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ABSTRACT
The response of pathophysiological research to emerging epidemics
often occurs after the epidemic and, as a consequence, has little to no
impact on improving patient outcomes or on developing high-quality
evidence to inform clinical management strategies during the
epidemic. Rapid and informed guidance of epidemic (research)
responses to severe infectious disease outbreaks requires quick
compilation and integration of existing pathophysiological knowledge.
As a case study we chose the Zika virus (ZIKV) outbreak that started in
2015 to develop a proof-of-concept knowledge repository. To extract
data from available sources and build a computationally tractable
and comprehensive molecular interaction map we applied generic
knowledge management software for literature mining, expert
knowledge curation, data integration, reporting and visualization. A
multi-disciplinary team of experts, including clinicians, virologists,
bioinformaticians and knowledge management specialists, followed a
pre-defined workflow for rapid integration and evaluation of available
evidence. While conventional approaches usually require months to
comb through the existing literature, the initial ZIKV KnowledgeBase
(ZIKAKB)was completedwithin a fewweeks. Recently we updated the
ZIKAKBwith additional curated data from the large amount of literature
published since 2016 and made it publicly available through a web
interface together with a step-by-step guide to ensure reproducibility
of the described use case. In addition, a detailed online user manual
is provided to enable the ZIKV research community to generate
hypotheses, share knowledge, identify knowledge gaps, and
interactively explore and interpret data. A workflow for rapid response
during outbreaks was generated, validated and refined and is also
made available. The process described here can be used for timely
structuring of pathophysiological knowledge for future threats. The
resulting structured biological knowledge is a helpful tool for
computational data analysis and generation of predictive models and
opens new avenues for infectious disease research. ZIKV
Knowledgebase is available at www.zikaknowledgebase.eu.
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INTRODUCTION
The response to a (re-)emerging infectious disease (ID) epidemic
requires a rapid compilation of existing pathophysiological
knowledge to inform research priorities guiding basic and clinical
research. Gaps in understanding of the underlying mechanisms
make it difficult to design effective disease-modifying therapies.
Hence, during an emerging ID outbreak, the available information
at the time of its emergence and the subsequent rapid accumulation
of scientific knowledge from various sources needs to be captured
and analyzed in a timely and comprehensive fashion. Responding to
an ID outbreak therefore would benefit from the use of a knowledge
repository that organizes the disease-related knowledge into
pathway, molecular interaction and disease maps. Such maps are
a relatively new concept that have been used in neurodegenerative
and heart diseases (Fujita et al., 2014; Nim et al., 2015), but which
have had limited application in the field of ID thus far (Guo et al.,
2010; Le Breton et al., 2011; Matsuoka et al., 2013).

Molecular interaction and disease maps are dynamic computer-
based knowledge repositories developed to integrate data and
information across information sources, in a manner that is
customized to the research domain of interest. Data types include
interactions between molecular components, such as genes,
pathogens, compounds and diseases.

The Platform for European Preparedness Against (Re-)emerging
Epidemics (PREPARE) is an EU-funded research consortium and
clinical research network with the aim to rapidly respond to severe ID
outbreaks, generating real-time evidence to inform optimized clinical
management of patients and public health response. The 2015 Zika
virus (ZIKV) outbreakwas considered as a test case in the context of the
PREPARE network, as the pathogenesis of neurologic or immune
disease induced by ZIKV is not fully understood. ZIKV is a flavivirus
belonging to the Flaviviridae family and had only marginally been
researched prior to the 2015 epidemic was minimal (Anderson et al.,
2016; Pierson andDiamond, 2018; Pardy andRicher, 2019). Outbreaks
of ZIKV disease have been recorded in Africa, the Americas, Asia and
the Pacific. Acute ZIKV infections are mostly asymptomatic or
associated with mild and self-limiting symptoms of fever, rash,
conjunctivitis, headache or joint pain (Murray, 2017; Sharma et al.,
2019). However, the unexpected association of ZIKV infection with
pregnancy and the subsequent severe neurodevelopmental problems in
offspring and with the occurrence of neurological illnesses such as
Guillain-Barre syndrome (GBS) or meningoencephalitis in acutely
infected patients, led towidespread global concerns and a Public Health
Emergency of International Concern (PHEIC) declaration by World
Health Organization (WHO) in 2016 (Pierson and Diamond, 2018).

We used the ZIKVvirus outbreak as a case study to develop and test
the steps, tasks, protocols and tools necessary to rapidly gather andReceived 29 May 2020; Accepted 28 October 2020
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integrate existing and emerging knowledge and to inform research
priorities (Fig. 1). Based on the available data and information we
aimed to obtain a general overview of pathophysiological knowledge
on ZIKV infection and its associated clinical manifestations described
in the public domain. Other neurotropic flaviviruses, such as Dengue
virus (DENV), West Nile virus (WNV), Japanese encephalitis virus
(JEV) and Tick-borne encephalitis virus (TBEV) also cause nervous
system infections, in particular encephalitis, but no association with
neurodevelopmental disorders or GBS have been reported (Carod-
Artal, 2016). To see whether including these viruses would shed
additional light on ZIKV pathogenesis we compared available
ZIKV information to other neurotropic flaviviruses in terms of
neurovirulence and disease severity.

RESULTS
Semantic representation of ZIKV infection
The data model implemented to provide a semantic representation
of ZIKV infection is described in detail in Fig. S1. Briefly, the
model focuses on genes, diseases, pathogens and drugs, and
distinguishes between associations derived from literature mining
and those provided by experimental data such as protein–protein
interactions (PPIs).

Text mining results
We searched PubMed with the terms ‘Zika virus’, ‘Dengue’,
‘West Nile virus’, ‘Japanese encephalitis virus’, ‘Tick-borne
encephalitis virus’, ‘Microcephaly’ and ‘Guillain-Barre
Syndrome’ initially in December 2016 and most recently in
September 2018. The recent search resulted in 4927 hits for ‘Zika
virus’ and 19,974, 7700, 5918, 5213, 14,248 and 8615 hits for the
other search terms, respectively. During the analyzed time frame,
literature on ZIKV increased substantially from 1414 in 2016 to the
current 4927 hits (250%), whereas for all other terms, the increase in
publications was closer to 10%. Accordingly, the recent search
identified additional disease phenotypes, including carditis and skin
diseases, which were reported to be associated with ZIKV that were
not present in the previous search. An additional set of 236 open
access full text articles about ZIKVwere included. A natural language
processing algorithm was applied to these sets of documents to
efficiently extract the fast growing information in the biomedical
literature. The text mining extracted a total of 11,916 relationships,
which were manually evaluated to 2982 verified relationships
(Table 2). The distribution of the curated relationships is depicted
in Fig. 2, indicating that the largest overlap was for ZIKV and DENV
and for DENV and WNV. The curated set of relationships was used

Fig. 1. ZIKV KnowledgeBase generation process – overview. Based on the research objectives and knowledge provided by clinical/virology domain
experts a six-step process was applied. In the first step a multidisciplinary expert team is assembled, in step 2, a semantic representation (‘data model’)
was designed by the knowledge management experts. This model includes details about the data sources for integration, how to transfer data into the
system and how to report, visualize and export results, as well as the definition of the semantic context for objects, such as ‘gene’, ‘cell type’ and ‘strain’.
In a third step, a natural language processing algorithm was applied to the integrated PubMed literature source. In step 4 the relevant data, including
literature mining results, were imported into the system and semantically mapped to the data model. In step 5, queries, views and reports were formulated.
In the last step a web-browser based user interface was implemented to enable clinical/virology experts to review, validate and refine the integrated
information.
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for further analyses, including generation ofmolecular interaction and
disease maps and querying for virus-associated genes or diseases.

Integrated data
Overall, the ZIKV KnowledgeBase (ZIKA KB) contains a network of
337,332 human and host-pathogen PPI integrated from BioGRID and
VirHostNet, as well as 18905 protein–drug interactions integrated from
BioGRID and DrugBank, and 450,431 gene-disease associations from
DisGeNET (Table 1). Recently, a variety of ZIKV- and other flavivirus-
related large-scale data sets, including microarray gene expression
(Kumari et al., 2016; Nowakowski et al., 2016), RNAseq (Tang et al.,
2016) as well as CRISPR/Cas data (Zhang et al., 2016), have become
publicly available and were integrated to identify host factors that are
affected during viral infection.

Molecular interaction and disease maps
Curated text mining results were used to populate the initial ZIKV
molecular interaction and disease map. In a second step the map was
extended with interaction data (PPI and protein–drug interaction) by

applying a network search to implement the breadth-first algorithm
(Moore, 1959), which connected genes extracted from text mining
relationships based on the overall network. This set of interaction
data can be filtered and explored interactively. In a systems medicine
approach, a multidisciplinary expert team systematically analyzed
literature, public databases and experimental resources to create a
formal, structured model of molecular and cellular ZIKV–host
interactions (‘molecular interaction and disease map’).

Publicly available ZIKA KB
After an assessment period of internal use, a web-browser based
user interface was implemented to make the PREPARE ZIKA KB
available to all ZIKV researchers. By openly sharing the collected
data and information, the ZIKA KB allows researchers to generate
hypotheses, identify knowledge gaps and interactively explore and
interpret data. All data are currently in the public domain. Upon
request, data submission can be modified to allow registered users to
specify that submitted data should not be publicly available.

Use of the ZIKA KB
In the following we provide several example use cases. For instance,
publicly available interaction data, such as the PPI and protein–drug
interaction data can be used to visualize drug targets and host factors
involved in ZIKV pathogenesis. Alternatively, users can filter for
PPIs whose source or target is a drug or refine search results to
include only proteins localized to a specific cellular compartment,
such as the endoplasmic reticulum. The returned networks can be
interrogated subsequently to identify host factors that are targeted by
the virus and to search for drugs that interact with these host factors
and thus might contribute to drug repositioning for future treatment
options for ZIKV infection. The maps can also be explored further
by using integrated expression and knockout data.

To explore the integrated literature knowledge for relevance or
obtain an overview of drug targets or identify critical genes within
the network consisting of gene-disease-pathogen relationships,

Table 1. External data sources integrated into ZIKV KnowledgeBase

Source database Information type
Current
statistics Level of curation

Update frequency
and version

ATC Anatomical therapeutic classification
system

6064 2016

BioGRID Protein–protein interaction 293,022 Manually curated from literature
Different evidence codes

Updated monthly
Version 3.4.137

BioGRID Protein–drug interaction 10,722 Manually curated from literature
Different evidence codes

Updated monthly
Version 3.4.137

ChEBI Compound information 161,090 Curated from different data sources Updated weekly
DisGeNET Gene–disease associations 429,036 Integrated from several public data sources and

literature
Score for ranking associations

Permanently updated
Version 4.0.0.0

Disease ontology Standardized ontology for human disease 15,043 Manually curated Updated weekly
DrugBank Drug and drug target database 8203 Manually curated from literature Updated weekly
EntrezGene Gene functional information >24 million Curated information integrated from different

databases, based on RefSeq genomes
Updated weekly

Human Phenotype
Ontology

Standardized vocabulary of phenotypic
abnormalities in human disease

11,592 2016

KEGG Pathways and reactions 273 Manually curated from literature 2008
NCI Thesaurus Controlled vocabulary of the National

Cancer Institute
118,502 Manually curated from literature Updated weekly

OMIM Gene–disease relations 21,395 Curated from literature Updated weekly
PubMed Literature >24 million Automatic collection with manual curation Updated weekly
Reactome Pathways and reactions 5334 Manually curated from literature Updated quarterly

Aug 2016
UniProtKB Protein sequences >65 million Manually curated Updated bi-weekly
VirHostNet Virus/host molecular interactions 44,310 Manually curated from literature 2.0 (March 2016)

Table 2. Text mining analyses

Text
corpus Key word

Number of
documents

Number of
relationships

Curated
relationships

ZIKV virus
FT

Zika virus 4927; 236
FTa

1192 298

Medline Dengue 19,974 5868 1277
Medline West Nile virus 7700 1586 387
Medline Japanese

encephalitis virus
5918 1594 354

Medline Tick-borne
encephalitis virus

5213 508 134

Medline Microcephaly 6896 749 314
Medline Guillain-Barre

syndrome
4133 419 218

Total 11,916 2982
aFT: full text.
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predefined perspectives were overlaid onto the default map. The
association of ZIKV with microcephaly was reported most frequently
across all ZIKV literature and this association is visualized by the

thickness of the edges (Fig. 3A). Known drug targets interacting
directly with ZIKV or microcephaly were highlighted in green for
potential intervention evaluation (Fig. 3B). Genes playing a role in

Fig. 2. Distribution of text mining relationships. Numbers represent the sum of different types of relationships, such as gene-pathogen, gene-disease,
gene-gene, gene-compound and pathogen-disease relations, found for each virus in total as well as in overlap with other viruses (A), or ZIKV in overlap with
text mining analyses of microcephaly and Guillain-Barre syndrome (B).

Fig. 3. Different ZIKV molecular interaction and disease map perspectives. (A) The amount of literature evidence is depicted by relation strength: the
thicker the edge the bigger the amount of literature evidence, more than 20 sources of literature evidence are highlighted by a purple colored arrow. Genes
are represented by circular nodes, diseases by pink rectangles, GO processes by violet rectangles, ChEBI compounds by white rectangles, and flaviviruses
by yellow rectangles. (B) Genes known to be drug targets are color coded: the gene is a target for one (green) or five or more (blue) drugs or no drugs
(orange). (C) Genes (hNPCs challenged with ZIKV, Tang et al., 2016) are color coded to indicate up- (red) and down regulation (blue).
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ZIKV infected human neural progenitor cells (hNPCs) were also
highlighted for comparative analyses of complementary experimental
analyses (Fig. 3C).

Diseases associated with flaviviruses
To further explore and validate the knowledge derived from the curated
text mining analyses, diseases associated with a virus of interest were
queried. The results are displayed in Fig. 4. It was assumed that the
disorders that were most frequently associated with a virus were the
primary disorder for infection with the virus. Microcephaly and GBS,
for instance, are the most frequently mentioned disorders associated
with ZIKV infection. Dengue fever and hematopoietic system
disorders (e.g. thrombocytopenia) are frequently listed for DENV,
whereas encephalitis is the most frequently mentioned disease for
WNV, JEVand TBEV. Each disease thus represents the corresponding
primary manifestation of these viral infections. Encephalitis is equally
frequently associated with ZIKV and DENV confirming that ZIKV is
also an aetiological agent in encephalitis.

Potential inhibitors of ZIKV infection
Currently there is no approved therapy to treat ZIKV infection.
Barrows et al. recently performed a screen of 774 FDA-approved
drugs to identify agents that could potentially be repositioned as
treatment options for ZIKV infection (Barrows et al., 2016). Of

these, 24 potential inhibitors of ZIKV infection were identified and
validated in human neural stem cells and primary amnion cells. In
addition to their potential use for treatment, these compounds
provide a resource to study ZIKV pathogenesis and can contribute
to insights into the biology of ZIKV. To this end, the ZIKV
molecular interaction and disease map described in Fig. 3 was
extended and filtered to include these potential ‘ZIKV effective
drugs’, which were connected to genes associated to ZIKV through
PPIs (Fig. 5). After this extension ten of the identified ZIKV
effective drugs were part of the new map that we then used to gain
insight into potential drug mechanisms and ZIKV biology. One of
the drugs, Bortezomib, is a known antiviral compound that inhibits
replication of flaviviruses (Choy et al., 2015). Bortezomib is a
proteasome inhibitor, suggesting that proteasome action is essential
for ZIKV replication. This conclusion is in agreement with
published CRISPR screen data (Zhang et al., 2016) identifying
genes associated with protein degradation required for ZIKV
infectivity. Interestingly, four of the predicted ZIKV effective drugs
(Mefloquine, Mebendazole, Sorafenib and Dactinomycin) are
associated with genes, which, through PPIs, are involved in ErbB
signaling. ErbB is associated with the development of
neurodegenerative diseases when inactivated (Bublil and Yarden,
2007). Four of these genes (MYC,GSK3B, BRAF andMAP2K2) are
reported to be upregulated in a published RNAseq analysis (Tang

Fig. 3. continued.
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et al., 2016) performed in human embryonic cortical neural
progenitor cells (Fig. 6). These genes can serve as an entry point
to be tested in specific assays designed to unravel molecular
mechanisms between of ZIKV involvement in microcephaly.
Another predicted ZIKV effective drug is Sorafenib, a multi-

target tyrosine kinase inhibitor. The ZIKVmap was used to identify
the effective target of Sorafenib:
1. Sorafenib interacts with four target genes, FLT3, BRAF,

VEGFR (also known as KDR) and PDGFR. The latter two
genes are known to interact with additional drugs, such as
Sunitinib, Pazopanib, Dasatinib and Imatinib. These
additional drugs were among those that had no effect in the
ZIKV infection assay.

2. In ZIKV infection expression data, none of the genes
producing protein products that interact with VEGFR and
PDGFR through known PPI (orange edges) with ZIKV are
differentially expressed (Fig. 7). In contrast, BRAF and
SOCS2, a FLT3 interactor, were unregulated upon ZIKV
infection.

Based on the observations above drawn from the ZIKV map, we
hypothesize that FLT3 or BRAF are the effective targets of
Sorafenib in ZIKV infection, rather than VEGFR and PDGFR. This
exemplifies how molecular interaction and disease maps can be
used to provide further insight into ZIKV biology.

The network analysis described above could also be used to rank
drugs according to their distance to known ZIKV associated genes,
such as STAT2, to suggest a metric for prioritization in screening
assays (Grant et al., 2016). The discussed extended ZIKV map
contains 429 target gene products that interact with FDA approved
drugs. Evaluation of the distance between STAT2 and drug targets
via experimentally proven PPIs revealed that targets of ZIKV
effective drugs were on average more proximal to STAT2 compared
to other targets.

Combining the proximity measure with additional knowledge,
for example the ‘FDA pregnancy’ label, reduces the number of
drugs to be screened from 774 to 64.

DISCUSSION
In case of an emerging epidemic, public health as well as clinical
and preclinical research responses are typically hampered by a
lack of structured, curated and actionable knowledge. The results
of this study describe an approach to knowledge extraction and
mapping that can quickly provide an overview of existing and
missing information if done by a dedicated and trained group of
experts. The developed workflow does not follow formal expert
consensus seeking processes, such as Delphi (Dalkey and
Helmer, 1963), systematic literature review processes such as
Cochrane (Higgins and Green, 2011) and PRISMA (Liberati

Fig. 3. continued.
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et al., 2009), or medical guideline related processes (Turner
et al., 2008) as these processes are not compatible with the need
for speed during emerging epidemics. Nevertheless, the
workflow adopts several important aspects of good practice: it
is systematic, independent and transparent, provides evidence
for all integrated information and uses appropriate quality
criteria. Combined with the software tools employed in the
process, this pragmatic approach enabled much faster knowledge
generation than more traditional methods.
The tools employed in the process need to be able to semantically

integrate disparate structured resources of heterogeneous data with
ease. However, much of the knowledge that represents scientific
research advancements is locked within the unstructured text of
classical publications, such as journal articles, newsfeeds or free-
form web publications (e.g. Zika-related clinical information at
http://www.ovid.com/site/zika/resources.html). The sheer volume
of this published information grows constantly and exponentially
and, for the most active areas of research, far exceeds the capacity of
individual scientists and medical doctors to identify and read all
relevant articles. Literature mining, a well-established technology to
extract meaningful information from text, provides valuable
assistance in structuring the massive amounts of text data and,
therefore, is an indispensable tool in the process of guidance
generation. Dynamic integration of objects and the relationships
they participate in that are present in the literature through the use of
structured resources and experimental data is a pre-requisite for
analysis and distinguishes the ZIKA KB from text mining-only
solutions, such as ContentMine (http://contentmine.org/) or
databases dedicated to specific questions such as SncRNAs
linking to disease symptoms (http://zikadb.cpqrr.fiocruz.br/zika/).

Beyond our initial analysis presented here, users can explore
the ZIKA KB within a web-based user interface with the use of
the online manual and the step-by-step guide (www.
zikaknowledgebase.eu) to reproduce the presented results. We
will collect and highly appreciate any user feedback to optimize user
experience for broad usage. In contrast to alternative useful
resources such as the Virus Pathogen Resource (viprbrc.org),
which focus on gene and protein sequences, the ZIKAKB integrates
genetic, phenotypic and drug knowledge about ZIKV to facilitate
the generation of hypotheses, define research priorities and enable
better understanding of viral pathogenesis. In addition to interactive
exploration, a corresponding ranking of connections in a network
based on integration of multiple pieces of biological evidence can
also be performed systematically and on a large scale, for example,
by applying the ChainRank method (Tényi et al., 2016), which we
plan to integrate in the future.

Based on the text mining analyses performed here, disease
profiles for the set of five neurotropic flaviviruses were confirmed.
Common knowledge was retrieved along with underlying literature
evidence and rare manifestations, such as encephalitis, associating
with ZIKV and DENV.

Using a molecular interaction and disease map based on ZIKV,
microcephaly, and GBS text mining analyses results, we showed
that further exploration of the described map can provide insight
into, for example, ZIKV biology, propose conclusions for research
decisions, predict drug efficacy, as exemplified in the results
section, as well as propose hypotheses on specific host factors and
signaling pathways affected by ZIKV. The map can help to
distinguish between multiple potential targets of a ZIKV effective
drug. The integration of information about effectiveness of other

Fig. 4. Diseases associated with flaviviruses. The amount of literature evidence (y-axis) for each of the diseases (x-axis) is grouped for the five
flaviviruses. Symbols highlight neurological diseases associated with more than one virus. Triangle, GBS; moon, encephalitis; pie-chart, peripheral nervous
system disease; star, neurologic manifestations.
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drugs as well as their target genes and the information about genes
whose expression is affected during ZIKV infection indicated that
Sorafenib likely acts via its target genes, FLT3 and/or BRAF, but not
via its alternative target genes VEGFR or PDGFR. In addition, the
number of drugs to be screened was reduced from 774 to 64 by
filtering potential drug candidates based on their network distance
to ZIKV infection associated genes and additional phenotype
relevant additional knowledge, such as contained in the ‘FDA
pregnancy’ label.
The conclusions that can be drawn are limited by the initially low

number of available publications and limited experimental data, a
situation which is inherent to most emerging epidemics. Nevertheless,
the work presented shows that the use of a knowledge integrating
system can provide guidance for clinical and research responses, such
as follow-up studies regarding the association between ZIKV,
microcephaly and epilepsy, the validation of candidate drugs for
ZIKV treatment, and the validation of candidate genes in specific
functional assays to better understand molecular ZIKV infection
mechanisms. Or to complement existing functional genomic
approaches with proteomics studies, such as the integrated
proteomics approach identifying cellular targets of ZIKV proteins
(Scaturro et al., 2018; Scaturro et al., 2019). These studies allow

additional comparative analyses between ZIKV and other flavivirus
family members in terms of virulence and pathogenic traits.

Another limitation of the system is the restricted types of
information which can be retrieved by text mining. While
qualitative associations between genes/proteins, drugs, diseases and
organisms are readily amendable to automatic approaches, it
is currently almost impossible to extract, for example, clinical study
designs, detailed quantitative information or complex treatment plans.

Finally, the ZIKA KB in its current stage enables exploration of
the integrated information, as well as generation and curation of
text-mining analysis but is not a public tool for molecular interaction
and disease map generation. The functions required for these tasks
will need further refinement before they can be made available in a
general way.

In summary, this approach in our opinion provides a feasible way
to collect and integrate existing knowledge to better understand the
molecular mechanisms of an emerging pathogen. In addition our
approach helps to identify gaps in knowledge and, together with the
other features, guides rapid and effective responses to future
epidemics. We have made the specific outcome of our approach, the
ZIKAKB, publicly available as a hopefully valuable resource to the
ZIKV research community.

Fig. 5. ZIKV molecular interaction and disease map extended for ZIKV effective drugs. The following are the symbols used in the map. Orange circles,
genes; green stars, ZIKV effective drugs; yellow rectangles, flaviviruses; pink rectangles, diseases; violet rectangles, GO processes or KEGG signaling
pathways. The following edge colors are used in the map. Black edges, relationships derived from text mining; orange, protein-drug or PPIs; violet edges,
participation in pathways. PPI or protein–drug relationships were obtained by applying a network search algorithm selecting the drug target of a ZIKV
effective drug as start and STAT2 (contained in a direct relation with ZIKV) as the end point.
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In the light of the current COVID-19 pandemic we are now
applying the described workflow to SARS-CoV-2 and other
coronaviruses and made the developed resource available (https://
ailani.ai).

MATERIALS AND METHODS
Rapid response protocol
Many procedures have been published to collect knowledge from literature
and experts, including systematic literature reviews (Liberati et al., 2009),
clinical guideline consensus building (Dalkey and Helmer, 1963) and
literature mining (Suh et al., 2010). Based on these approaches we
developed a dedicated six step protocol with a focus on rapid assembly of
existing knowledge (see Fig. 1 and online www.zikaknowledgebase.eu).

Team organization and process management
A multidisciplinary team of clinicians, virologists, bioinformaticians and
knowledgemanagement specialists was formed by a dedicated project enabler
who contacted and invited teammembers, provided information on the overall
aim, background and tools to use and moderated meetings. The aim was to
collaboratively extract existing ZIKV related knowledge from the literature
and from public databases with a focus on relationships between genes,
diseases, pathogens and drugs. The extracted relationships were curated based
on defined inclusion and exclusion criteria, integrated into a consistent
summary and further connected with experimental data, molecular and
pharmaceutical information. To enable an efficient and consolidated initial
result, tasks were distributed between individuals and results were discussed
and integrated in weekly online conferences. The detailed protocol for
knowledge base generation was developed in this initial exercise and is
presented in the Results section.

Knowledge management
For data organization, integration and development of molecular interaction
and disease maps, a dedicated knowledge management tool is required. In
this case, one of the PREPARE partners contributed the BioXM™
Knowledge Management Environment, a generic platform for dynamic
modelling, visualization and analysis of biological and biomedical networks
(Losko and Heumann, 2009). For knowledge representation we applied a

semantic network approach as described previously (Maier, et al., 2011;
Cano et al., 2014). Concepts required to represent domain knowledge were
elucidated from domain experts and mapped to existing ontologies by
knowledge engineers, essentially following the ‘concept maps’ approach
(Castro et al., 2006). Based on input from clinical and virology experts, the
concepts required to represent existing pathophysiological knowledge of
infectious diseases were modelled with objects, such as ‘genes’, ‘strains’, ‘is
expressed in’ or ‘interacts with’. For the ZIKV KB, we focused on concepts
required to represent text-mining results and information from structured
databases of PPI and drug–protein interactions, namely genes, diseases,
pathogens and drugs. Relationships between pathogens, genes, drugs and
compounds extracted by text-mining were represented by three types of
relations: upregulation, downregulation and regulation (for further details
see Fig. S1). Where possible, each concept was referenced to unique entries
from reference databases or ontologies such as ChEBI (Degtyarenko et al.,
2008) for chemicals and ICD10 (‘The international conference for the tenth
revision of the International Classification of Diseases. Strengthening of
Epidemiological and Statistical Services Unit. World Health Organization,
Geneva’, 1990) for diseases. The defined semantic concepts become
directly available in a natural-language-like query and reporting language.
This language can be used to address specific questions and to summarize
and visualize available knowledge. For example, the query ‘Retrieve all
drugs which are interacting with human proteins which are expressed from
genes affected by Zika virus infection’ retrieves the number of drugs that
interact with a protein of interest and generates a visualization that applies a
color coding to genes that indicates to the number of associated drugs.

Text mining
The integrated text mining tool uses syntactic text parsing and dictionary-
based named-entity recognition to extract semantically typed associations
(such as ‘inhibits’, ‘activates’) between the defined semantic concepts (such
as ‘gene’, ‘strain’) (Losko et al., 2006). The initial task creates a defined text
corpus, which includes uploaded relevant full text articles if applicable. In
principle the textual materials for mining can be derived from PubMed
abstracts, text from the WHO or other news feeds or any document in the
portable document format (PDF), Microsoft Word or American Standard
Code for Information Interchange (ASCII) formats. For the case study
described here we used all ZIKV PubMed abstracts and publicly openly

Fig. 6. ZIKV molecular interaction and disease map extended for ZIKV effective drugs (enlarged perspective). Up- and downregulated genes (hNPCs
challenged with ZIKV, Tang et al., 2016) are highlighted by a color code ranging from red (upregulation) to blue (downregulation), from enlarged perspectives
surrounded by dotted boxes in Fig. 5.
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available full text articles. From these sources, relationships between genes,
diseases, pathogens and drugs were extracted. The extracted associations
consist of a subject, an object and the linking predicate and are enriched by
their supportive evidence and additional metadata. For example, one such
relationship is ‘Zika virus (subject) causes (predicate) microcephaly
(object)’ (Fig. 8). Genes, diseases, pathogens and drugs, can be used as
subjects and as objects and the sum of all extracted associations form an
initial knowledge network. Genes, diseases, pathogens and drugs were
defined by dictionaries that we curated from public sources as described

below. Each dictionary consists of a well-defined set of ontologies
(including synonyms) or reference databases tailored to the research
question of interest. For instance, the disease dictionary consists of disease
ontology entries (Schriml et al., 2012) and relevant branches of the NCI
Thesaurus (de Coronado et al., 2004), the organism dictionary of NCBI
taxonomy entries (Wheeler et al., 2000), the compound dictionary of ChEBI
entries (Degtyarenko et al., 2008), as well as of KEGG (Goto et al., 1998)
and NCI Thesaurus compounds. The gene dictionary is based on genes
derived from human and flavivirus genomes. Predicates are derived from a

Fig. 7. ZIKV molecular interaction and disease map extended for ZIKV effective drugs (enlarged perspective). Up- and downregulated genes (hNPCs
challenged with ZIKV, Tang et al., 2016) are highlighted by a color code ranging from red (upregulation) to blue (downregulation) from enlarged perspectives
surrounded by dotted boxes in Fig. 6.
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set of verbs, which can be modified. These predicates describe mainly
molecular interactions but can also indicate causal associations between
proteins or compounds and diseases (for instance ‘activates’, ‘restricts’,
‘targets’). To optimize recall and specificity of the mining, we extended the
dictionaries for viral names, acronyms and interaction predicates as well as
defined a black-list of acronyms causing mostly false positives.

Finally, the extracted relationships can be curated to manually optimize
quality and information content. A curation user interface was implemented
to enable the expert team to support or refute the automatically generated
relationships. At least two independent researchers (the ‘4-eye review
mode’) manually evaluated the evidence for every extracted relationship. In
the case that the evaluations from the two researchers conflicted, the
conflicts were either resolved during the weekly online conferences or were
excluded, as our goal was to maximize specificity (correctness) rather than
sensitivity (completeness) of the integrated information.

In addition, experts could expand the network with any relevant
supporting evidence from other integrated sources, such as public or
proprietary databases and experimental data.

Semantic mapping of experimental results, public data sources and
ontologies
Semantic mapping describes the process of identifying and linking concepts
that are shared between two information sources. We integrated the
databases listed in Table 1 using existing concepts such as genes, pathogens
or diseases which were identified by ontological descriptors. Semantically
identical objects are mapped to descriptive data from literature and databases
to allow informed and efficient querying of the overall collected information
(e.g. ‘Dengue disease’ is mapped to the following synonyms: ‘Breakbone
fever’, ‘Dengue disorder’, ‘Dengue fever’ and ‘Dengue’) (Maier, et al.,
2011). To this end, mapping scripts are created to resolve a given input data
format and match the provided entity identifiers or ontology terms.
Experimental data from key publications are mapped by the same approach.
While these data are henceforth available for search and reporting they are
not yet displayed as part of any specific molecular interaction and
disease map.

Querying and visualization of integrated information in tables, networks
and disease maps
To help the expert team establish a specific molecular interaction and
disease map we defined a number of queries to explore the collective
knowledge. These queries were used, for example, to find diseases and

genes associated with a virus of interest to find diseases associated with
genes prioritized according to experimental evidence.

Based on these queries we developed a streamlined, wizard-based user
interface to create disease maps by selecting the relevant relationships from
the curated text mining from query results (Fig. S2). This basic network was
further extended with interaction data (e.g. PPI and protein-drug interaction)
by applying a network search algorithm based on genes extracted from text
mining relationships. Finally, we defined queries to overlay additional
information, such as literature evidence, experimental data, drug targets or
host factors to obtain different perspectives of the same underlying
molecular interaction or disease map.

Deployment of an open access, web-based user interface
To make the results of our internal test case generally available and to
support ZIKV research, we provide and maintain a regularly updated ZIKA
KB at the following URL, www.zikaknowledgebase.eu. As we continue to
extend this resource user registration for access will be implemented to
ensure the knowledge base is used for research only.
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A., Alcántara, R., Darsow, M., Guedj, M. and Ashburner, M. (2008). ChEBI: a

Fig. 8. Predicated text mining relationship. A text mining relationship
consists of a subject (ZIKV), an object (microcephaly) and a linking
predicate (causes). Subject and object are defined by dictionaries consisting
of ontologies or reference databases, whereas predicates are derived from a
fixed set of verbs with assertions from integrated sources, such as Medline.
The term ‘microcephaly’ is a reusable scientific concept that participates not
just in one ‘Subject-Predicate-Object’ construct detected, but in all such
constructs detected that mention ‘ microcephaly’. Supplementary information
is associated with the ‘microcephaly’ object, including, for example,
information from the disease ontology, and other integrated resources, such
as Gene-Disease-Association data (DisGeNET). This expandable set of
relationships forms a large network of knowledge that enables new
knowledge to be inferred by ‘reasoning’ based on the logic encoded in
those relationships.

11

RESEARCH ARTICLE Biology Open (2020) 9, bio053934. doi:10.1242/bio.053934

B
io
lo
g
y
O
p
en

https://bio.biologists.org/lookup/doi/10.1242/bio.053934.supplemental
http://www.zikaknowledgebase.eu
https://bio.biologists.org/lookup/doi/10.1242/bio.053934.supplemental
https://bio.biologists.org/lookup/doi/10.1242/bio.053934.supplemental
https://doi.org/10.7326/M16-0617
https://doi.org/10.7326/M16-0617
https://doi.org/10.1016/j.chom.2016.07.004
https://doi.org/10.1016/j.chom.2016.07.004
https://doi.org/10.1016/j.chom.2016.07.004
https://doi.org/10.1016/j.chom.2016.07.004
https://doi.org/10.1016/j.ceb.2007.02.008
https://doi.org/10.1016/j.ceb.2007.02.008
https://doi.org/10.1016/j.ceb.2007.02.008
https://doi.org/10.1186/1479-5876-12-S2-S6
https://doi.org/10.1186/1479-5876-12-S2-S6
https://doi.org/10.1186/1479-5876-12-S2-S6
https://doi.org/10.1186/1479-5876-12-S2-S6
https://doi.org/10.33588/rn.6207.2016152
https://doi.org/10.33588/rn.6207.2016152
https://doi.org/10.33588/rn.6207.2016152
https://doi.org/10.1186/1471-2105-7-267
https://doi.org/10.1186/1471-2105-7-267
https://doi.org/10.1186/1471-2105-7-267
https://doi.org/10.1186/1471-2105-7-267
https://doi.org/10.1371/journal.pntd.0004058
https://doi.org/10.1371/journal.pntd.0004058
https://doi.org/10.1371/journal.pntd.0004058
https://doi.org/10.1371/journal.pntd.0004058
https://doi.org/10.1287/mnsc.9.3.458
https://doi.org/10.1287/mnsc.9.3.458
https://doi.org/10.1093/nar/gkm791
https://doi.org/10.1093/nar/gkm791


database and ontology for chemical entities of biological interest. Nucleic Acids
Res. 36, D344-D350. doi:10.1093/nar/gkm791

Fujita, K. A., Ostaszewski, M., Matsuoka, Y., Ghosh, S., Glaab, E., Trefois, C.,
Crespo, I., Perumal, T. M., Jurkowski, W., Antony, P. M. A. et al. (2014).
Integrating pathways of Parkinson’s disease in a molecular interaction map. Mol.
Neurobiol. 49, 88-102. doi:10.1007/s12035-013-8489-4

Goto, S., Nishioka, T. and Kanehisa, M. (1998). LIGAND: chemical database for
enzyme reactions. Bioinformatics (Oxford, England) 14, 591-599. doi:10.1093/
bioinformatics/14.7.591

Grant, A., Ponia, S. S., Tripathi, S., Balasubramaniam, V., Miorin, L.,
Sourisseau, M., Schwarz, M. C., Sánchez-Seco, M. P., Evans, M. J., Best,
S. M. et al. (2016). Zika virus targets human STAT2 to inhibit Type I interferon
signaling. Cell Host Microbe 19, 882-890. doi:10.1016/j.chom.2016.05.009

Guo, X., Xu, Y., Bian, G., Pike, A. D., Xie, Y. and Xi, Z. (2010). Response of the
mosquito protein interaction network to dengue infection.BMCGenomics 11, 380.
doi:10.1186/1471-2164-11-380

Higgins, J. and Green, S. (2011). Cochrane Handbook for Systematic Reviews of
Interventions. 5.1.0. (The Cochrane Collaboration). Available at: http://handbook.
cochrane.org.

Kumari, B., Jain, P., Das, S., Ghosal, S., Hazra, B., Trivedi, A. C., Basu, A.,
Chakrabarti, J., Vrati, S. and Banerjee, A. (2016). Dynamic changes in global
microRNAome and transcriptome reveal complex miRNA-mRNA regulated host
response to Japanese Encephalitis Virus in microglial cells. Sci. Rep. 6, 20263.
doi:10.1038/srep20263

Le Breton, M., Meyniel-Schicklin, L., Deloire, A., Coutard, B., Canard, B., De
Lamballerie, X., Andre, P., Rabourdin-Combe, C., Lotteau, V. and Davoust, N.
(2011). Flavivirus NS3 and NS5 proteins interaction network: a high-throughput
yeast two-hybrid screen. BMCMicrobiol. 11, 234. doi:10.1186/1471-2180-11-234

Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis,
J. P. A., Clarke, M., Devereaux, P. J., Kleijnen, J. and Moher, D. (2009). The
PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of
Studies That Evaluate Health Care Interventions: Explanation and Elaboration.
PLoS Med. 6, e1000100. doi:10.1371/journal.pmed.1000100

Losko, S. and Heumann, K. (2009). Semantic data integration and knowledge
management to represent biological network associations. Method. Mol. Biol.
563, 241-258. doi:10.1007/978-1-60761-175-2_13

Losko, S., Wenger, K., Kalus, W., Ramge, A., Wiehler, J. and Heumann, K.
(2006). Knowledge Networks of Biological and Medical Data: An Exhaustive and
Flexible Solution to Model Life Science Domains. In Data Integration in the Life
Sciences, pp. 232-239. Springer Berlin / Heidelberg (Lecture Notes in Computer
Science).

Maier, D., Kalus, W., Wolff, M., Kalko, S. G., Roca, J., De Mas, I. M., Turan, N.,
Cascante, M., Falciani, F., Hernandez, M. et al. (2011). Knowledge
management for systems biology a general and visually driven framework
applied to translational medicine. BMC Syst. Biol. 5, 38. doi:10.1186/1752-0509-
5-38

Matsuoka, Y., Matsumae, H., Katoh, M., Eisfeld, A. J., Neumann, G., Hase, T.,
Ghosh, S., Shoemaker, J. E., Lopes, T. J. S., Watanabe, T. et al. (2013). A
comprehensive map of the influenza A virus replication cycle. BMC Syst. Biol. 7,
97. doi:10.1186/1752-0509-7-97

Moore, E. F. (1959). The shortest path through a maze. In Proceedings of the
International Symposium on the Theory of Switching. Harvard University Press,
pp. 285-292.

Murray, J. S. (2017). Understanding Zika virus. JSPN 22. doi:10.1111/jspn.12164
Nim, H. T., Furtado, M. B., Costa, M. W., Kitano, H., Rosenthal, N. A. and Boyd,

S. E. (2015). CARFMAP: a curated pathway map of cardiac fibroblasts. PLoS
ONE 10, e0143274. doi:10.1371/journal.pone.0143274

Nowakowski, T. J., Pollen, A. A., Di Lullo, E., Sandoval-Espinosa, C.,
Bershteyn, M. and Kriegstein, A. R. (2016). Expression analysis highlights
AXL as a candidate Zika virus entry receptor in neural stem cells. Cell Stem Cell
18, 591-596. doi:10.1016/j.stem.2016.03.012

Pardy, R. D. and Richer, M. J. (2019). Zika Virus pathogenesis: from early case
reports to epidemics. Viruses 11, 886. doi:10.3390/v11100886

Pierson, T. C. andDiamond, M. S. (2018). The emergence of Zika virus and its new
clinical syndromes. Nature 560, 573-581. doi:10.1038/s41586-018-0446-y

Scaturro, P., Stukalov, A., Haas, D. A., Cortese, M., Draganova, K., Płaszczyca,
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