, K.; Aronov, P.A.; Hammock, B.D. Mass spectrometry-based metabolomics. Mass Spectrom. Rev. 2007, 26, 51–78.
[CrossRef] [PubMed]

38. Gebregiworgis, T.; Powers, R. Application of NMR metabolomics to search for human disease biomarkers. Comb. Chem. High
Throughput Screen 2012, 15, 595–610. [CrossRef] [PubMed]

39. Alseekh, S.; Aharoni, A.; Brotman, Y.; Contrepois, K.; D’Auria, J.; Ewald, J.; Ewald, J.C.; Fraser, P.D.; Giavalisco, P.; Hall, R.D.; et al.
Mass spectrometry-based metabolomics: A guide for annotation, quantification and best reporting practices. Nat. Methods 2021,
18, 747–756. [CrossRef] [PubMed]

40. Roberts, L.D.; Souza, A.L.; Gerszten, R.E.; Clish, C.B. Targeted metabolomics. Curr. Protoc. Mol. Biol. 2012, 98, 30.2.1–30.2.24.
[CrossRef] [PubMed]

41. Sanchez-Lopez, E.; Lomonaco, T.; Sugimoto, M.; Qiu, Y.; Campanella, B. Editorial: Metabolomics in the Study of Unconventional
Biological Matrices. Front. Chem. 2021, 9, 736661. [CrossRef] [PubMed]

42. Losacco, G.L.; Ismail, O.; Pezzatti, J.; Gonzalez-Ruiz, V.; Boccard, J.; Rudaz, S.; Veuthey, J.L.; Guillarme, D. Applicability of
Supercritical fluid chromatography-Mass spectrometry to metabolomics. II-Assessment of a comprehensive library of metabolites
and evaluation of biological matrices. J. Chromatogr. A 2020, 1620, 461021. [CrossRef]

43. Theodoridis, G.A.; Gika, H.G.; Wilson, I.D. (Eds.) Metabolic Profiling; Humana Press: New York, NY, USA, 2018; p. 291.
44. Kumar, A.; Misra, B.B. Challenges and Opportunities in Cancer Metabolomics. Proteomics 2019, 19, e1900042. [CrossRef] [PubMed]
45. WHO. World Health Statistics 2020: Monitoring Health for the SDGs, Sustainable Development Goals; WHO: Geneva, Switzerland, 2020.
46. Rangel-Huerta, O.D.; Pastor-Villaescusa, B.; Gil, A. Are we close to defining a metabolomic signature of human obesity? A

systematic review of metabolomics studies. Metabolomics 2019, 15, 93. [CrossRef]
47. Newgard, C.B.; An, J.; Bain, J.R.; Muehlbauer, M.J.; Stevens, R.D.; Lien, L.F.; Haqq, A.M.; Shah, S.H.; Arlotto, M.; Slentz, C.A.; et al.

A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin
resistance. Cell Metab. 2009, 9, 311–326. [CrossRef]

48. Shah, S.H.; Bain, J.R.; Muehlbauer, M.J.; Stevens, R.D.; Crosslin, D.R.; Haynes, C.; Dungan, J.; Newby, L.K.; Hauser, E.R.; Ginsburg,
G.S.; et al. Association of a peripheral blood metabolic profile with coronary artery disease and risk of subsequent cardiovascular
events. Circ. Cardiovasc. Genet. 2010, 3, 207–214. [CrossRef] [PubMed]

49. Iwasa, M.; Ishihara, T.; Mifuji-Moroka, R.; Fujita, N.; Kobayashi, Y.; Hasegawa, H.; Iwata, K.; Kaito, M.; Takei, Y. Elevation of
branched-chain amino acid levels in diabetes and NAFL and changes with antidiabetic drug treatment. Obes. Res. Clin. Pract.
2015, 9, 293–297. [CrossRef] [PubMed]

http://doi.org/10.1038/nprot.2010.45
http://doi.org/10.1007/s11306-011-0339-7
http://doi.org/10.1016/j.talanta.2005.08.042
http://doi.org/10.1002/nbm.1345
http://www.ncbi.nlm.nih.gov/pubmed/19006102
http://doi.org/10.1016/j.ijms.2011.02.009
http://doi.org/10.1002/mas.21455
http://doi.org/10.1093/nar/gks1065
http://www.ncbi.nlm.nih.gov/pubmed/23161693
http://doi.org/10.3389/fphar.2021.722627
http://doi.org/10.1038/ng.3931
http://www.ncbi.nlm.nih.gov/pubmed/28783162
http://doi.org/10.1016/j.talanta.2017.09.028
http://www.ncbi.nlm.nih.gov/pubmed/29108583
http://doi.org/10.3390/metabo10020047
http://www.ncbi.nlm.nih.gov/pubmed/31991929
http://doi.org/10.1152/ajplung.00515.2007
http://www.ncbi.nlm.nih.gov/pubmed/18441091
http://doi.org/10.1007/s11306-007-0082-2
http://www.ncbi.nlm.nih.gov/pubmed/24039616
http://doi.org/10.1002/mas.20108
http://www.ncbi.nlm.nih.gov/pubmed/16921475
http://doi.org/10.2174/138620712802650522
http://www.ncbi.nlm.nih.gov/pubmed/22480238
http://doi.org/10.1038/s41592-021-01197-1
http://www.ncbi.nlm.nih.gov/pubmed/34239102
http://doi.org/10.1002/0471142727.mb3002s98
http://www.ncbi.nlm.nih.gov/pubmed/22470063
http://doi.org/10.3389/fchem.2021.736661
http://www.ncbi.nlm.nih.gov/pubmed/34414166
http://doi.org/10.1016/j.chroma.2020.461021
http://doi.org/10.1002/pmic.201900042
http://www.ncbi.nlm.nih.gov/pubmed/30950571
http://doi.org/10.1007/s11306-019-1553-y
http://doi.org/10.1016/j.cmet.2009.02.002
http://doi.org/10.1161/CIRCGENETICS.109.852814
http://www.ncbi.nlm.nih.gov/pubmed/20173117
http://doi.org/10.1016/j.orcp.2015.01.003
http://www.ncbi.nlm.nih.gov/pubmed/25649191


Metabolites 2022, 12, 194 26 of 32

50. Floegel, A.; Stefan, N.; Yu, Z.; Muhlenbruch, K.; Drogan, D.; Joost, H.G.; Fritsche, A.; Haring, H.U.; Hrabe de Angelis, M.; Peters,
A.; et al. Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach.
Diabetes 2013, 62, 639–648. [CrossRef]

51. Thompson, J.L.; Drysdale, M.; Baimel, C.; Kaur, M.; MacGowan, T.; Pitman, K.A.; Borgland, S.L. Obesity-Induced Structural and
Neuronal Plasticity in the Lateral Orbitofrontal Cortex. Neuropsychopharmacology 2017, 42, 1480–1490. [CrossRef] [PubMed]

52. Yengo, L.; Arredouani, A.; Marre, M.; Roussel, R.; Vaxillaire, M.; Falchi, M.; Haoudi, A.; Tichet, J.; D.E.S.I.R Study Group; Balkau,
B.; et al. Impact of statistical models on the prediction of type 2 diabetes using non-targeted metabolomics profiling. Mol. Metab.
2016, 5, 918–925. [CrossRef] [PubMed]

53. Suhre, K.; Meisinger, C.; Doring, A.; Altmaier, E.; Belcredi, P.; Gieger, C.; Chang, D.; Milburn, M.V.; Gall, W.E.; Weinberger,
K.M.; et al. Metabolic footprint of diabetes: A multiplatform metabolomics study in an epidemiological setting. PLoS ONE 2010,
5, e13953. [CrossRef]

54. Ibarra-Gonzalez, I.; Cruz-Bautista, I.; Bello-Chavolla, O.Y.; Vela-Amieva, M.; Pallares-Mendez, R.; Ruiz de Santiago, Y.N.D.;
Salas-Tapia, M.F.; Rosas-Flota, X.; Gonzalez-Acevedo, M.; Palacios-Penaloza, A.; et al. Optimization of kidney dysfunction
prediction in diabetic kidney disease using targeted metabolomics. Acta Diabetol. 2018, 55, 1151–1161. [CrossRef] [PubMed]

55. Barrios, C.; Zierer, J.; Wurtz, P.; Haller, T.; Metspalu, A.; Gieger, C.; Thorand, B.; Meisinger, C.; Waldenberger, M.; Raitakari,
O.; et al. Circulating metabolic biomarkers of renal function in diabetic and non-diabetic populations. Sci. Rep. 2018, 8, 15249.
[CrossRef] [PubMed]

56. Zhang, Y.; He, C.; Qiu, L.; Wang, Y.; Qin, X.; Liu, Y.; Li, Z. Serum Unsaturated Free Fatty Acids: A Potential Biomarker Panel for
Early-Stage Detection of Colorectal Cancer. J. Cancer 2016, 7, 477–483. [CrossRef] [PubMed]

57. Dudka, I.; Thysell, E.; Lundquist, K.; Antti, H.; Iglesias-Gato, D.; Flores-Morales, A.; Bergh, A.; Wikstrom, P.; Grobner, G.
Comprehensive metabolomics analysis of prostate cancer tissue in relation to tumor aggressiveness and TMPRSS2-ERG fusion
status. BMC Cancer 2020, 20, 437. [CrossRef]

58. Moran-Ramos, S.; Ocampo-Medina, E.; Gutierrez-Aguilar, R.; Macias-Kauffer, L.; Villamil-Ramirez, H.; Lopez-Contreras, B.E.;
Leon-Mimila, P.; Vega-Badillo, J.; Gutierrez-Vidal, R.; Villarruel-Vazquez, R.; et al. An Amino Acid Signature Associated with
Obesity Predicts 2-Year Risk of Hypertriglyceridemia in School-Age Children. Sci. Rep. 2017, 7, 5607. [CrossRef] [PubMed]

59. Wurtz, P.; Makinen, V.P.; Soininen, P.; Kangas, A.J.; Tukiainen, T.; Kettunen, J.; Savolainen, M.J.; Tammelin, T.; Viikari, J.S.;
Ronnemaa, T.; et al. Metabolic signatures of insulin resistance in 7098 young adults. Diabetes 2012, 61, 1372–1380. [CrossRef]
[PubMed]

60. Bao, X.; Wu, J.; Kim, S.; LoRusso, P.; Li, J. Pharmacometabolomics Reveals Irinotecan Mechanism of Action in Cancer Patients. J.
Clin. Pharmacol. 2019, 59, 20–34. [CrossRef] [PubMed]

61. Lamaziere, A.; Wolf, C.; Quinn, P.J. How lipidomics provides new insight into drug discovery. Expert Opin. Drug Discov. 2014, 9,
819–836. [CrossRef] [PubMed]

62. Katsila, T.; Balasopoulou, A.; Tsagaraki, I.; Patrinos, G.P. Pharmacomicrobiomics informs clinical pharmacogenomics. Pharmacoge-
nomics 2019, 20, 731–739. [CrossRef]

63. Gopalakrishnan, V.; Spencer, C.N.; Nezi, L.; Reuben, A.; Andrews, M.C.; Karpinets, T.V.; Prieto, P.A.; Vicente, D.; Hoffman, K.;
Wei, S.C.; et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 2018, 359,
97–103. [CrossRef]

64. Zimmermann, M.; Zimmermann-Kogadeeva, M.; Wegmann, R.; Goodman, A.L. Mapping human microbiome drug metabolism
by gut bacteria and their genes. Nature 2019, 570, 462–467. [CrossRef]

65. Deelen, J.; Kettunen, J.; Fischer, K.; van der Spek, A.; Trompet, S.; Kastenmüller, G.; Boyd, A.; Zierer, J.; van den Akker, E.B.;
Ala-Korpela, M.; et al. A metabolic profile of all-cause mortality risk identified in an observational study of 44,168 individuals.
Nat. Commun. 2019, 10, 3346. [CrossRef] [PubMed]

66. González-Domínguez, R.; García-Barrera, T.; Gómez-Ariza, J.L. Metabolomic study of lipids in serum for biomarker discovery in
Alzheimer’s disease using direct infusion mass spectrometry. J. Pharm. Biomed. Anal. 2014, 98, 321–326. [CrossRef]

67. Kim, D.H.; Gim, J.A.; Yoon, D.; Kim, S.; Kim, H.S. Metabolomics and mitochondrial dysfunction in Alzheimer’s disease. Genes
Genom. 2017, 39, 295–300. [CrossRef]

68. Chatterjee, P.; Cheong, Y.J.; Bhatnagar, A.; Goozee, K.; Wu, Y.; McKay, M.; Martins, I.J.; Lim, W.L.F.; Pedrini, S.; Tegg, M.; et al.
Plasma metabolites associated with biomarker evidence of neurodegeneration in cognitively normal older adults. J. Neurochem.
2020, 159, 389–402. [CrossRef] [PubMed]

69. Nho, K.; Kueider-Paisley, A.; MahmoudianDehkordi, S.; Arnold, M.; Risacher, S.L.; Louie, G.; Blach, C.; Baillie, R.; Han,
X.; Kastenmüller, G.; et al. Altered bile acid profile in mild cognitive impairment and Alzheimer’s disease: Relationship to
neuroimaging and CSF biomarkers. Alzheimers Dement. 2019, 15, 232–244. [CrossRef] [PubMed]

70. Tondo, M.; Wasek, B.; Escola-Gil, J.C.; de Gonzalo-Calvo, D.; Harmon, C.; Arning, E.; Bottiglieri, T. Altered brain metabolome is
associated with memory impairment in the rTG4510 mouse model of tauopathy. Metabolites 2020, 10, 69. [CrossRef] [PubMed]

71. Picca, A.; Calvani, R.; Landi, G.; Marini, F.; Biancolillo, A.; Gervasoni, J.; Persichilli, S.; Primiano, A.; Urbani, A.; Bossola, M.;
et al. Circulating amino acid signature in older people with Parkinson’s disease: A metabolic complement to the EXosomes in
PArkiNson Disease (EXPAND) study. Exp. Gerontol. 2019, 128, 110766. [CrossRef] [PubMed]

72. Kumari, S.; Goyal, V.; Kumaran, S.S.; Dwivedi, S.N.; Srivastava, A.; Jagannathan, N.R. Quantitative metabolomics of saliva using
proton NMR spectroscopy in patients with Parkinson’s disease and healthy controls. Neurol. Sci. 2020, 41, 1201–1210. [CrossRef]

http://doi.org/10.2337/db12-0495
http://doi.org/10.1038/npp.2016.284
http://www.ncbi.nlm.nih.gov/pubmed/28042870
http://doi.org/10.1016/j.molmet.2016.08.011
http://www.ncbi.nlm.nih.gov/pubmed/27689004
http://doi.org/10.1371/journal.pone.0013953
http://doi.org/10.1007/s00592-018-1213-0
http://www.ncbi.nlm.nih.gov/pubmed/30173364
http://doi.org/10.1038/s41598-018-33507-7
http://www.ncbi.nlm.nih.gov/pubmed/30323304
http://doi.org/10.7150/jca.13870
http://www.ncbi.nlm.nih.gov/pubmed/26918062
http://doi.org/10.1186/s12885-020-06908-z
http://doi.org/10.1038/s41598-017-05765-4
http://www.ncbi.nlm.nih.gov/pubmed/28717206
http://doi.org/10.2337/db11-1355
http://www.ncbi.nlm.nih.gov/pubmed/22511205
http://doi.org/10.1002/jcph.1275
http://www.ncbi.nlm.nih.gov/pubmed/30052267
http://doi.org/10.1517/17460441.2014.914026
http://www.ncbi.nlm.nih.gov/pubmed/24819582
http://doi.org/10.2217/pgs-2019-0027
http://doi.org/10.1126/science.aan4236
http://doi.org/10.1038/s41586-019-1291-3
http://doi.org/10.1038/s41467-019-11311-9
http://www.ncbi.nlm.nih.gov/pubmed/31431621
http://doi.org/10.1016/j.jpba.2014.05.023
http://doi.org/10.1007/s13258-016-0494-3
http://doi.org/10.1111/jnc.15128
http://www.ncbi.nlm.nih.gov/pubmed/32679614
http://doi.org/10.1016/j.jalz.2018.08.012
http://www.ncbi.nlm.nih.gov/pubmed/30337152
http://doi.org/10.3390/metabo10020069
http://www.ncbi.nlm.nih.gov/pubmed/32075035
http://doi.org/10.1016/j.exger.2019.110766
http://www.ncbi.nlm.nih.gov/pubmed/31666195
http://doi.org/10.1007/s10072-019-04143-4


Metabolites 2022, 12, 194 27 of 32

73. Musgrove, R.E.; Horne, J.; Wilson, R.; King, A.E.; Edwards, L.M.; Dickson, T.C. The metabolomics of alpha-synuclein (SNCA)
gene deletion and mutation in mouse brain. Metabolomics 2014, 10, 114–122. [CrossRef]

74. Chen, X.; Xie, C.; Sun, L.; Ding, J.; Cai, H. Longitudinal metabolomics profiling of Parkinson’s disease-related α-synuclein A53T
transgenic mice. PLoS ONE 2015, 10, e0136612. [CrossRef]

75. Huang, W.; Xu, Y.; Zhang, Y.; Zhang, P.; Zhang, Q.; Zhang, Z.; Xu, F. Metabolomics-driven identification of adenosine deaminase
as therapeutic target in a mouse model of Parkinson’s disease. J. Neurochem. 2019, 150, 282–295. [CrossRef] [PubMed]

76. Bocarsly, M.E.; Fasolino, M.; Kane, G.A.; LaMarca, E.A.; Kirschen, G.W.; Karatsoreos, I.N.; McEwen, B.S.; Gould, E. Obesity
diminishes synaptic markers, alters microglial morphology, and impairs cognitive function. Proc. Natl. Acad. Sci. USA 2015, 112,
15731–15736. [CrossRef]

77. Gonzalez-Covarrubias, V. Lipidomics in longevity and healthy aging. Biogerontology 2013, 14, 663–672. [CrossRef]
78. Kiliaan, A.J.; Arnoldussen, I.A.; Gustafson, D.R. Adipokines: A link between obesity and dementia? Lancet Neurol. 2014, 13,

913–923. [CrossRef] [PubMed]
79. Parimisetty, A.; Dorsemans, A.C.; Awada, R.; Ravanan, P.; Diotel, N.; Lefebvre d’Hellencourt, C. Secret talk between adipose

tissue and central nervous system via secreted factors-an emerging frontier in the neurodegenerative research. J. Neuroinflamm.
2016, 13, 67. [CrossRef] [PubMed]

80. Tynkkynen, J.; Chouraki, V.; van der Lee, S.J.; Hernesniemi, J.; Yang, Q.; Li, S.; Beiser, A.; Larson, M.G.; Saaksjarvi, K.; Shipley,
M.J.; et al. Association of branched-chain amino acids and other circulating metabolites with risk of incident dementia and
Alzheimer’s disease: A prospective study in eight cohorts. Alzheimers Dement. 2018, 14, 723–733. [CrossRef] [PubMed]

81. Arnoldussen, I.A.; Kiliaan, A.J.; Gustafson, D.R. Obesity and dementia: Adipokines interact with the brain. Eur. Neuropsychophar-
macol. 2014, 24, 1982–1999. [CrossRef] [PubMed]

82. Carding, S.; Verbeke, K.; Vipond, D.T.; Corfe, B.M.; Owen, L.J. Dysbiosis of the gut microbiota in disease. Microb. Ecol. Health Dis.
2015, 26, 26191. [CrossRef]

83. Castaner, O.; Goday, A.; Park, Y.M.; Lee, S.H.; Magkos, F.; Shiow, S.T.E.; Schroder, H. The Gut Microbiome Profile in Obesity: A
Systematic Review. Int. J. Endocrinol. 2018, 2018, 4095789. [CrossRef] [PubMed]

84. Stanislawski, M.A.; Dabelea, D.; Lange, L.A.; Wagner, B.D.; Lozupone, C.A. Gut microbiota phenotypes of obesity. NPJ Biofilms
Microbiomes 2019, 5, 18. [CrossRef] [PubMed]

85. Kim, M.H.; Yun, K.E.; Kim, J.; Park, E.; Chang, Y.; Ryu, S.; Kim, H.L.; Kim, H.N. Gut microbiota and metabolic health among
overweight and obese individuals. Sci. Rep. 2020, 10, 19417. [CrossRef] [PubMed]

86. Arnoriaga-Rodriguez, M.; Mayneris-Perxachs, J.; Burokas, A.; Contreras-Rodriguez, O.; Blasco, G.; Coll, C.; Biarnes, C.; Miranda-
Olivos, R.; Latorre, J.; Moreno-Navarrete, J.M.; et al. Obesity Impairs Short-Term and Working Memory through Gut Microbial
Metabolism of Aromatic Amino Acids. Cell Metab. 2020, 32, 548–560.e7. [CrossRef] [PubMed]

87. D’Amato, A.; Di Cesare Mannelli, L.; Lucarini, E.; Man, A.L.; Le Gall, G.; Branca, J.J.V.; Ghelardini, C.; Amedei, A.; Bertelli,
E.; Regoli, M.; et al. Faecal microbiota transplant from aged donor mice affects spatial learning and memory via modulating
hippocampal synaptic plasticity- and neurotransmission-related proteins in young recipients. Microbiome 2020, 8, 140. [CrossRef]
[PubMed]

88. Shah, S.H.; Crosslin, D.R.; Haynes, C.S.; Nelson, S.; Turer, C.B.; Stevens, R.D.; Muehlbauer, M.J.; Wenner, B.R.; Bain, J.R.; Laferrere,
B.; et al. Branched-chain amino acid levels are associated with improvement in insulin resistance with weight loss. Diabetologia
2012, 55, 321–330. [CrossRef] [PubMed]

89. Knebel, B.; Strassburger, K.; Szendroedi, J.; Kotzka, J.; Scheer, M.; Nowotny, B.; Mussig, K.; Lehr, S.; Pacini, G.; Finner, H.; et al.
Specific Metabolic Profiles and Their Relationship to Insulin Resistance in Recent-Onset Type 1 and Type 2 Diabetes. J. Clin.
Endocrinol. Metab. 2016, 101, 2130–2140. [CrossRef] [PubMed]

90. Haukka, J.K.; Sandholm, N.; Forsblom, C.; Cobb, J.E.; Groop, P.H.; Ferrannini, E. Metabolomic Profile Predicts Development of
Microalbuminuria in Individuals with Type 1 Diabetes. Sci. Rep. 2018, 8, 13853. [CrossRef]

91. Arneth, B.; Arneth, R.; Shams, M. Metabolomics of Type 1 and Type 2 Diabetes. Int. J. Mol. Sci. 2019, 20, 2467. [CrossRef]
92. Vijan, S.; Sussman, J.B.; Yudkin, J.S.; Hayward, R.A. Effect of patients’ risks and preferences on health gains with plasma glucose

level lowering in type 2 diabetes mellitus. JAMA Intern. Med. 2014, 174, 1227–1234. [CrossRef]
93. Wang, T.J.; Larson, M.G.; Vasan, R.S.; Cheng, S.; Rhee, E.P.; McCabe, E.; Lewis, G.D.; Fox, C.S.; Jacques, P.F.; Fernandez, C.; et al.

Metabolite profiles and the risk of developing diabetes. Nat. Med. 2011, 17, 448–453. [CrossRef] [PubMed]
94. Suhre, K. Metabolic profiling in diabetes. J. Endocrinol. 2014, 221, R75–R85. [CrossRef]
95. Gudmundsdottir, V.; Zaghlool, S.B.; Emilsson, V.; Aspelund, T.; Ilkov, M.; Gudmundsson, E.F.; Jonsson, S.M.; Zilhao, N.R.; Lamb,

J.R.; Suhre, K.; et al. Circulating Protein Signatures and Causal Candidates for Type 2 Diabetes. Diabetes 2020, 69, 1843–1853.
[CrossRef] [PubMed]

96. Livingstone, S.J.; Levin, D.; Looker, H.C.; Lindsay, R.S.; Wild, S.H.; Joss, N.; Leese, G.; Leslie, P.; McCrimmon, R.J.; Metcalfe, W.;
et al. Estimated life expectancy in a Scottish cohort with type 1 diabetes, 2008–2010. JAMA 2015, 313, 37–44. [CrossRef] [PubMed]

97. Floegel, A.; von Ruesten, A.; Drogan, D.; Schulze, M.B.; Prehn, C.; Adamski, J.; Pischon, T.; Boeing, H. Variation of serum
metabolites related to habitual diet: A targeted metabolomic approach in EPIC-Potsdam. Eur. J. Clin. Nutr. 2013, 67, 1100–1108.
[CrossRef] [PubMed]

98. Pallares-Mendez, R.; Aguilar-Salinas, C.A.; Cruz-Bautista, I.; Del Bosque-Plata, L. Metabolomics in diabetes, a review. Ann. Med.
2016, 48, 89–102. [CrossRef] [PubMed]

http://doi.org/10.1007/s11306-013-0561-6
http://doi.org/10.1371/journal.pone.0136612
http://doi.org/10.1111/jnc.14774
http://www.ncbi.nlm.nih.gov/pubmed/31121068
http://doi.org/10.1073/pnas.1511593112
http://doi.org/10.1007/s10522-013-9450-7
http://doi.org/10.1016/S1474-4422(14)70085-7
http://www.ncbi.nlm.nih.gov/pubmed/25142458
http://doi.org/10.1186/s12974-016-0530-x
http://www.ncbi.nlm.nih.gov/pubmed/27012931
http://doi.org/10.1016/j.jalz.2018.01.003
http://www.ncbi.nlm.nih.gov/pubmed/29519576
http://doi.org/10.1016/j.euroneuro.2014.03.002
http://www.ncbi.nlm.nih.gov/pubmed/24704273
http://doi.org/10.3402/mehd.v26.26191
http://doi.org/10.1155/2018/4095789
http://www.ncbi.nlm.nih.gov/pubmed/29849617
http://doi.org/10.1038/s41522-019-0091-8
http://www.ncbi.nlm.nih.gov/pubmed/31285833
http://doi.org/10.1038/s41598-020-76474-8
http://www.ncbi.nlm.nih.gov/pubmed/33173145
http://doi.org/10.1016/j.cmet.2020.09.002
http://www.ncbi.nlm.nih.gov/pubmed/33027674
http://doi.org/10.1186/s40168-020-00914-w
http://www.ncbi.nlm.nih.gov/pubmed/33004079
http://doi.org/10.1007/s00125-011-2356-5
http://www.ncbi.nlm.nih.gov/pubmed/22065088
http://doi.org/10.1210/jc.2015-4133
http://www.ncbi.nlm.nih.gov/pubmed/26829444
http://doi.org/10.1038/s41598-018-32085-y
http://doi.org/10.3390/ijms20102467
http://doi.org/10.1001/jamainternmed.2014.2894
http://doi.org/10.1038/nm.2307
http://www.ncbi.nlm.nih.gov/pubmed/21423183
http://doi.org/10.1530/JOE-14-0024
http://doi.org/10.2337/db19-1070
http://www.ncbi.nlm.nih.gov/pubmed/32385057
http://doi.org/10.1001/jama.2014.16425
http://www.ncbi.nlm.nih.gov/pubmed/25562264
http://doi.org/10.1038/ejcn.2013.147
http://www.ncbi.nlm.nih.gov/pubmed/23942179
http://doi.org/10.3109/07853890.2015.1137630
http://www.ncbi.nlm.nih.gov/pubmed/26883715


Metabolites 2022, 12, 194 28 of 32

99. Regan, J.A.; Shah, S.H. Obesity Genomics and Metabolomics: A Nexus of Cardiometabolic Risk. Curr. Cardiol. Rep. 2020, 22, 174.
[CrossRef] [PubMed]

100. McGarrah, R.W.; Crown, S.B.; Zhang, G.F.; Shah, S.H.; Newgard, C.B. Cardiovascular Metabolomics. Circ. Res. 2018, 122,
1238–1258. [CrossRef] [PubMed]

101. Kraus, W.E.; Muoio, D.M.; Stevens, R.; Craig, D.; Bain, J.R.; Grass, E.; Haynes, C.; Kwee, L.; Qin, X.; Slentz, D.H.; et al. Metabolomic
Quantitative Trait Loci (mQTL) Mapping Implicates the Ubiquitin Proteasome System in Cardiovascular Disease Pathogenesis.
PLoS Genet. 2015, 11, e1005553. [CrossRef]

102. Mayr, M.; Madhu, B.; Xu, Q. Proteomics and metabolomics combined in cardiovascular research. Trends Cardiovasc. Med. 2007, 17,
43–48. [CrossRef] [PubMed]

103. Mayr, M.; Chung, Y.L.; Mayr, U.; McGregor, E.; Troy, H.; Baier, G.; Leitges, M.; Dunn, M.J.; Griffiths, J.R.; Xu, Q. Loss of PKC-delta
alters cardiac metabolism. Am. J. Physiol. Heart Circ. Physiol. 2004, 287, H937–H945. [CrossRef] [PubMed]

104. Mayr, M.; Liem, D.; Zhang, J.; Li, X.; Avliyakulov, N.K.; Yang, J.I.; Young, G.; Vondriska, T.M.; Ladroue, C.; Madhu, B.; et al.
Proteomic and metabolomic analysis of cardioprotection: Interplay between protein kinase C epsilon and delta in regulating
glucose metabolism of murine hearts. J. Mol. Cell Cardiol. 2009, 46, 268–277. [CrossRef] [PubMed]

105. Mayr, M.; Metzler, B.; Chung, Y.L.; McGregor, E.; Mayr, U.; Troy, H.; Hu, Y.; Leitges, M.; Pachinger, O.; Griffiths, J.R.; et al.
Ischemic preconditioning exaggerates cardiac damage in PKC-delta null mice. Am. J. Physiol. Heart Circ. Physiol. 2004, 287,
H946–H956. [CrossRef]

106. Mayr, M.; Chung, Y.L.; Mayr, U.; Yin, X.; Ly, L.; Troy, H.; Fredericks, S.; Hu, Y.; Griffiths, J.R.; Xu, Q. Simultaneous in vivo
assessment of cardiacfrom apolipoprotein E-deficient mice reveal alterations in inflammation, oxidative stress, and energy
metabolism. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 2135–2142. [CrossRef]

107. Le Page, L.M.; Ball, D.R.; Ball, V.; Dodd, M.S.; Miller, J.J.; Heather, L.C.; Tyler, D.J. Simultaneous in vivo assessment of cardiac and
hepatic metabolism in the diabetic rat using hyperpolarized MRS. NMR Biomed. 2016, 29, 1759–1767. [CrossRef] [PubMed]

108. Bernini, P.; Bertini, I.; Luchinat, C.; Tenori, L.; Tognaccini, A. The cardiovascular risk of healthy individuals studied by NMR
metabonomics of plasma samples. J. Proteome Res. 2011, 10, 4983–4992. [CrossRef] [PubMed]

109. Nemet, I.; Saha, P.P.; Gupta, N.; Zhu, W.; Romano, K.A.; Skye, S.M.; Cajka, T.; Mohan, M.L.; Li, L.; Wu, Y.; et al. A Cardiovascular
Disease-Linked Gut Microbial Metabolite Acts via Adrenergic Receptors. Cell 2020, 180, 862–877.e22. [CrossRef] [PubMed]

110. Karlstaedt, A.; Zhang, X.; Vitrac, H.; Harmancey, R.; Vasquez, H.; Wang, J.H.; Goodell, M.A.; Taegtmeyer, H. Oncometabolite
d-2-hydroxyglutarate impairs alpha-ketoglutarate dehydrogenase and contractile function in rodent heart. Proc. Natl. Acad. Sci.
USA 2016, 113, 10436–10441. [CrossRef] [PubMed]

111. McGranaghan, P.; Saxena, A.; Rubens, M.; Radenkovic, J.; Bach, D.; Schleussner, L.; Pieske, B.; Edelmann, F.; Trippel, T.D.
Predictive value of metabolomic biomarkers for cardiovascular disease risk: A systematic review and meta-analysis. Biomarkers
2020, 25, 101–111. [CrossRef] [PubMed]

112. Pascale, R.M.; Calvisi, D.F.; Simile, M.M.; Feo, C.F.; Feo, F. The Warburg Effect 97 Years after Its Discovery. Cancers 2020, 12, 2819.
[CrossRef]

113. Ward, P.S.; Thompson, C.B. Metabolic reprogramming: A cancer hallmark even warburg did not anticipate. Cancer Cell 2012, 21,
297–308. [CrossRef] [PubMed]

114. Phan, L.M.; Yeung, S.C.; Lee, M.H. Cancer metabolic reprogramming: Importance, main features, and potentials for precise
targeted anti-cancer therapies. Cancer Biol. Med. 2014, 11, 1–19. [CrossRef] [PubMed]

115. Beger, R.D.; Dunn, W.; Schmidt, M.A.; Gross, S.S.; Kirwan, J.A.; Cascante, M.; Brennan, L.; Wishart, D.S.; Oresic, M.; Hankemeier,
T.; et al. Metabolomics enables precision medicine: “A White Paper, Community Perspective”. Metabolomics 2016, 12, 149.
[CrossRef]

116. El Sayed, R.; Haibe, Y.; Amhaz, G.; Bouferraa, Y.; Shamseddine, A. Metabolic Factors Affecting Tumor Immunogenicity: What Is
Happening at the Cellular Level? Int. J. Mol. Sci. 2021, 22, 2142. [CrossRef] [PubMed]

117. Tang, T.; Huang, X.; Zhang, G.; Hong, Z.; Bai, X.; Liang, T. Advantages of targeting the tumor immune microenvironment over
blocking immune checkpoint in cancer immunotherapy. Signal Transduct. Target. Ther. 2021, 6, 72. [CrossRef] [PubMed]

118. Ananieva, E. Targeting amino acid metabolism in cancer growth and anti-tumor immune response. World J. Biol. Chem. 2015, 6,
281–289. [CrossRef]

119. Bleve, A.; Durante, B.; Sica, A.; Consonni, F.M. Lipid Metabolism and Cancer Immunotherapy: Immunosuppressive Myeloid
Cells at the Crossroad. Int. J. Mol. Sci. 2020, 21, 5845. [CrossRef] [PubMed]

120. Ciocan-Cartita, C.A.; Jurj, A.; Buse, M.; Gulei, D.; Braicu, C.; Raduly, L.; Cojocneanu, R.; Pruteanu, L.L.; Iuga, C.A.; Coza, O.; et al.
The Relevance of Mass Spectrometry Analysis for Personalized Medicine through Its Successful Application in Cancer “Omics”.
Int. J. Mol. Sci. 2019, 20, 2576. [CrossRef]

121. Zhang, Y.; Song, L.; Liu, N.; He, C.; Li, Z. Decreased serum levels of free fatty acids are associated with breast cancer. Clin. Chim.
Acta 2014, 437, 31–37. [CrossRef] [PubMed]

122. Chen, X.; Yu, D. Metabolomics study of oral cancers. Metabolomics 2019, 15, 22. [CrossRef] [PubMed]
123. Hartmann, F.J.; Mrdjen, D.; McCaffrey, E.; Glass, D.R.; Greenwald, N.F.; Bharadwaj, A.; Khair, Z.; Verberk, S.G.S.; Baranski, A.;

Baskar, R.; et al. Single-Cell Metab.olic profiling of human cytotoxic T cells. Nat. Biotechnol. 2021, 39, 186–197. [CrossRef]
124. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of

incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [CrossRef] [PubMed]

http://doi.org/10.1007/s11886-020-01422-x
http://www.ncbi.nlm.nih.gov/pubmed/33040225
http://doi.org/10.1161/CIRCRESAHA.117.311002
http://www.ncbi.nlm.nih.gov/pubmed/29700070
http://doi.org/10.1371/journal.pgen.1005553
http://doi.org/10.1016/j.tcm.2006.11.004
http://www.ncbi.nlm.nih.gov/pubmed/17292045
http://doi.org/10.1152/ajpheart.00877.2003
http://www.ncbi.nlm.nih.gov/pubmed/15277208
http://doi.org/10.1016/j.yjmcc.2008.10.008
http://www.ncbi.nlm.nih.gov/pubmed/19027023
http://doi.org/10.1152/ajpheart.00878.2003
http://doi.org/10.1161/01.ATV.0000183928.25844.f6
http://doi.org/10.1002/nbm.3656
http://www.ncbi.nlm.nih.gov/pubmed/27779334
http://doi.org/10.1021/pr200452j
http://www.ncbi.nlm.nih.gov/pubmed/21902250
http://doi.org/10.1016/j.cell.2020.02.016
http://www.ncbi.nlm.nih.gov/pubmed/32142679
http://doi.org/10.1073/pnas.1601650113
http://www.ncbi.nlm.nih.gov/pubmed/27582470
http://doi.org/10.1080/1354750X.2020.1716073
http://www.ncbi.nlm.nih.gov/pubmed/31928240
http://doi.org/10.3390/cancers12102819
http://doi.org/10.1016/j.ccr.2012.02.014
http://www.ncbi.nlm.nih.gov/pubmed/22439925
http://doi.org/10.7497/j.issn.2095-3941.2014.01.001
http://www.ncbi.nlm.nih.gov/pubmed/24738035
http://doi.org/10.1007/s11306-016-1094-6
http://doi.org/10.3390/ijms22042142
http://www.ncbi.nlm.nih.gov/pubmed/33670011
http://doi.org/10.1038/s41392-020-00449-4
http://www.ncbi.nlm.nih.gov/pubmed/33608497
http://doi.org/10.4331/wjbc.v6.i4.281
http://doi.org/10.3390/ijms21165845
http://www.ncbi.nlm.nih.gov/pubmed/32823961
http://doi.org/10.3390/ijms20102576
http://doi.org/10.1016/j.cca.2014.07.001
http://www.ncbi.nlm.nih.gov/pubmed/25016244
http://doi.org/10.1007/s11306-019-1483-8
http://www.ncbi.nlm.nih.gov/pubmed/30830419
http://doi.org/10.1038/s41587-020-0651-8
http://doi.org/10.3322/caac.21492
http://www.ncbi.nlm.nih.gov/pubmed/30207593


Metabolites 2022, 12, 194 29 of 32

125. MacKinnon, N.; Khan, A.P.; Chinnaiyan, A.M.; Rajendiran, T.M.; Ramamoorthy, A. Androgen receptor activation results in
metabolite signatures of an aggressive prostate cancer phenotype: An NMR-based metabonomics study. Metabolomics 2012, 8,
1026–1036. [CrossRef]

126. Struck, W.; Siluk, D.; Yumba-Mpanga, A.; Markuszewski, M.; Kaliszan, R.; Markuszewski, M.J. Liquid chromatography tandem
mass spectrometry study of urinary nucleosides as potential cancer markers. J. Chromatogr. A 2013, 1283, 122–131. [CrossRef]
[PubMed]

127. Shamsipur, M.; Naseri, M.T.; Babri, M. Quantification of candidate prostate cancer metabolite biomarkers in urine using dispersive
derivatization liquid-liquid microextraction followed by gas and liquid chromatography-mass spectrometry. J. Pharm. Biomed.
Anal. 2013, 81-82, 65–75. [CrossRef] [PubMed]

128. Soliman, L.C.; Hui, Y.; Hewavitharana, A.K.; Chen, D.D. Monitoring potential prostate cancer biomarkers in urine by capillary
electrophoresis-tandem mass spectrometry. J. Chromatogr. A 2012, 1267, 162–169. [CrossRef] [PubMed]

129. Alberice, J.V.; Amaral, A.F.; Armitage, E.G.; Lorente, J.A.; Algaba, F.; Carrilho, E.; Marquez, M.; Garcia, A.; Malats, N.; Barbas, C.
Searching for urine biomarkers of bladder cancer recurrence using a liquid chromatography-mass spectrometry and capillary
electrophoresis-mass spectrometry metabolomics approach. J. Chromatogr. A 2013, 1318, 163–170. [CrossRef]

130. Lam, C.W.; Law, C.Y.; To, K.K.; Cheung, S.K.; Lee, K.C.; Sze, K.H.; Leung, K.F.; Yuen, K.Y. NMR-based metabolomic urinalysis: A
rapid screening test for urinary tract infection. Clin. Chim. Acta 2014, 436, 217–223. [CrossRef] [PubMed]

131. Davis, V.W.; Schiller, D.E.; Eurich, D.; Bathe, O.F.; Sawyer, M.B. Pancreatic ductal adenocarcinoma is associated with a distinct
urinary metabolomic signature. Ann. Surg. Oncol. 2013, 20 (Suppl. 3), S415–S423. [CrossRef] [PubMed]

132. Sugimoto, M.; Wong, D.T.; Hirayama, A.; Soga, T.; Tomita, M. Capillary electrophoresis mass spectrometry-based saliva
metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics 2010, 6, 78–95. [CrossRef]

133. Bonanomi, M.; Salmistraro, N.; Fiscon, G.; Conte, F.; Paci, P.; Bravata, V.; Forte, G.I.; Volpari, T.; Scorza, M.; Mastroianni, F.; et al.
Transcriptomics and Metabolomics Integration Reveals Redox-Dependent Metabolic Rewiring in Breast Cancer Cells. Cancers
2021, 13, 5058. [CrossRef] [PubMed]

134. LeWitt, P.A.; Li, J.; Lu, M.; Guo, L.; Auinger, P.; Parkinson Study Group, D.I. Metabolomic biomarkers as strong correlates of
Parkinson disease progression. Neurology 2017, 88, 862–869. [CrossRef] [PubMed]

135. Varma, V.R.; Oommen, A.M.; Varma, S.; Casanova, R.; An, Y.; Andrews, R.M.; O’Brien, R.; Pletnikova, O.; Troncoso, J.C.; Toledo,
J.; et al. Brain and blood metabolite signatures of pathology and progression in Alzheimer disease: A targeted metabolomics
study. PLoS Med. 2018, 15, e1002482. [CrossRef]

136. MahmoudianDehkordi, S.; Arnold, M.; Nho, K.; Ahmad, S.; Jia, W.; Xie, G.; Louie, G.; Kueider-Paisley, A.; Moseley, M.A.;
Thompson, J.W.; et al. Altered bile acid profile associates with cognitive impairment in Alzheimer’s disease-An emerging role for
gut microbiome. Alzheimers Dement. 2019, 15, 76–92. [CrossRef]

137. Cirstea, M.S.; Yu, A.C.; Golz, E.; Sundvick, K.; Kliger, D.; Radisavljevic, N.; Foulger, L.H.; Mackenzie, M.; Huan, T.; Finlay, B.B.;
et al. Microbiota Composition and Metabolism Are Associated With Gut Function in Parkinson’s Disease. Mov. Disord. 2020, 35,
1208–1217. [CrossRef] [PubMed]
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