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Over the past few years, the field of regulated cell death continues to expand and novel
mechanisms that orchestrate multiple regulated cell death pathways are being unveiled.
Meanwhile, researchers are focused on targeting these regulated pathways which
are closely associated with various diseases for diagnosis, treatment, and prognosis.
However, the complexity of the mechanisms and the difficulties of distinguishing among
various regulated types of cell death make it harder to carry out the work and delay
its progression. Here, we provide a systematic guideline for the fundamental detection
and distinction of the major regulated cell death pathways following morphological,
biochemical, and functional perspectives. Moreover, a comprehensive evaluation of
different assay methods is critically reviewed, helping researchers to make a reliable
selection from among the cell death assays. Also, we highlight the recent events that
have demonstrated some novel regulated cell death processes, including newly reported
biomarkers (e.g., non-coding RNA, exosomes, and proteins) and detection techniques.

Keywords: regulated cell death, detecting methods, guidelines, biomarkers, clinical application

INTRODUCTION

Cell death is generally classified into two types: accidental cell death (ACD) and regulated cell death
(RCD). RCD is regarded as reversible and can be blocked by small inhibitors (Wang S. et al., 2017;
Cheng et al., 2018; Kumar and Sandhir, 2018; Wang et al., 2019c,d). Various programs of RCD
have been described and their research continues to progress, including apoptosis (extrinsic and
intrinsic), regulated necrosis (namely necroptosis), autophagy-dependent cell death (e.g., autosis),
pyroptosis, ferroptosis, NETosis, parthanatos, entotic cell death, anoikis, lysosome-dependent cell
death, and mitotic death (Kroemer et al., 2005; Galluzzi et al., 2018). Both in technical research
and mechanism mining, the research into these types of RCDs has made great progress, and we
have selected in-depth research and rapid recent development of the knowledge of RCDs as an
illustration, including apoptosis, necroptosis, autophagy, pyroptosis, ferroptosis, and NETosis.
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With the development of RCD studies, the detection methods
have been improved simultaneously and diversified for accurate
identification and systematic analysis. The history of RCDs
began in 1842 when dying cells were noticed by Karl Vogt
in toads (Tang et al., 2019). In Lockshin and Williams (1964)
reported an orderly and predictable pattern of birth and death
at the cellular level, called metamorphosis, a phenomenon
with pycnotic nuclei, shrunken and degenerated mitochondria,
and conspicuous lysosome-like bodies observed via light and
electron microscopy (EM) (Lockshin and Williams, 1964, 1965).
Apoptosis was termed “shrinkage necrosis” in Kerr (1971); Kerr
et al. (1972) distinguished two types of cell death (apoptosis
and necrosis) in human pathology samples, focusing on cell
morphology, and described necrotic cells as swollen cells with
swollen organelles.

The first description of pyroptosis was reported in Zychlinsky
et al. (1992), but the term “pyroptosis” was first coined in
Cookson and Brennan (2001) after an observation of bacteria-
infected macrophages going through a rapidly caspase 1-
dependent lytic cell death pathway.

In the early 21st century, necrosis was previously considered to
be uncontrollable, but it was recently revised as a partly regulated
mechanism, namely necroptosis, involving mitochondrial
permeability transition through morphological and biochemical
detection (Vercammen et al., 1998; Holler et al., 2000; Baines
et al., 2005). The discovery of ferroptosis has come a long way
since the 1950s, although it was only named in Dixon et al.
(2012). In the following year, the term “autosis” was described by
Beth Levine following the observation of a subtype of cell death
associated with autophagy induced by nutrient deprivation or
Tat-Beclin 1 [one of the peptides inducing autophagy by BECN1
and human immunodeficiency virus (HIV) Tat protein] (Liu
et al., 2013). Novel observations regarding neuronal cell death
continue to be reported frequently, both refining and redefining
known paradigms of cell death, such as apoptosis, necroptosis
(Arrazola and Court, 2019), autophagic cell death (Liu and
Levine, 2015), ferroptosis (Dixon et al., 2012), and pyroptosis
(Fink and Cookson, 2006) (the timeline of the RCDs research is
depicted in Figure 1).

All of the discovery in RCDs requires accurate identification
techniques, including superficial morphological detection, but
the changes in detail are indistinguishable at the morphological
level. Biochemical detection, which refers to multiple biomarkers,
and functional perspectives based on functional changes, such as
assays related to the molecular mechanism of the RCD-related
genes (Hengartner and Horvitz, 1994), have widely used flow
cytometry in RCDs detection, cytosolic DNA assays, and nucleic
acid kits (Boldin et al., 1996; Li et al., 1997, 1998; Luo et al.,
1998; Paludan et al., 2019). Various signature proteins involved in
cell death have been reported and researchers make use of these
proteins in cell death assays. The discovery of the main proteins
is shown in the timeline in Figure 1.

Regulated cell death is closely related to physiological
and pathological processes, including inflammation,
neurodegenerative diseases, immunological diseases, and cancer
(Anderton et al., 2020). Therefore, targeting the regulatory
mechanisms of RCD is becoming a great opportunity to

discover new therapies to target regulated pathways and identify
potential drug targets. They can also act as potential targets
in diagnosis and prognostic evaluation. Each of the RCDs has
a unique molecular mechanism, with special morphological
characteristics, and they have established complex connections
with each other. Fully understanding their various detection
methods, as well as their advantages, is necessary for the efficiency
and accuracy of their detection. We have summarized and
compared the signaling pathways regulating cell death, mainly
including apoptosis, necrosis, autophagy, ferroptosis, pyroptosis,
and NETosis, in these aspects: morphology, biochemistry, and
function (a brief summary is available in Table 1).

CELL VIABILITY ASSAYS

Once cell death is induced, the plasma membrane integrity
would be destroyed, or before losing its integrity, the corpse
or fragments of the cell would be engulfed by neighboring
cells in vivo. The cells’ contents can also be exposed or even
lost (e.g., the spillage of cytosolic lactate dehydrogenase (LDH),
the exposure of DNA), the activity of intracellular enzymes
could decline (e.g., succinate dehydrogenase), and a reduction
in intracellular adenosine triphosphate (ATP) is observed, which
reflects the cellular energy capacity and viability. In view of these
phenomena, spectrophotometry, fluorometry, flow cytometry,
and microscopy are utilized for cell viability assays.

Spectrophotometry
Spectrophotometry is a qualitative or quantitative analysis of
signal material through the absorption of a certain range of
wavelengths. Using spectrophotometry to monitor the metabolic
activity of cells is regarded as an indicator of cell viability, such
as succinate dehydrogenase (SDH) activity analysis, the cytosolic
LDH release analysis, certain proteins, and DNA binding by
crystal violet staining. The principle of these technologies, in
summary, is that the light absorption value of certain markers
can be measured by a microplate enzyme for a qualitative or
quantitative analysis of cell viability.

Some limitations of SDH activity analysis are as follows: (1) In
dead cells, SDH is often still partially active, resulting in being
erroneously scored as living cells when it comes to the early
stages of apoptosis. (2) Not only cell death, but also other physical
and chemical factors can lead to a decrease of enzyme activity,
which leads to a false-positive or false-negative result. (3) The
activity of an enzyme is variant in different tissue or cells, such
as a lesser degree of SDH activity being present in neural and
hepatic tissues, which easily leads to errors (Bernocchi and Barni,
1983). (4) The process of MTT conversion is also affected by
various conditions, such as the cellular confluency and the culture
medium exhaustion, which could lead to under-estimating the
cell viability. (5) Some other solutes might elevate background
signals by absorbing the same range of wavelengths, such as
media containing phenol red, which leads to an increased cell
viability range in the assay. All in all, SDH activity analyses of cell
viability are usually used in conjunction with other techniques to
improve their accuracy.
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FIGURE 1 | Timeline of the mile stone of cell death research. Abbreviations: Bcl-2: B-cell leukemia/lymphoma-2, CED-9: Cell death abnormality gene 9, RIPK3:
Receptor-interacting serine/threonine-protein kinase 3, MLKL: Mixed lineage kinase domain like pseudokinase, PCD: Programmed cell death, CD95: cluster of
differentiation 95.

Crystal violet staining binding by certain proteins and DNA
is suitable for monitoring the effect of various compounds (e.g.,
chemotherapeutics) on cell growth or survival as a reliable and
quick screening measure (Geserick et al., 2009). However, some
of the special cases would be potentially compromised due to
the changed adherent properties of cells, such as the proliferative
responses that occur in conjunction with cell death responses or
the steps of repeated washing, which might sometimes lead to
detached living cells, causing artifacts, especially when there is a
higher cell density (Feoktistova et al., 2016).

As for the cytosolic LDH release analysis, some caution should
be exercised regarding the instability and proteolytic degradation
of LDH activity, since some of the factors may interfere with
the results, such as the time spent, the pH, and the specific
components present in the culture medium (e.g., pyruvate)
(Kendig and Tarloff, 2007).

Fluorometry, Flow Cytometry, and
Microscopy Assay
The plasma membrane integrity is followed by the exposure of
intracellular contents, and the dye could enter and bind to these
contents in the dead cell. For identifying leaking cell contents
and lost membrane integrity, researchers often use a targeted
approach for detection, such as light microscopy to detect trypan
blue positive cells, and fluorometry and flow cytometry are used
for identifying leaking cell contents. The detailed descriptions of
each of these technologies is shown below.

Using technologies such as flow cytometry and light
microscopy, the dead cells are indicated indirectly. For example,
in DNA-binding, impermeant fluorescent dyes are used for
detection, such as propidium iodide (PI), 7-amino actinomycin
D (7-AAD) or the Sytox probes (Life Technologies) (Riccardi
and Nicoletti, 2006; Zembruski et al., 2012, Thakur et al., 2015).
For instance, during apoptosis, PI is able to bind and label
DNA fragments and makes it possible to provide a rapid (in

about 2 h) and precise method for evaluating intracellular DNA
fragments through flow cytometry, and subsequently identifying
the hypodiploid cells (Riccardi and Nicoletti, 2006). Compared
with crystal violet staining analysis by spectrophotometry as
mentioned above, this reduces the steps used to wash cells.

Notably, trypan blue staining could detect all forms of
cell death, but differentiating among the specific types of cell
death needs further testing (Crowley et al., 2016a). Moreover,
other assays for detecting the loss of plasma membrane
integrity have been adapted, such as immunocytochemistry to
assay protein translocation, and 4′,6′-diamidino-2-phenylindole
(DAPI) staining to assay nuclear fragmentation (Crowley
et al., 2016b). For example, immunocytochemistry, such as
for cytochrome c, is regarded as an essential tool for
understanding and characterizing the mitochondrial apoptosis
pathway (Crowley et al., 2016c).

DETERMINING CELL MORPHOLOGY OF
RCDS

Incipiently, differentiating RCDs usually relied on morphological
changes limited by techniques while the three major types of
cell death are identified (type I cell death refers to apoptosis,
type II cell death corresponds to autophagy-dependent cell death,
type III cell death is related to necrosis) (Kerr, 1971; Lin et al.,
1973). In Lockshin and Williams (1964) the American biologist
Richard A Lockshin thoroughly described PCD (Lockshin and
Williams, 1965), and in Kerr et al. (1972), the Australian
pathologist John F Kerr and his colleagues coined the term
“apoptosis.” They analyzed RCDs based on morphological
changes. Later, the Nomenclature Committee on Cell Death
(NCCD) updated the classification system of cell death through
more comprehensive aspects, including classification (Kroemer
et al., 2005, 2009), molecular definitions (Galluzzi et al., 2012),
essential vs. accessory terms (Galluzzi et al., 2015), and molecular
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TABLE 1 | Comparison of five types of RCDs.

Items Definition Morphological features Detecting methods References

Apoptosis A vital component of various
processes including normal
cell turnover, proper
development and functioning
of the immune system,
hormone-dependent atrophy,
embryonic development and
chemical-induced cell death

Cell shrinkage (pyknosis);
DNA fragmentation
(karyorrhexis); nuclear
condensation; membrane
blebbing; apoptotic body
formation

DNA fragmentation (DNA ladder assay, TUNEL assay,
and comet assay); phosphatidylserine (Annexin V, flow
cytometric analysis); bid, p53 (RT-PCR, western blot,
immunohistochemistry); caspase activation (western
blot, ELISA, flow cytometric analysis); Fas, TNF, TRAIL
(RT-PCR, western blot, immunohistochemistry);
Cytochrome C release (ELISA)

Saraste and Pulkki, 2000;
Hunter et al., 2005; Elmore,
2007; Huerta et al., 2007;
Krysko et al., 2008;
Majtnerová and Roušar,
2018

Necroptosis A type of cell death that is
caused by the loss of plasma
membrane integrity following
receptor interacting kinase 3
(RIPK3)-mediated
phosphorylation of the
pseudokinase mixed lineage
kinase domain like
(MLKL/pMLKL)

Cell swelling; membrane
rupture; retain integral
nucleus; translucent
cytoplasm

RIPK1, RIPK3, MLKL (immunofluorescent staining);
MLKL (quantitative RT-PCR); RIPK1/3, RIP3, MLKL
(western blotting); MLKL, RIPK3, RIP1 (ELISA); annexin
V–/propidium iodide+ or annexin V+/propidium
iodide+ (flow cytometry); RIP1/RIP3 complex
(immunoprecipitation and electron microscopy); RIP1
(immunoblotting); membrane translocation
(immunofluorescence microscopy and TIRF
microscopy);

Aachoui et al., 2013; Chen
et al., 2014; He et al., 2016;
Gong et al., 2019; Tonnus
et al., 2019; Wimmer et al.,
2020; Wu Y. et al., 2020

Autophagy An evolutionarily ancient and
highly conserved catabolic
process involving the
formation of double
membraned vesicles called
autophagosomes that engulf
cellular proteins and
organelles for delivery to the
lysosome

Lack of chromatin
condensation; massive
vacuolization of the
cytoplasm; accumulation
of (double-membraned)
autophagic vacuoles; little
or no uptake by
phagocytic cells

Immune colloidal gold technique; GFP-LC3 or
mRFP-GFP-LC3 (immunofluorescence); LC3-II / LC3-I,
beclin, ATG5, ATG7, p62 and phosphorylation status of
ULK (western blot); LDH sequestration; MDC staining
Hsc70 with lysosomal markers (immunofluorescence);
LAMP2A (western blot)

Bernocchi and Barni, 1983;
Boldin et al., 1996;
Broaddus et al., 1996;
Boschker and Middelburg,
2002; Brauer, 2003;
Brinkmann et al., 2004;
Bergsbaken et al., 2009;
Burattini and Falcieri, 2013;
Braga et al., 2016;
Buschhaus et al., 2017,
2018; Bhutia et al., 2019;
Yang J. W. et al., 2018

Ferroptosis An iron-dependent form of
regulated cell death caused
by unrestricted lipid
peroxidation and subsequent
membrane damage

The loss of plasma
membrane integrity; the
leakage of intracellular
contents

ATP5G3, PTGS2, IREB2, CS, RPL8 (quantitative
real−time PCR); JNK, Erk1/2, p38, LC3I/II, Nrf2, p62,
Slc7a11 (western blot); Fe2+ release assay; flow
cytometry; GPX4 (ELISA); NADP/NADPH, LC3
(fluorescence); immunofluorescence;

Wang H. et al., 2017; Kong
et al., 2019; Tang and
Kroemer, 2020

Pyroptosis A form of lytic cell death that
is triggered by
proinflammatory signals and
associated with inflammation

Membranous pore
formation; cytoplasmic
swelling; rupture of the
cell membrane and
release of its intra-cellular
contents into the
immediate cellular milieu

BCA, casp1 (western blot); real-time PCR; caspase-1,
CD31 (TUNEL staining and immunostaining); IL-1β,
IL-18, pro-IL-1β, IL-1α (ELISA); FAM-FLICA-caspase-1
and PI (flow cytometry); NLRP3, caspase-1, IL-1β,
IL-18 (immunofluorescence); Ca2+ (fluorescence);
IL-1β, casp1, casp8 (immunoblotting); determination of
LDH; PLFA (isotope labeling); spectral analysis; DAB,
AEC (chromogenic staining)

Boschker and Middelburg,
2002; Schneider et al.,
2017; Lei et al., 2018;
Wang et al., 2018a; Wu
et al., 2018; Yang F. et al.,
2018

ATG5/7: Autophagy-Related protein 5/7, ATP5G3: isoform 3 of subunit c of mitochondrial ATP synthase, CD31: platelet/endothelial cell adhesion molecule-1, ELISA:
enzyme linked immunosorbent assay, Erk1/2: extracellular signal-regulated kinase 1, FLICA: fluorochrome-labeled inhibitors of caspases, GFP: green fluorescent protein,
GPX4: glutathione peroxidase 4, IREB2: iron-responsive element-binding protein 2, LAMP2A: lysosome-associated membrane protein 2A, LC3: light chain 3, LDH: lactate
dehydrogenase, MLKL: mixed lineage kinase domain-like pseudokinase, NLRP3: nod-like receptor protein-3, Nrf2: nuclear factor erythroid 2 p45-related factor 2, PLFA:
phospholipid fatty acid, PTGS2: prostaglandin endoperoxide synthase 2, RFP: red fluorescent protein, RIPK1/3: Receptor-interacting serine/threonine-protein kinase 1/3,
Slc7a11: solute carrier family 7 member 11, TIRF: total internal reflection fluorescent, TNF: tumor necrosis factor, TRAIL: tumor necrosis factor-related apoptosis-inducing
ligand, TUNEL: terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End labeling, ULK: Unc-51-like kinas.

mechanisms (Paredes-Gamero et al., 2012). Meanwhile, the
technology of RCDs detection is developing rapidly. To date,
these detection techniques have been developed for monitoring
the morphology of RCDs, such as light microscopy (Paredes-
Gamero et al., 2012), EM, transmission electron microscopy
(TEM) (ultrastructural changes and chromatin condensation in
the cells) (Dong et al., 2015), scanning electron microscopy
(surface changes of cells or tissues) (Burattini and Falcieri, 2013),
atomic force microscopy (whole-process changes in RCDs)
(Kuznetsov et al., 1997; Hessler et al., 2005; Sborgi et al., 2016),

fluorescence microscopy (FM) (specific fluorescence labeling
such as NAD(P)H-labeled in apoptosis) (Alturkistany et al.,
2019), and practical flow cytometry (number and rate of dead
cells) (Yasuhara et al., 2003; Paredes-Gamero et al., 2012; Liao S.
et al., 2019).

As the most intuitive means, morphologic detection
also refers to many different aspects: the alterations of
the membrane (e.g., the loss of membrane integrity), the
changes in cytoplasmic contents (e.g., mitochondrial damage),
and the alterations of the nucleus and DNA. Each of the
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RCDs has their own iconic characteristic presented through
immunohistochemistry (IHC) or various fluorescent dyes and
high-resolution microscopy (Figure 2).

Time-Lapse Microscopic Analysis
Time-lapse microscopic analysis, involving a temperature
and CO2-controlled incubator, has benefits for monitoring a
biological process over a time period, which may last from a
few hours to several days (Wallberg et al., 2016b). It can be
suitable for a comparative and dynamic study of single cells
in vivo or in culture shown as automated imaging of visible
cell surface changes. This technique could be recorded via using
differential interference contrast (DIC) optics either alone or
in combination with epifluorescence microscopy specifying a
predefined delay between the acquisition of images. The related
parts of this technology may be changed slightly, generally
including a Leica ASMDW live cell imaging system (Leica
Microsystems, Mannheim, Germany), which includes a DM IRE2
microscope equipped with an HCX PL APO 63/1.3 glycerin
corrected 37◦C objective and a 12 bit Coolsnap HQ Camera
(Cappellini et al., 2005; Krysko et al., 2008; Chan et al., 2011).

After staining with combinations of dyes, cell death can
be visualized. These dyes include Alexa Fluor 647-conjugated
Annexin V and Sytox Green (SG), or Annexin VFITC and

PI. Recently, fluorescent probes have been developed to
improve the accuracy during detection, such as two-related
fluorescent probes, namely molecular conjugates of one or
two zinc dipicolylamine (ZnDPA) coordination complexes with
an appended solvatochromic benzothiazolium squaraine dye
targeting the anionic phospholipids and phosphatidylserine (PS)
exposed on the surface of dead or dying cells (Jarvis et al.,
2018). This method is considered the best choice to distinguish
between necrosis and apoptosis morphologically (Wallberg et al.,
2016b). Annexin V staining using fluorescein isothiocyanate
(FITC) could be used to detect apoptosis through binding to
PS in the presence of Ca2+ (Vermes et al., 1995; Baskic et al.,
2006). In necrosis, Annexin V staining can present a positive, so
researchers always use double staining of Annexin V and PI to
confirm necrosis (Vermes et al., 1995), and it has been proven
that 99mTc-radiolabeled Annexin V is the most successful marker
(Brauer, 2003).

Obtaining the data of cell morphology in apoptosis is
described as: roundness, blebbing, the breaking up of cell
fragments into apoptotic bodies (a process called “budding”),
which are eventually degraded within phagolysosomes, and
nuclear condensation (karyopyknosis) and fragmentation
(karyorrhexis), and it always happens in small clusters of cells
or individual cells without inflammation. After that, apoptotic

FIGURE 2 | Morphological changes of regulated cell death. Different types of cell death inducing with various pathways present diverse morphological changes.
(A) The formation of autophagosomes is the typical characteristic of autophagy. ATG12-ATG5-ATG16L1 complex and LC3-II contribute to the extension of the
phagophore. When the autophagosome is completely formed, LC3-II will separate from the outer membrane, and the autophagosome fuses with the lysosome so
that an autolysosome finally emerged. (B) As for apoptosis, in the early stage, the nuclear condensation starts with cell shrinkage. During later stages, nucleus
breaks up and the plasma membrane bubbles with no rupture, naturally associating with no inflammation. Finally, it forms apoptotic bodies. (C) Being different from
apoptosis, after cell swelling and large bubbling, pyroptosis has plasma membrane rupture in the final stage. (D) When it comes to necroptosis, the appearance of
cell swelling often followed by organelles dilation, and the nucleus disintegrates late. In some cases, chromatin condensation also occurs. Finally, with the rupture of
plasma, a massive inflammation in the tissue is triggered. (E) The morphological characteristics of ferroptosis, however, mainly reflects on the changes of
mitochondria. Compared with organelles swelling in necroptosis, here in the first stage, the mitochondria become smaller and membrane densities are elevated,
followed by mitochondria crista reduction and plasma membrane rupture.
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cells are consumed via phagocytic systems in vivo, or eventually
lose the integrity of their plasma membrane and undergo
secondary necrosis, which is characterized by plasma membrane
permeabilization and osmotic swelling without phagocytosis.
As for necroptosis, cellular swelling and a balloon-like-structure
formation (“oncosis”) are regarded as the major characteristic
changes with inflammation.

However, it can also be challenging to distinguish apoptosis
from necroptosis because undergoing secondary necrosis might
occur in apoptotic cells where Annexin V-binding can enter cells
through a broken membrane. To avoid this case, the combination
of Annexin V and noncell permeable DNA stains (e.g., PI or SG)
is adopted (Wallberg et al., 2016b; Jarvis et al., 2018).

Time-lapse microscopic assays can also be used to show
some of the specific molecular markers, such as DNA, RNA
or proteins involved in their molecular pathways and functions
through using fluorescent molecular probes, such as monitoring
autophagy via time-lapse microscopy to track Parkin (a protein
implicated in mitophagy) fused with fluorescent enhanced yellow
fluorescent protein (EYFP) (Di Sante et al., 2016). This method
has advantages for collecting information at the single-cell level.
However, assays based on time-lapse microscopy are susceptible
to some factors (e.g., vibrations, the fluctuations of temperature
and humidity, pH and cell motility, etc.) that may interfere with
the acquisition of high-quality images (Di Sante et al., 2016).

EM Analysis
Electron microscopy analysis has always supplied us with a great
deal of data in cell death research, in which TEM benefits from its
much higher resolving power (0.1-0.4 nm) and scanning electron
microscope (SEM) also offers high resolving power (about 1 nm).
TEM makes it possible to better understand the relationships
between a biological structure and its function at the cellular,
subcellular, and even molecular levels through two- and three-
dimensional images of the cells to distinguish different forms
of RCDs, which is considered as a “golden standard” (Ericsson,
1969; Krysko et al., 2008). SEM, a kind of observation at the
level between TEM and the light microscope, could emerge as
a good method to provide a delicate imaging stereo effect of
the surface of the cells with a magnification of 300,000 times or
more. SEM is utilized for topographic imaging of bulk samples
suited for low energy EM, whose maximum electron energies
are at 30 keV (Sun et al., 2018). In addition, SEM combined
with other analytical instruments can be used to observe the
microscopic morphology and to carry out a composition analysis
of the material microregion. However, many researchers consider
EM analysis to be time-consuming and expensive.

Meanwhile, the preliminary substrate preparation of dying
cells for EM could be difficult during the intermediate process
because it may cause damage to the original morphology of the
RCDs, especially when they detach the dying cells from their
substrate, typically resulting in spinning down these floating cells.
Recently, EM has been optimized continuously; for example,
using macrophages or cytospinning to capture the cells prevents
interference with their cell morphology (Vanden Berghe et al.,
2013; Crowley et al., 2016d).

SEM/STEM/TED imaging can capture a wealth of information
and focused ion beam scanning electron microscopy (FIB/SEM)
(Knott et al., 2011), one of the three-dimensional EMs, is being
increasingly adopted in life sciences. It is worth noting that
the discovery of cryo-electron microscopy (cryo-EM), leading
to a detailed or realistic display of ultrastructure in cells, may
provide more convincing evidence in RCDs (Li et al., 2018;
Fitzpatrick and Saibil, 2019).

Determining Cell Morphology in Apoptosis
As for apoptosis, people have marked it by the typical
morphological changes: cell shrinkage, DNA fragmentation
(karyorrhexis), chromatin changes during condensation and
margination, a ruffling plasma membrane, and breaking up of
cell fragments into apoptotic bodies (a process called “budding”),
which are eventually degraded within phagolysosomes.
Previously, light microscopy has identified the morphological
changes occurring during apoptosis with cellular shrinking
and pyknosis (Kerr et al., 1972). After hematoxylin and eosin
stain (HE staining), the histologic characteristics of apoptosis
are defined as confirming a round or oval mass, a red-stained
eosinophilic cytoplasm, and purple-dense nuclear chromatin
fragments, usually occurring in small clusters of cells or
individual cells without inflammation. Besides, the more detailed
morphological changes have been confirmed by EM, which
could better present the subcellular changes, such as the most
characteristic feature of apoptosis, pyknosis in which uniformly
dense masses of chromatin are formed and distributed against
the nuclear envelope after chromatin condensation (Hacker,
2000; Zucker et al., 2000). Additionally, the loss of cell-to-cell
contacts and microvilli are visible in the images (Kerr et al., 1994;
Cummings et al., 1997).

Determining Cell Morphology in Necroptosis
Compared to apoptosis, necrosis emerges as a general swollen
cell (oncosis) and the swelling of the cytoplasmic organelles (e.g.,
swollen mitochondria), poorly demarcated clumps of chromatin,
a rapid loss of plasma membrane integrity, and the release of
cytoplasmic contents, which is uncontrolled and passive, and
eventually, the changes of nuclear morphology are described
as pyknosis, karyorhexis, and karyolysis. In detail, the major
morphological changes during necrosis could be summarized as:
(1) nucleus: pyknosis for the nuclear dehydration, karyorhexis
(nuclear fragmentation), karyolysis (without the visible outlines
of the nuclei); (2) cytoplasm: cytoplasmic vacuoles forming;
endoplasmic reticulum swelling; cytoplasmic blebs forming;
mitochondria condensing, swelling or breaking up; ribosomes
disaggregating and rupturing; (3) others: cellular swelling;
membranes disrupting; eventually; an inflammatory response
occurring (Trump et al., 1997). Necrosis is another form of
cell death that has some similar aspects to apoptosis, due
to several processes like the morphologies and mechanisms
shared between them (Kerr et al., 1972; Zeiss, 2003). The
characteristic morphology in necrotic cells, such as cytoplasmic
swelling, is due to the membrane permeabilization being an early
event. Losing membrane permeability in apoptotic cells occurs
relatively late.
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Determining Cell Morphology in Autophagy
Acting as a non-invasive response to cell death with the formation
of large-scale autophagic cavitation, autophagy contributes to
maintaining the balance of the cellular structure, metabolism,
and biological function for homeostasis (Deter and De Duve,
1967; Mizushima and Komatsu, 2011). There are three types
of autophagy according to the pathways in which cargoes or
phagocytes are transported into lysosomes: microautophagy,
macroautophagy, and chaperone-mediated autophagy (CMA)
(Rogoza et al., 2004). A comparison of these three forms of
autophagy is shown in Table 2. Remarkably, the application
of TEM has promoted the progression of autophagy from the
phagolysosome to related protein imaging using the cryo-EM
structure (Ohsumi, 2014; Hurley and Nogales, 2016).

Macroautophagy
Among the three types of autophagy, macroautophagy has
been studied extensively and clearly. It is induced under
stress stimulus, resulting in maintaining cell growth through
specifically degrading damaged or superfluous organelles or
leading to various human pathologies, including lung, heart,
neuron, and liver disease, cancer, myopathies, aging and so
on, after excessive self-degradation (Yorimitsu and Klionsky,
2005; Parzych and Klionsky, 2014; Pastuhov et al., 2016).
Morphologically, the autophagosome is one of the distinct
features forming by expansion as well as de novo rather
than membrane budding from an already contained cargo (du
Toit et al., 2018). The membrane expands and bends, and
then a spherical autophagosome is generated. Using electron
microscopic examination of the obverse, it has been found that
the diameter of autophagosomes ranges from 0.5 to 1.5 µm
in mammals and ∼0.4 to 0.9 µm in yeast (Takeshige et al.,
1992; Gu et al., 2020). Besides autophagosomes, autophagy
precursors (which include the cytoplasm, organelles, or bacteria)
and autophagolysosomes (autophagosomes that bind to the
lysosome) are also vital subcellular structures.

Microautophagy
For microautophagy, most of the research has focused on
yeast and describes its transport pathway as cytoplasmic
contents are transported into the lysosome within the lysosomal
membrane invagination (Marzella et al., 1981). De Duve
et al. first observed microbodies in autophagy using EM
(Baudhuin, 1966). Also, Sakai et al. observed the process
of microautophagy using vacuoles and microbodies of yeast
with fluorescent double-labeling (Itoh et al., 1998). Then,
nucleus microautophagy in yeast was reported by Roberts et al.
(Fernandez et al., 2003). Early on, using EM, people noticed
the free-floating vesicles within the lysosome through englobing
Percoll particles by way of cup-like invaginations of the lysosomal
membrane (Marzella et al., 1980). Recently, nucleophagy,
which targets autophagic degradation as nuclear material,
has helped in elucidating the endosomal microautophagy
transports detected by indirect immunofluorescence techniques
(Otto and Thumm, 2020). Microautophagy is so small that
TEM is needed to see it clearly. Due to the limitations of
technology, we know little about microautophagy, including
the inducing factors, the mechanism, and its role in the
disease processes (Mijaljica et al., 2011; Sato et al., 2019;
De Falco et al., 2020).

Chaperone-mediated autophagy
Compared with microautophagy and macroautophagy, one of the
nonspecific pathways to engulf the cytoplasm, CMA, is highly
specific and refers to a specific substrate (a compound formed
by a pentapeptide sequence that is biochemically related to
KFERQ, namely Lys-Phe-Glu-Arg-Gln and HSPA8/HSC7, the
heat shock 70 kDa protein 8) and specific receptor LAMP2A,
the lysosomal-associated membrane protein 2A (Chiang et al.,
1989; Dice, 1990). The morphological changes of CMA are not
obvious, so immunofluorescence analyses, western blots, and
other biochemical methods play crucial roles in CMA assays
(Wu et al., 2019).

TABLE 2 | Comparison of distinguishing criteria, morphological features and monitoring methods of three kinds of autophagy.

Items Definition Morphological features Detecting methods References

Microautophagy Cytoplasmic contents are
transported to the lysosome
within lysosomal membrane
invagination or deformation.

Lysosomal membrane
invagination or
deformation

Transmission electron microscopy Mijaljica et al., 2011;
Parzych and Klionsky, 2014

Macroautophagy Cargo is transported to the
lysosome by de novo
formation of
autophagosomes.

Membrane expansion
and bend; phagophore
nucleation and
elongation;
autophagosome
formation

Electron microscopy; immune colloidal gold
technique; GFP-LC3 or mRFP-GFP-LC3
(Immunofluorescence); LC3-II / LC3-I, Beclin,
ATG5, ATG7, p62 and phosphorylation status
of ULK (western blot); radiolabeling; LDH
sequestration; MDC staining

Parzych and Klionsky,
2014; Seglen et al., 2015;
Murugan and Amaravadi,
2016; Orhon and Reggiori,
2017; du Toit et al., 2018;
Yang F. et al., 2018

CMA Unfolded proteins containing
the KFERQ motif are
transported directly across
the lysosomal membrane
through the action of
cytosolic chaperones.

Multimerization of
LAMP2A binding to the
lumenal side of the
lysosomal membrane by
HSP90

Hsc70 with lysosomal markers
(Immunofluorescence); LAMP2A (western blot);
radiolabeling

Cuervo, 2010; Parzych and
Klionsky, 2014; Patel and
Cuervo, 2015; Arias, 2017;
Wu et al., 2019

Abbreviations: LAMP2A: lysosome-associated membrane protein 2A, HSP90: Heat Shock Protein 90, ATG5: Autophagy-Related Gene 5, ATG7: Autophagy-Related
Gene 7, Hsc70: heatshockprotein.
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Non-canonical autophagy
Besides these classical autophagy pathways, the recent
identification of non-canonical autophagy pathways, such
as LC3-associated phagocytosis (LAP) and LC3-associated
endocytosis are showing impact on cell viability (Martinez
et al., 2016). This non-canonical autophagic process relies on
Rubicon (rubicon autophagy regulator [RUBCN]), contributes
to immunosuppression (Sil et al., 2020). And these specific
pathways have been reported to underly the pathogenesis of
various diseases. For example, LAP is closely related to systemic
lupus erythematosus (SLE) (Bandyopadhyay and Overholtzer,
2016; Martinez et al., 2016), tumor (Cunha et al., 2018). And
LC3-associated endocytosis has been shown to be protective
against neuronal cell death in Alzheimer’s Disease (Heckmann
et al., 2020a,b). Similar to canonical autophagy, LAP require
ATG-7/-3/-5/-12/-16L for LC3 lipidation (Martinez et al., 2011,
2015). But unlike autophagy, LAP is a process requiring NADPH
oxidase-2 (NOX2)5, and Rubicon5 (Martinez et al., 2015), and
LAP is independent of the pre-initiation complex containing
ULK1 and FIP200 and proceeds with a distinct Beclin 1-VPS34
complex lacking ATG14 (Florey et al., 2011; Martinez et al., 2011;
Kim et al., 2013).

All in all, these three canonical autophagy pathways could
deliver the cargo to the lysosome to degrade and recycle while
each of them features with different morphology. The formation
of autophagosome is regarded as characteristic changes during
macroautophagy, which is formed by portions of the cytosol
and intact organelles (e.g., mitochondria) sequestered into a
double-membrane vesicle (Mijaljica et al., 2011). By contrast,
microautophagy involves the direct engulfment of cytoplasm at
the lysosome surface requiring the EM for detecting, whereas
CMA refers to a process delivering soluble and unfolded
proteins directly across the limiting membrane of the lysosome
(Massey et al., 2004).

Determining Cell Morphology in Ferroptosis
As an oxidative, iron-dependent form of RCD, ferroptosis is
induced through an excess accumulation of reactive oxygen
species (ROS) and lipid peroxidation products (Dixon et al., 2012;
Chen et al., 2020). When undergoing ferroptosis, dysmorphic
small mitochondria or mitochondria shrinkage with enlarged
and reduced crista, and a condensed and ruptured membrane
can be detected morphologically using an electron microscope
(Dixon et al., 2012; Friedmann Angeli et al., 2014; Doll et al.,
2017). Although relevant research in ferroptosis has made
rapid progress, using mitochondrial morphology to distinguish
ferroptosis is still highly debatable since there is a lack of studies
on the correlation between mitochondria and ferroptosis (Dixon
et al., 2012; Gaschler et al., 2018).

Determining Cell Morphology in Pyroptosis
Pyroptosis refers to a process in which the pores on plasma
membranes are gradually formed, inflammatory cytokines
are released, and the lysed cells are induced through the
canonical caspase-1-mediated monocyte death or the non-
canonical caspase-4/5/11 inflammasome pathways (He et al.,
2019; Wang et al., 2019e). The morphological changes during

pyroptosis include cell swelling, which is induced through
entering water molecules, the formation of 10-15 nm pores in the
plasma membrane, and the eventual release of pro-inflammatory
cytokines (interleukin-1β (IL-1β) and interleukin-18 (IL-18)),
distinct from apoptosis without inflammatory release (Lu et al.,
2020). Activating caspases, an N-terminal cleavage product
(GSDMD-NT) would be generated, which triggers inflammatory
death (pyroptosis) and the release of inflammatory cytokines
such as IL-1β 1,2 (Shi et al., 2015). Notably, it is visible by EM
since GSDMD-NT oligomerizes in membranes to form pores to
trigger pyroptosis (Liu et al., 2016). These morphological changes
have been observed in smooth muscle cells (SMC), endothelial
cells (EC), macrophages, phagocytes, astrocytes and neurons, and
additional research on its mechanism and technical studies are
needed in the future (Liu et al., 2018, 2020).

Determining Cell Morphology in NETosis
NETosis, one of the RCD types which was first described in
2004, is regarded as a program for formation of neutrophil
extracellular traps (NETs) initiating a fight against pathogens and
linking to various diseases (Brinkmann et al., 2004). According
to the viability of cells, NETosis could be divided into two
different forms, namely classical or suicidal NETosis resulting in
the cell death, and vital NETosis retaining viability. The typical
morphological changes of classical NETosis are described as
chromatin decondensation associated with histone modification,
and the release of granule components into the cytosol, as well
as many characteristic features which are the same as other
forms of RCDs (such as the changes in the nucleus and in
the cytoplasm during apoptosis, necroptosis, pyroptosis, and
autophagy (Vorobjeva and Chernyak, 2020). As for vital NETosis,
it refers to a massive and very fast release of mitochondrial DNA
(mtDNA) without loss of viability, when neutrophils retain their
viability and natural effector functions (Yousefi et al., 2008, 2009).

Flow Cytometry Assay
Flow cytometry is used as a general measure for rapid analysis of
a large number of cells individually, which detects up to 10,000
cells per second. Based on the cellular characteristics, including
the size, granularity and morphology of the cells, the integrity
or potential of the cell membrane, the intracellular pH, and the
levels of cellular contents such as surface receptors, proteins,
the ions (e.g., calcium), DNA, and RNA, flow cytometry could
provide data to distinguish RCDs through the use of fluorescence,
absorbance measurements, and light-scattering.

Currently, flow cytometry is used not only in cell counting but
also in image analysis, namely multispectral imaging cytometry
for multiparameter studies on cell demise (Lelliott et al., 2019;
Cerrato et al., 2020). Morphology-based flow cytometry assays
are used to identify RCDs, such as the percentage of apoptotic
cells that are indicated based on the cells exhibiting nuclear
fragmentation as well as a low nuclear area and a bright
detail intensity. Various staining approaches such as 1 µM
camptothecin (CPT; Sigma, a DNA topoisomerase I inhibitor)
for 6 hours, fixed and stained with PI, and collected on the
ImageStream (George et al., 2004), can be applied. Moreover,
cells undergoing autophagy can be identified through visualizing
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fluorescently labeled lysosomal markers, and LC3 puncta labeled
and/or the co-localization of fluorescently labeled LC3 using
flow cytometry provide benefit in an objective, quantitative, and
statistically robust manner (Pugsley, 2017). Also, the loss of
plasma membrane integrity using cell-impermeant dyes could be
assessed through a morphology-based flow cytometry assay to
detect cell viability (Vanden Berghe et al., 2013). Furthermore,
flow cytometry is often used to monitor RCDs with biomarkers
and we will discuss this below.

Confocal Laser Scanning Microscopy
Detection work needs a point scanning confocal microscope
with good optical efficiency. Importantly, a good lens with a
long working distance and high NA determines the rendering
effect. The Leica TCS4D or SP1 with a Leica inverted IRMB
microscope and an Argon-Krypton laser (Omnichrome, Chino,
CA, United States) emitting 3 wavelengths (488, 568, and 647 nm)
have been used in confocal microscopy (Zucker and Rogers,
2019). A 5 × or 10 × objective with a high numerical
aperture (NA) and the lenses including Zeiss 5 × fluor (NA
0.25), Zeiss 10 × fluor (NA 0.5), Leica 10 × Plan APO
(NA 0.5), and Leica multi-immersion 10 × (NA 0.4), also a
Zeiss lens fitting on a Leica microscope whose magnification
could be increased by 20%, are available (Zubairova et al., 2019;
Zucker and Rogers, 2019). Confocal microscopy could provide a
visible three-dimensional structure as a good indicator for RCDs
visualization, and it is also flexible and fast except for some
cumbersome processes, namely staining, fixation, dehydration,
and clearing (Zucker and Rogers, 2019). For example, confocal
microscopy is used to provide insights into the dynamics of cell
death with the fluorescent dyes fluorescein diacetate (FDA) and
PI (Jones et al., 2016). Also, the research into mitophagy using
confocal microscopy and the subcellular localization of ceramide
in mitochondria were visualized by colocalization of ceramides
and mitochondria (Sentelle et al., 2012).

FM
Fluorescence microscopy is often utilized to monitor RCDs
via not only detecting specific markers, but also for evaluating
cell nucleus damage and DNA, leading to direct visualization
of pathophysiological processes with sub-cellular resolution.
On this basis, FM is constantly being improved for various
requirements in detection, such as fluorescence lifetime imaging
microscopy (FLIM) being used to monitor caspase-3 activity
during apoptosis (Buschhaus et al., 2017, 2018). Moreover,
autolysosomes for autophagy detection can be visible via the
colocalization of LC3 and lysosomal markers by FM (Yoshii and
Mizushima, 2017; Bhutia et al., 2019). Caspase-1 activity assays
for pyroptosis detection could also be adapted to FM, such as with
a Nikon ECLIPSE TE2000-U FM in Tokyo, Japan (Liao Y. et al.,
2019). The changes of the nuclei could therefore be identified
through FM to distinguish apoptotic cells from healthy cells or
necrotic cells for staining with DAPI or other dyes (Crowley et al.,
2016). DAPI or Hoechst 33258, 33342, and 34580 are often used
to monitor DNA fragmentation or damaged cell nuclei through
binding to A-T base pairs lining the minor groove of double-
stranded DNA (Eriksson et al., 1993; Martin et al., 2005). FM has

tended to be artificially intelligent, and its probes have become
smaller and more prominent with more precise targeting options.

Intravital Multiphoton Microscopy
People also pay more attention to RCDs monitoring in vivo.
Intravital multiphoton microscopy has been developed in the cell
death process for monitoring at the cell level in tissues in vivo
(Mesa et al., 2015). It is an objective and real-time technique for
capturing morphological changes during RCDs (e.g., apoptosis
characteristics with membrane blebbing and ApoBD formation)
in vivo with a fluorescence resonance energy transfer (FRET)-
based caspase 3 activation reporter (Garrod et al., 2012;
Mayer et al., 2017). For staining, poly ((3-((4-methylthiophen-
3-yl)oxy)propyl) triphenylphosphonium chloride) (PMTPP), one
of the fluorescent sensors or stains used for monitoring ATP
levels in cell membranes to monitor cell death processed in vivo
through FM, is available (Huang et al., 2017). To make the
detection in RCDs more realistic, standard, noninvasive, clinical,
magnetic resonance imaging and spectroscopy (MRI/MRS),
computed tomography (CT), positron emission tomography
(PET), and radionuclide imaging methods are also used for
monitoring the biochemical and physiological processes in
apoptosis, necrosis, autophagy, and ferroptosis (Brauer, 2003;
Lee et al., 2019).

MONITORING AND MEASURING RCDs
BY BIOMARKERS

To make the identification of RCDs more objective and
quantitative, researchers always combine morphological changes
and biomarkers of RCDs. RCDs have different pathways involved
with specific proteins; for example, caspase-3 is an important
effector of apoptosis, and once activated, it leads to apoptosis (Li
X. et al., 2019). Although detection of biomarkers makes RCDs
identification more accurate, it can be challenging to distinguish
different forms of RCDs clearly for the discovery of new RCDs
mechanisms and interlaced protein pathways.

Depending on where the content exists and how the content
is extracted, the molecular biomarkers used in RCDs detection
are divided into three types: cell surface markers acting at the
plasma membrane (e.g., PS (PtdSer), pannexin 1 (PANX1)),
intracellular markers working inside the cells (e.g., caspase
activity, mitochondrial potential), and soluble extracellular
markers as well as released molecules with a potential role as
circulating biomarkers of cell death (e.g., caspase-3, cytokeratin
18 (CK18), HMGB1 and the enzyme LDH) (Krysko et al., 2008;
Hashimoto et al., 2016; Shukuya et al., 2020; Wimmer et al.,
2020). The conventional biomarkers of RCDs are shown in
Table 3. These vital biomarkers are shown in a schematic diagram
(Figure 3), which depicts the cross-regulation among different
types of cell death.

Biomarker Detection Technology
Western Blot
The main measures for biomarker detection can be considered
at three levels, namely DNA, RNA, and proteins. As for
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TABLE 3 | Conventional biomarkers for RCDs.

Species of

RCDs

Biomarker Research Model Death induction Detecting methods Expected results Advantages Disadvantages References

Necrosis Phosphorylation
Status of RIPK3,
RIPK1 and MLKL

Mice of
oligodendrocyte
degeneration

N/A Immunohistochemistry Upregulated It is ideal for detecting
necrosis in vivo

Most of the antibodies are
only suitable for
immunoblotting

He et al., 2016

LDH Cortical neurons 0.25, 0.5, 1, 2,
3 mM METH and
39◦C

Cytotoxicity assay Upregulated N/A It might be influenced by
the effect of other species
of RCDs

Guo et al., 2020

Annexin V (FITC) HT1080indRIPK3 cells
and L929 cells

10 ng/mL TNF, 500
nM SM

Fluorescence-activated cell
sorting

Annexin VFITC, DAPI
Upregulated and
TMRM Downregulated

It is a fast and quantitative
method to record the number
of dying cells

It should be combined with
a time-course study, and/or
the use of specific inhibitors

Wallberg et al.,
2016a

Apoptosis Annexin V (FITC) HT1080indRIPK3 cells
and L929 cells

10 ng/mL TNF, 500
nM SM

Fluorescence-activated cell
sorting

Annexin VFITC

Upregulated and
TMRM, DAPI
Downregulated

It is a fast and quantitative
method to record the number
of dying cells

It should be combined with
a time-course study, and/or
the use of specific inhibitors

Wallberg et al.,
2016a

Caspase3 Platelet N/A Flow cytometric analysis
and immunofluorescence

Upregulated It is a specific method for the
active form of caspase-3

N/A Gyulkhandanyan
et al., 2012

PDK1, P-AKT1,
BAD, Bcl-2, Bax

C2C12 cells 0.05, 0.5, 1, 2.5, 5-
and 10- mM
Fluoride

Real-time PCR and western
blot

PDK1, P-AKT1
Downregulated and
BAD, Bcl-2, Bax
Upregulated

N/A N/A Zhou et al., 2018

DNA
fragmentation

NIH-3T3 cell line 500 µM Hydrogen
peroxide

DNA ladder assay DNA ladder formed It is an easily available
method and not limited to
cells that breed in vitro

It is a time-consuming
procedure

Rahbar Saadat
et al., 2015

Autophagy GFP-LC3 or
mRFP-GFP-LC3
Probe

Zebrafish Rapamycin or
Calpain Inhibitors

Immunofluorescence Being yellow under
neutral pH conditions,
and being red under
acidic pH conditions

It allows to examining
autophagy in vivo in
vertebrates

It might be influenced by
the impairment of
autolysosome formation.

Lopez et al., 2018

GFP-LC3-RFP-
LC31G
probe

GFP-LC3-RFP-
LC31G
mice

Starvation Immunofluorescence GFP/RFP ratio
Downregulated

It can monitor both basal and
induced autophagy
accurately

It is limited by the level of
GFP-LC3-RFP-LC31G
currently.

Yoshii and
Mizushima, 2017

LC3-II/p62 Exosome in advanced
soild tumor
patients’plasma

CQ or HCQ Western blot LC3-II/ p62 ratio
Upregulated

It can monitor the dynamic
changes on autophagic
activity

It might be influenced by
the effect of apoptosis and
necrocytosis

Abdel Karim
et al., 2019

Autophagosome HCT-116 colon cells 100 nM Rapamycin
or overexpression
of Beclin1

Immunofluorescence (MDC
Staining)

Fluorescence emitted MDC staining is readily to
operate and directly visualize
autophagosome formation

MDC staining is
non-specific

Yang F. et al.,
2018

Pyroptosis IL-1β, IL-18 Wistar rats and rat
chondrocytes

40 mg/mL MIA in
0.9% NaCl solution,
50 µL

Real-time PCR, western
blot and enzyme-linked
immunosorbent assay

Upregulated This assay is highly sensitive Enzyme activity is easily
affected and this assay
takes many complex
measurements

Zu et al., 2019

NLRP3,
caspase-1

Wistar rats and rat
chondrocytes

40 mg/mL MIA in
0.9% NaCl solution,
50 µL

Real-time PCR, western
blot, flow cytometry,
immunofluorescence and
immunohistochemistry

Upregulated This assay is highly sensitive These multiple steps are
time-consuming

Zu et al., 2019

Ferroptosis ACSL4 HepG2, HL60, LNCaP,
and K562 cells

2.5, 5, 10,20 µM
Erastin

Western blot Upregulated N/A N/A Yuan et al., 2016
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FIGURE 3 | A schematic diagram showing biomarkers involved in RCDs within depicting the cross-regulations among different pathways. The solid arrows indicate
activating interactions while the T-shaped lines indicate inhibitory interactions.

gene/mRNA/cfDNA assays, quantitative PCR (qPCR) is a useful
and convenient technique. For protein detection, western blots
are regarded as a classic technique. The western blot allows for
specific identification and characterization of proteins, able to
detect specific proteins involved in RCDs to distinguish RCDs.
The process is as follows: the proteins are separated through
sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE), then the polyvinylidene fluoride (PVDF) membrane-
transferred proteins are incubated with specific antibodies,
and the protein of interest is detected by using a fluorescent
agent. Remarkably, some of the modifications of proteins
related to RCDs could also be detected through western
blots, such as phosphorylation, acetylation, ubiquitin, etc. For
example, the phosphorylation of RIPK1 could be analyzed
via western blotting with special antibodies for research
into the regulation of RIPK1 activation by TAK1-mediated
phosphorylation, which modulates apoptosis and necroptosis
(Geng et al., 2017).

Flow Cytometry
Requiring a high specificity, flow cytometry analysis is utilized to
detect the specified cells through an assay of specific markers,
volume, form, or any other signal characteristics (Bandura
et al., 2009). For detection of apoptosis, PI is excited with a
xenon or mercury arc lamp or with the 488 lines of an argon-
ion laser and can be detected in the particular fluorescence
channel (FL2 or FL3) of a flow fluorocytometer (FACSCalibur
flow fluorocytometer, Becton Dickinson) (Bergamaschi et al.,
2019). Traditionally, Annexin A5 (A5, PtdSer binding protein)

combined with either PI or 7-aminoactinomycin D (7-AAD,
membrane impermeable DNA binding dyes) stains are used in
flow cytometry to distinguish apoptosis from necrosis (Koopman
et al., 1994; Vermes et al., 1995; Broaddus et al., 1996). For
the detection of ferroptosis, flow cytometry-based analysis is
easy to carry out and is highly sensitive to measure lipid
peroxide levels in live cells with the BODIPYTM 581/591 C11
dye (Martinez et al., 2020). This technique is not only used
for the separation of positive cells and the capture of special
free contents such as vesicles, but also for identifying molecular
biomarkers. Recently, flow cytometry assays have been improved
to detect and quantify the various forms of RCDs, such as a three-
color flow cytometry analysis that has been reported to detect
necroptosis and apoptosis in the early and late-stage, and receptor
interaction protein 1 (RIP1)-dependent apoptosis simultaneously
in a single cell through targeting proteins like caspase-3 and
receptor interaction protein 3 (RIP3), and detecting cell viability
(Bergamaschi et al., 2019).

Enzyme-Linked Immunosorbent Assay (ELISA)
In the case of biomarkers for RCDs, ELISA is a sensitive, cost-
effective and practical option for detection and quantitative or
qualitative analysis based on the production of monoclonal or
polyclonal antigen-specific antibodies and radioimmunoassay
techniques. The ELISA technique is often used to detect
RCD-related proteins such as caspase-3/7 up-regulation during
apoptosis or cell-free DNA and nucleosomes (Roth et al., 2011),
but there are still some constraints that should be of concern,
such as the effect of temperature and time on sample storage
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since samples stored at −70◦C lead to an annual loss of 7%
(Holdenrieder et al., 2010).

Cryo-EM
Recently, to present the microenvironment of a protein as much
as possible, cryo-EM has been found to be a powerful tool and
has been recently used in the research into structural molecular
and cellular biology in three-dimensional structures, which was
selected by Nature Methods as the Method of the Year 2015,
and the Nobel Prize in Chemistry 2017 (Bendory et al., 2020;
Garcia-Nafria and Tate, 2020; Guerrero-Ferreira et al., 2020).
It provides benefits for a better understanding of how proteins
and/or other biological macromolecules are involved in their
complex network (Bendory et al., 2020). Cryo-EM is regarded
as a suitable method for identifying the structure of isolated
biomolecular complexes ranging from a protein sized several
tens kilo-Daltons to a virus particle-sized many mega-Daltons
and to a whole cell with sub-nanometer resolution (Murata
and Wolf, 2018). As for the sample preparations, cryo-EM
requires a much smaller amount of sample with tomographic
slices of 10-nm thickness; it accepts large image datasets (such
as single protein molecules, large protein complexes, thin-
protein crystals, virus particles, helical fiber complexes, bacteria,
cells, and even entire tissue sections); and near-atomic 3D
maps of isolated proteins could be provided (Danev et al.,
2019). Kate et al. have shown the reconstructed cryo-tomogram
of apoptotic herniating mitochondria to research the classical
intrinsic apoptosis pathway by using cryo-EM (McArthur et al.,
2018). Meanwhile, cryo-EM has also been used to reveal the
morphology of the pores and determine the localization of
Bax labeled with nanogold, which allows for understanding the
mechanisms of pore formation induced by Bax in apoptosis,
necroptosis or ferroptosis (Kuwana, 2019). The proteins of RCD,
including their connected macromolecules, microenvironment
and even the related signal pathways, can be visualized by
using cryo-EM. For example, the filament structure of caspase-8
tandem death effector domain was determined through cryo-EM
to achieve a presentation of extensive assembly interfaces and
to further confirm with structure-based mutagenesis its filament
formation in vitro, as well as Fas-induced apoptosis and ASC-
mediated caspase-8 recruitment in cells (Fu et al., 2016).

Also, researchers adapted some targeted approaches for the
special marker assays, such as the terminal -deoxynucleotidyl
transferase mediated nick end labeling (TUNEL) assay that
is designed to detect DNA degradation in the late stages
of apoptosis. Recently, circulating molecules (e.g., non-coding
RNAs, released proteins, heteromeric complexes, enzymatic
activity, subcellular vesicles, etc.) released from special tissues
were found to be detectable in the cerebrospinal fluid, plasma,
serum, and any other body fluids, which suggests noninvasive
clinical applications.

Biomarkers for Detecting RCDs
Cell Surface Markers
PS (PtdSer) exposure vs. membrane permeability
PS (PtdSer), as a vital content in eukaryotic membranes, is the
major anionic phospholipid accounting for 2–10%. PtdSer is

generally not externally exposed in normal cells and the exposure
of PtdSer could be a hallmark for stressed and dying cells,
and a key signal for the removal of apoptotic cells through
neighboring phagocytic cells (e.g., macrophages or neutrophils).
That is, PtdSer exposure not only occurs in apoptosis but also
in other types of cell death, such as necroptosis and autophagy
(Galluzzi et al., 2012). It is an interconnected process between
the exposing PtdSer and the loss of plasma membrane integrity,
whose detections are discussed above. As for PtdSer, Annexin
V, one of the imaging probes targeting DNA, is widely used to
detect apoptosis when it comes to radionuclide imaging. It is
worth mentioning that Annexin V, a nonglycosylated membrane
protein probe, has been used as one of the few cell death
imaging agents reaching phase II/III clinical trials (Nguyen et al.,
2012). Synaptotagmin-I (SynI), synaptic vesicle-related protein,
provides another point for probe design by binding to the
negatively charged phospholipids PS and phosphatidylinositol in
the presence of Ca2+ ions (Alam et al., 2010).

Pannexin 1 (PANX1)
The pannexin (Panx) family, consisting of 3 members (Panx1
as the most extensively studied one, Panx2 and Panx3), has
been reported as playing a vital role in extracellular ATP
release (Baranova et al., 2004). In apoptosis, Panx1 being
activated through cleavage mediated by caspase at the C terminus
releases ATP as a “find me” signal, which is necessary for
macrophage recruitment (Chekeni et al., 2010). Meanwhile, the
activation of Panx1 channels contributes to the increase in
plasma membrane permeability and the formation of Ca2+-
permeable pores at the endoplasmic reticulum, leading to Ca2+

leakage and favoring mitochondrial Ca2+ uptake, which conveys
cytochrome c to the cytosol to induce apoptosis (Chekeni
et al., 2010). During research, Panx1 inhibitor carbenoxolone
(CBX), pharmacological inhibition or small interfering RNA
are used for indirectly inspecting the results in vivo and
in vitro, suggesting PANX1 as a plasma membrane channel
that could mediate the regulated release of find-me signals
and selective plasma membrane permeability during apoptosis
(Chekeni et al., 2010). The quantitative analysis of Panx1 could
be detected through qPCR as mRNA levels for PANX1, and
IHC or western blot for protein expression, whose function
is analyzed using patch-clamp methods (Huang et al., 2020).
In pyroptosis, caspases-3 and-7 and caspase-11 could not only
contribute to cleaving the CT moiety of Panx1, resulting in
channel opening and extracellular ATP release, but also induce
K+ efflux and the activation of NLRP3 inflammasomes to process
and subsequently release IL1β (Yang D. et al., 2015). Dahai
et al. identified that Pannexin-1 worked critically for ATP-
induced pyroptosis and was induced via cytosolic LPS using
immunoblotting analysis with or without CBX, probenecid and
trovafloxacin (one of the inhibitors of pannexin-1) (Yang D.
et al., 2015). As for autophagy, extracellular ATP and engulfing
dying cells in the Panx1-dependent pathway could not only
recruit immune cells, but was also involved in the pathway
of the inflammasome activation in macrophages in which a
short hairpin (sh)RNA method for silencing pannexin-1 channels
during co-incubation of macrophages with dying autophagic
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cells leads to the inhibition of ATP release and inflammasome
activation (Ayna et al., 2012). By means of inhibitor targeting
the key molecule involved in the pathway of RCDs, this
reverse validation is also widely accepted, such as CBX or
small interfering RNA being used to inhibit Panx1 for apoptosis
detection through qPCR and ELISA.

Intracellular Markers
Oligonucleosomal DNA fragmentation
DNA fragmentation to 180-200 bp and a weight more than
50 kbp is considered as a feature that clearly distinguishes
apoptosis (Walker et al., 1999). There are various biochemical
techniques to detect DNA ladders, including general-use agarose
gel electrophoresis or flow fluorocytometric, which benefits from
not being time-consuming and allowing for individual cell
analysis. According to different technical principles, there are
three main routine assays that were developed to detect DNA
fragmentation: DNA ladder assay, TUNEL assay, and comet
assay. Firstly, the DNA ladder assay: the DNA fragments (180–
200 bp) could be separated into the “DNA ladder” pattern on
agarose gel electrophoresis. The DNA ladder assay is used in
conjunction with commercial kits that lead to a faster, more
accurate, and sensitive assay, but at a greater cost (Micoud
et al., 2001). Another approach is the TUNEL assay, which
is utilized as a standard histochemical method for tissues,
adherent cell lines, and suspension cell lines (Cuello-Carrion
and Ciocca, 1999). Different from the DNA ladder assay,
the TUNEL assay is more sensitive for the use of specific
markers [e.g., bromodeoxyuridine labeling (BrdU), fluorescein
labeling, thymidine analogs, 5′-ethynyl2-deoxyuridine labeling
(EdU) (Wu et al., 2012), etc.] combined with other techniques,
such as FM, flow cytometry, or laser scanning cytometry
(Darzynkiewicz et al., 2008). As for the comet assay, also
named ‘single cell gel electrophoresis assay’ (SCGE), it has
been developed in genotoxicity testing with rapid detection
of DNA repair or damage in a single cell (Collins, 2004).
According to the quantification of the fluorescent signal in
the core (formed of macromolecules and unfragmented DNA)
and the tail (formed of predominantly single-stranded DNA)
as well as the DNA damage, comets are divided into five
groups: none or very low damage, low damage, medium damage,
long DNA migration, apoptotic or necrotic DNA migration
(Konca et al., 2003).

Although optimized approaches have been developed, various
limitations are still a challenge. For instance, DNA damage
not only appears in the apoptotic process but also exists in
necroptosis, leading to false-positive assay results. And if there
is no DNA ladder pattern, it cannot be proven that there is
no apoptosis occurring in the sample since it can result from
an event of the internucleosomal cleavage of DNA occurring
in late apoptosis (Cohen et al., 1992; Collins et al., 1995).
There are sometimes mushrooming cases where it is absent
with internucleosomal DNA degradation during apoptotic or
apoptotic-like cell death so that the intensity of DNA fragment
labeling in these assays will be inadequate to distinguish
apoptosis (Cohen et al., 1992; Catchpoole and Stewart, 1993;
Knapp et al., 1999).

Caspase activation
Caspases, as one of the cysteine aspartate-specific proteases,
play a vital role in the early stages of apoptosis, and are
regarded as general biomarkers to identify apoptosis. They are
synthesized as zymogen precursors that consist of an amino-
terminal domain of variable length followed by a p20 and a
p10 unit containing the residues. These amino-terminal regions
in initiator caspases obtain a caspase recruitment domain
(including CARD; caspases 1, 2, 4, 5, 9, 11) or death effector
domains (including DED; caspases 8, 10), which are essential
for substrate recognition and catalytic activity. After being
activated by proximity-induced auto-proteolysis or cleavage
via upstream proteases in an intracellular cascade, an active
heterotetramer is formed and induces the following pathway
(Lamkanfi et al., 2002; Ramirez and Salvesen, 2018). According
to the functions and domain architecture, the caspase-family
members are classified into two parts: inflammatory (including
caspases-1, -4, -5, and -11) or apoptotic (caspases-3, -6, -
7, and caspases-8, -9, -10) (Van Opdenbosch and Lamkanfi,
2019). The detection of caspase activation has been used to
identify the mitochondrial death pathway of apoptosis in cell-
free systems (Chandra and Tang, 2009). Besides caspases, other
proteins in response to apoptotic stimuli are also targeted as
an indicator, such as Bid, Fas-associated protein with death
domain (FADD), Bcl-2 and Bax, cytochrome c, high-mobility
group box 1 (HMGβ1), nuclear factor kappa B (NFκB), poly
[ADP-Ribose] polymerase 1 (PARP) and other apoptosis-related
proteins (Nicholson et al., 1995; Gyulkhandanyan et al., 2012;
Del Re et al., 2019; Yang L.L. et al., 2019; Zahran et al., 2020).
In pyroptosis, it has been reported that caspase-1 could mediate
the cleavage of the cytosolic protein gasdermin D (GSDMD),
resulting in promotion of the formation of GSDMD membrane
pores and cell lysis, which sheds much-needed light on the
necrotic execution mechanism of pyroptosis (de Vasconcelos
et al., 2019). As a caspase-independent pathway, necroptosis is
also regulated through the caspase regulators in which caspase 8
could work as a potent inhibitor of necroptosis mediated through
a heterotrimeric complex involving caspase 8, Fadd, and the long
isoform of caspase 8- and FADD-like apoptosis regulator (Dillon
et al., 2012). Caspase activity and these related proteins can be
detected through flow fluorocytometry, the cleavage of an in vivo
caspase substrate, FLIM and light microscopy, the Promega
Caspase-Glo 3/7 assay, and ELISA, and meanwhile q-PCR is used
at the level of the RNAs of the related proteins during cell death.
An example of caspase detection, the Promega Caspase-Glo 3/7
assay (Promega Corp., Madison, WI, United States), is utilized
for detection, adopting a proluminescent caspase substrate for
caspase detection (Mfotie Njoya et al., 2018).

Bid cleavage and the expression of the Bcl-2 protein family
The integrity of the major outer-membrane protein (MOMP) is
closely regulated by a group of proteins belonging to the Bcl-2
family and encoded by the BCL2 genes, which consists of pro-
apoptotic and anti-apoptotic members (e.g., Bcl-2 and Bcl-xL) or
other classes (e.g., BH3-only proteins with Bcl-2 homology (BH)
domains only) (Cheng et al., 2001; Wei et al., 2001; Chipuk et al.,
2010). Generally, it is believed that Bcl-2, Bax and Bak are of great
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importance in the intrinsic pathway of apoptosis and the Bcl-
2/Bax ratio or the level of Bcl-2 is considered as a hall marker for
apoptotic detection (Musumeci et al., 2015; Saraste and Pulkki,
2000). The extrinsic pathway of apoptosis, also known as the
death receptor pathway, is closely related to the intrinsic pathway
(mitochondrial pathway), since the truncated Bid (tBid) protein
translocates to the outer mitochondrial membrane (OMM) to
promote RCD by engaging Bax/Bak, resulting in MOMP and
subsequent caspase-9 activation (Wu X. et al., 2020). Similar
to second mitochondria-derived activator of caspases (SMAC)
mimetics, MOMP could trigger tumor necrosis factor (NF-κB-
dependent production) and coincidentally induce an alternative
form of cell death, namely necroptosis (Giampazolias et al., 2017).
Remarkably, the Bid is from both the cytosol and the organelle
fraction. Because the form of Bid induced by anti-Fas antibodies
stays in the cytosolic fraction briefly and only in small amounts,
most of the Bid has been associated with the organelle fraction
(Krysko et al., 2008). Both the Bid cleavage and the expression of
the Bcl-2 protein family are able to be detected through western
blot, ELISA, and flow cytometry.

Cytochrome c release
The release of cytochrome c from the mitochondria is a central
signal in the intrinsic pathway of apoptosis mediated through
OMM permeabilization. The release of cytochrome c activates
caspase-3 or -7 via the apoptosome, leading to the formation
of cyt-c, caspase-9 and Apaf-1, after which apoptosis is induced
(Green and Kroemer, 2005; Kroemer et al., 2007). The detection
of cytochrome c serves as a biomarker of apoptosis and is also
important to understand certain diseases at the cellular level. To
detect the level of cytochrome c, multiple existing techniques
are adopted, including western blot, ELISA, high-performance
liquid chromatography (HPLC), spectrophotometry and flow
cytometry. As a special detection method for cytochrome c,
fluorescent aptamer/carbon dot-based assays are regarded as a
simple, sensitive, rapid and selective label-free assay for apoptosis
detection employing the principle of a connection between
the surfaces of Carbon Dots (CDs) and nucleic acid aptamer
biomolecules. It is very sensitive and selective for apoptotic
detection with a 25.90 nM limit in detection and a linear
range of 40-240 nM (Ghayyem and Faridbod, 2018). Notably,
cytosolic fractions and the organelles should be separated using
a mild detergent, digitonin (concentration of 0.02%), in order
to leave the mitochondria and lysosomes intact to prevent
cytochrome c release from the mitochondria, resulting in artifacts
of organelle preparation (Krysko et al., 2008). Moreover, cyt c
could accumulate in the culture supernatant during secondary
necrosis of anti-Fas-stimulated cells, and cyt c could also
accumulate in the culture supernatant from the moment that the
plasma membrane loses its integrity in the late necrotic phase of
TNF-stimulated cells (Denecker et al., 2001).

The expression and phosphorylation status of RIPK1, RIPK3,
and MLKL
Various factors work as key participants in necroptosis,
namely in a caspase-independent pathway, such as RIP1,
RIP3, and MLKL (Galluzzi et al., 2014; Ding et al., 2015;

Wu X. et al., 2020). Combined with traditional methods of
detection of necrosis (morphological features, the intracellular-
component release, and biochemical features involved in
necrosis), specific biomarkers in necrosis allow for more accurate
detection of necrosis or even a measure with greater potential
for clinical implications (Vanden Berghe et al., 2013; Lu et al.,
2017). It has been reported that necrosis is sometimes related
to upregulated RIPK1, RIPK3, or MLKL mRNA or protein
expression levels in vivo in various diseases or physiological
conditions (Guo et al., 2020). Activated forms of RIP1,
RIP3, and MLKL have emerged as optimal biomarkers for
both distinguishing necrosis and the diagnosis or prognostic
assessment of diseases related to necrotic injury (He et al., 2016).
Some of the specific kinase inhibitors and inducers have been
widely used for research into necroptotic signals, such as drug-
induced forced dimerization of RIPK1/RIPK3, a means to directly
activate RIPK1 or RIPK3 (Rodriguez and Green, 2018). Tissues
or cells with increased expression levels of RIPK1, RIPK3, and
MLKL may indicate a predisposition to necrosis. However, there
are some exceptions to challenge these biomarker indicators
while non-necroptotic functions of increased RIPK1 and RIPK3
or necrosis induced without RIPK1 and RIPK3. In detail, the
increased expression of RIPK1 and/or RIPK3 could contribute
to inflammatory processes as an independent necrotic pathway
by regulating pro-inflammatory cytokines (e.g., TNF, IL-1β, and
IL-18) (Christofferson et al., 2012; Moriwaki and Chan, 2014;
Wong et al., 2014). The phosphorylation status of RIPK3 on
S227, and MLKL on Ser358 and Thr357, is considered to reflect
activation toward necroptosis (Degterev et al., 2008; McQuade
et al., 2013; Wang et al., 2020b). For this biomarker, kinase-dead
RIPK3 could function as an anti-necroptotic factor, and similarly,
the negative regulation also includes caspase 8, cellular FLICE-
inhibitory protein (c-FLIP), chromatin immunoprecipitation
(CHIP), MAPK (mitogen-activated protein kinase)-activated
protein kinase 2 (MK2), pellino E3 ubiquitin protein ligase 1
(PELI1), and ABIN-1 (A20 binding and inhibitor of NF-κB)
(Wang et al., 2018c).

The levels of Atg and LC3
For monitoring autophagy in vivo, the ‘core’ Atg genes knockout
mouse, GFP-LC3 transgenic mouse, TfLC3 transgenic mouse,
and GFP-LC3-RFP-LC31G transgenic mouse are often used as
animal models to detect specific protein markers (Kuma et al.,
2017). These markers are experimentally adapted as follows: (1)
identification of autophagy-related (ATG) genes and proteins
related to the initiation of autophagy could be used to assess
the activity of autophagy and to study the role of autophagy
in the pathophysiological process; (2) for the LC3 (LC3B) and
GABARAP family, the ratio of lipidated LC3 (LC3-II) to free
LC3 is usually utilized to reflect the number of autophagosomes
forming at any given time; 3) tandem fluorescent-tagged LC3
(tfLC3) reporters are used as single-molecule probes to detect
autophagosomes labeled with yellow (mRFP and GFP) and
autolysosomes labeled with red (mRFP only). Other detections
include the GFP-LC3-RFP-LC31G probe, etc. However, some of
the Atg proteins may have autophagy-independent functions and
the underlying mechanisms are not elucidated so far, such that
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the detection of autophagy is still facing challenges (Paunovic
et al., 2018; Tan et al., 2019). As for specified autophagy, such as
mitophagy, it is related to signaling proteins, such as TOMM20,
TIMM23, LC3, and p62 (Wang et al., 2020c).

Meanwhile, the levels of beclin have been used as a marker
of autophagy, but there should be more prudent use of it, since
in some cases, beclin levels can be transcriptionally upregulated
to wild-type levels even in beclin heterozygous or beclin allelic
loss cells (Murugan and Amaravadi, 2016). The Atg family
are also key proteins, but they are not a reliable reflection
of autophagic flux unless combined with LC3 (Murugan and
Amaravadi, 2016). According to the functions of LC3 processing
for autophagosomes, both its formation and features, western
blotting is widely used in autophagy monitoring with antibodies
against LC3-I and LC3-II. qPCR-based approaches have also been
used for detecting the mRNA levels of autophagy regulators, such
as beclin-1, ATG1, DRAM, and LC3 (Kuma et al., 2017).

A brief introduction of biomarkers in pyroptosis
Regarding pyroptosis, there are some proteins used as
experimental markers, including caspase-1, propidium, IL-
1β, GFP, tdRFP, and LDH. Among these, PI staining is always
regarded as a proxy for membrane rupture as it is often found
simultaneously for these two things, namely the membrane
rupture and the activation of the gasdermin pore (Jorgensen
et al., 2016). Recently, researchers have evaluated the reliability
of the detection as the molecules and proteins that we detected
may pass through the membrane rupture, or through the
gasdermin pore, or both (Kovacs and Miao, 2017). For instance,
PI and IL-1β (4.5 nm; 5 nm) are small enough to pass through
the gasdermin pore (10-15 nm), resulting in a situation that
detected significant amounts of PI before the membrane rupture
happened (Ding et al., 2016; Liu et al., 2016). On the contrary,
tdRFP and LDH are larger, so they seem to be released by the
membrane rupture event (Shaner et al., 2004; Russo et al., 2016).

A brief introduction of biomarkers in ferroptosis
As a non-apoptotic form of RCDs, ferroptosis is characterized by
iron-dependent accumulation of toxic lipid peroxides in plasma
membranes. The cystathionine-β-synthase (CBS) is a marker
of transsulfuration pathway activity involved in ferroptosis
(Wang et al., 2019b). The lipid peroxide level is closely related
to ferroptosis, so it provides a useful means to detect ferroptosis
in biological samples, such as measuring the level of cellular
lipid peroxide via flow cytometry assays, immunostaining, or
colorimetric assays (Uchida et al., 1993: Yagi, 1998; Drummen
et al., 2002). Meanwhile, intracellular concentrations of iron and
Fe2+ and the mitochondrial membrane potential are also used as
indicators to distinguish the induction of ferroptosis (Wang et al.,
2019b, 2020a). Furthermore, increased ACSL4 is required for
lipotoxicity in ferroptosis, and unlike the other ACSL members,
it seems to be a marker of ferroptosis since ACSL4 is remarkably
downregulated in ferroptosis-resistant cells (e.g., LNCaP and
K562) (Yuan et al., 2016; Wenzel et al., 2017). As for the specific
detection of ferroptosis, the changes of the mitochondria are
regarded as one of the most important indicators, including the
morphological and biochemical changes. Increased intracellular

concentrations of iron and Fe2+ can be monitored by kits,
such as an Iron Assay Kit (Sigma Aldrich). Increased
mitochondrial superoxide can be detected using a specific
fluorescent probe, such as MitoSOXTM Red Mitochondrial
Superoxide Indicator for live-cell imaging (Invitrogen).
Decreased mitochondrial membrane potential is measured
by some kits, such as the Mitochondrial Membrane Potential Kit
MAK-159 (Sigma Aldrich) for monitoring fluorescence intensity
levels (λex = 490/λem = 525 nm) and (λex = 540/λem = 590 nm)
for the ratio analysis (Wang et al., 2019b).

A brief introduction of biomarkers in NETosis
Based on the specific molecules involved in the pathway
during NETosis, co-localization of neutrophil-derived proteins
(such as myeloperoxidase (MPO) and proteinase 3 (PR3)),
and extracellular DNA would suggest the presence of NETosis
(Kessenbrock et al., 2009; Nakazawa et al., 2012). Additionally,
citrullinated histones could be regarded as a marker for indicating
NETs formation. Histones are citrullinated by PAD4 which
transport from the cytoplasm to the nucleus activated via ROS
generation and calcium influx (Remijsen et al., 2011; Wang
and Wang, 2013). And cfDNA could also function as one form
of NETs remnants which could be detected using PicoGreen R©

(Zhang et al., 2014).

Release of Extracellular Markers Into the Supernatant
or Circulating Biomarkers
The biomarkers released from the cells could remain in the tissue
fluid or enter bodily fluids as circulating markers. Some of them
could be detected in vitro from the supernatant of the samples
such as from primary or secondary necrotic cells. Similarly, the
monitoring of biomarkers in vivo in a liquid biopsy (e.g., plasma
samples) also provides another method for detection. These kinds
of biomarkers include caspases-3 and -7, high mobility group
box 1 protein (HMGB-1), and CK18. Identifying the RCDs via
the circulating biomarkers is a valid noninvasive alternative in
clinical applications.

Caspase-3
Caspase-3, a cysteine protease, could retain its tetrapeptide
sequence DEVD (a distinct amino acid sequence of Asp-Glu-
Val-Asp), which provides cleaving activity for a long time in
various extracellular fluids (Hentze et al., 2001). The p20 subunits
of caspase-3 and -7 have been detected in the culture medium
following secondary necrosis, whereas there are no such markers
but only procaspase-3 and -7 in necrosis (Denecker et al., 2001).
Thus, it has been proposed as a specific releasing and circulating
biomarker to indicate apoptosis in the tissues (Denecker et al.,
2001). Apoptotic cells in the tissue could be measured through
various technologies, such as the TdT-mediated X-dUTP nick
end labeling method and IHC using antibodies against active
caspase 3 or caspase-cleaved proteins to identify the degree of
apoptosis (Deng et al., 2019; Kunac et al., 2019).

Cytokeratin 18
CK18 releases a protein cleaved via the effector caspases at
two distinct sites (Asp238 and Asp396) during cell death (Ku
et al., 2016). The method named the M30-Apoptosense assay
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(Peviva AB, Bromma, Sweden) is used to measure the caspase-
cleavage CK18 at Asp396 (CK18Asp396-NE M30 neo-epitope)
and to specifically discriminate between apoptotic and necrotic
cell death (Cummings et al., 2008). The circulating ccCK18
was quantitated through a specific ELISA combined with the
antibody, which showed a positive signal in M30 and M65 to
indicate apoptosis, whereas an exclusive positive signal in M65
was used to indicate necrosis (Kramer et al., 2004). The time and
temperature requirements of this test may bias the results since
it requires the samples be placed immediately on ice in order
to avoid artificial cell death between acquisition and processing
(Greystoke et al., 2008).

HMGB-1
High-mobility group box 1, an architectural chromatin-binding
factor, could bind to DNA for increasing protein assembly
targeted to specific DNA. It is a protein secreted through
activated monocytes or macrophages and is passively released
via necrotic or damaged cells, but it should be mentioned
that HMGB-1 cannot be found in apoptotic cells even after
undergoing secondary necrosis and partial autolysis, resulting in
a failure to promote inflammation even if not cleared promptly
by phagocytic cells (Scaffidi et al., 2002). HMGB-1 released
from necrotic cells could activate the macrophages via the toll-
like receptor 2 (TLR2) and toll-like receptor 4 (TLR4) pathway
(Park et al., 2004). HMGB-1 can also chemoattract and activate
dendritic cells (DCs) with processing and presentation of tumor
antigens (Apetoh et al., 2007; Yang et al., 2007).

Other markers released from cells may also provide indicators
for RCD detection, such as DNA laddering signals. The “DNA
laddering” resulting from fragmented DNA is cleaved through
DNase activated via the inhibitor of caspase-activated DNase
(iCAT) (Krysko et al., 2008). The 166 base pairs (bp)-length
cell-free DNA (cfDNA) consists mainly of nucleosome-protected
DNA being released from apoptotic tumor cells into the
bloodstream, which might be used in the detection of RCD,
providing a target for clinical applications (Krysko et al., 2008;
Ulz et al., 2016).

Potential Markers
Recently, non-coding RNA (ncRNA) has been confirmed to
have a strong correlation with RCDs, and a positive correlation
or a negative correlation might be developed as a useful
detection method for monitoring RCDs. For instance, miRNAs
(microRNA, one of the non-coding RNAs, 21-23 nucleotides
long) is closely related to RCDs, like miR-21 is related to necrosis,
miR-137 is related to ferroptosis (Park et al., 2004), miR-184
is related to apoptosis, miRNA-335-5p is related to autophagy,
and miR-223 is related to pyroptosis (Wang et al., 2015; Afonso
et al., 2018; Luo et al., 2018; Zhang Y. et al., 2018; Zhong
et al., 2019). Other ncRNAs like long-coding RNA (lincRNA)
and circulating RND (circRNA) may also present the same effect
(Zhou et al., 2019; Tao et al., 2020). However, some ncRNAs in
RCDs of different healthy or pathological cells or tissues emerge
with different expression patterns, so there is still controversy
about these biomarkers functioning as indicators to detect RCDs.
It is also worth noting that RCDs such as apoptotic cells

could release vesicles as apoptotic microvesicles and exosomes-
like vesicles that are smaller than ApoBDs (apoptotic bodies).
Extracellular vesicles (EVs) like exosomes, microvesicles (MV),
ApoBDs (1–5 µm in diameter) and ApoMVs (<1 µm in
diameter) released from special cells or tissues may have a close
connection with RCDs, which suggests an occurrence of RCDs in
pathophysiological processes (Caruso and Poon, 2018; Pavlyukov
et al., 2018; Grant et al., 2019; Nooshabadi et al., 2020; Qin
et al., 2020). Marat S. et al. investigated the extracellular vesicles
secreted by apoptotic glioblastoma cells (apoEVs) for apoptotic
research associated with a phenotypic shift of the recipient
surviving tumor cells (Pavlyukov et al., 2018).

Notably, cell death has been closely linked to inflammation
through various signals such as RIPK1, RIPK3, FADD, FLIP and
caspase 8. These molecules are incorporated into compatible and
exceedingly dynamic Toll-like receptor, retinoic acid-inducible
gene I (RIG-I)-like receptors, and NOD-like receptor which
have roles in switching from inflammation to cell death, or
perform a programmed execution of both. For example, the
overexpression of caspase 11 could induce apoptosis (Wang
et al., 1996), and it is also linked to inflammation as an
upstream regulator of caspase 1 to promote both pyroptosis
and pro-IL-1β processing, or as a molecule releasing after
lipopolysaccharide (LPS) or tissue injury (Kang et al., 2000).
Caspase 8, involved in the extrinsic pathway of apoptosis, could
lead to the development of systemic inflammation (Wallach
et al., 2014). Pyroptosis is initiated in response to inflammasome
activation in the mobilization of the canonical and/or non-
canonical pathways (Bergsbaken et al., 2009). The activation of
RIPK3 is crucial for necroptosis induced by TNF. The role for
RIPK1 is closely related to other molecules as TNFR1, FADD
and caspase 8, and TRIF, IFN and RIPK3 related necroptosis to
inflammation, or other types of cell death (Dillon et al., 2014;
Kaiser et al., 2014; Rickard et al., 2014). As for autophagy, its
proteins play a vital role in inflammation, in which the LC3
conjugation system (vital molecules involved in autophagy, i.e.,
ATG3, ATG5, ATG7, and ATG16L1) is related to the activation
of cells with IFN-γ during inflammation (Zhao et al., 2008; Li
et al., 2021). LAP could induce pro-inflammatory gene expression
and trigger STING-mediated type I interferon responses in
tumor-associated macrophages (Cunha et al., 2018). Compelling
evidence showed that ferroptosis have an effect on inflammation
where ferroptosis inhibitors exerted anti-inflammatory effects in
certain diseases (Sun et al., 2020). Besides the events discussed
above, there is still a lot of evidence showing a close connection
between cell death and inflammation which suggest these specific
inflammation-related factors could function as indicators for
adjunctive detection of cell death.

All in all, biomarkers provide pathway-specific measures to
distinguish different types of RCDs, but there are still some
issues: (1) Protein specificity: the overlap or connected markers
involved in different types of RCDs; (2) Misleading results: the
specific biomarkers are related to other responses not involving
the expected cell death, and the occurrence of cell death is not
connected with the targeted proteins; (3) Simultaneous events,
such as the induction of cell death may result in another cell
death or simultaneous events of two or more types of cell death;

Frontiers in Cell and Developmental Biology | www.frontiersin.org 16 March 2021 | Volume 9 | Article 634690

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-634690 February 27, 2021 Time: 15:52 # 17

Hu et al. Methods to Detect Regulated Cell Death

(4) Limited detection technology: some of the subtle changes
require more sensitive and comprehensive detection techniques
or combined manipulations of pathway-specific markers in
cell death pathways.

MONITORING AND MEASURING RCDs
FROM in vivo TO CLINICAL
APPLICATIONS

Monitoring and Measuring RCDs in vivo
It is hard to mimic the real microenvironment of cells in vitro
entirely, and the detection of RCDs in vivo is vital for
research. The gamma camera imaging, CT, MRI/MRS, PET,
and radionuclide imaging methods are usually used to monitor
the biochemical and physiological processes of RCDs in vivo
(Brauer, 2003; Huang et al., 2017). As a common example,
MRI is used to monitor the volume reduction of a tumor
induced by RCDs. For example, 23Na MRI might be a sufficiently
useful and practical method in clinical or laboratory detection
of apoptosis. 23Na MRI may be sensitive to high concentrations
of Na+ in tissues and have a close connection to electrolyte-
macromolecular interactions during RCDs (Brauer, 2003). The
monitoring of cell death in vivo provides evidence as to whether
or not and how much damage occurs and then guide the
clinical assessment and treatment based on the severity of
the diseases and the drug choice of anti-bacterial or anti-
viral agents.

According to various structural and functional perspectives
involved in different types of RCD both in vivo and in vitro,
multiple techniques are required for detection with high
repeatability, specificity, and precision. The assays related
to morphological, biochemical, and functional changes are
presented in Supplementary Table 1.

RCDs Detection in Clinic Usage
Regulated cell deaths are closely related to a variety of
diseases, and mostly detection of RCDs has been used for
early diagnosis and prognosis assessment through monitoring
the quality and quantity of the biomarkers involved in RCDs
and the various molecular players also used as drug targets
for treatment (Thygesen et al., 2007). During development,
both the nervous system and the immunogenic cells of the
hematopoietic system particularly rely on the overproduction
of the cells; in other words, RCDs play a vital role in
the nervous and the hematopoietic system. A harmonious
process that integrates proliferation, differentiation, and RCDs
maintains normal development and the generation of functional
circuitry within the nervous system, with elimination of neurons
migrating and innervating improper targets or ectopic areas,
and the limiting amounts of pro-survival factors produced by
targets (including glia) resulting in optimal target innervation
through competition with neurons (Fricker et al., 2018). Once
the balance breaks, it may lead to various neurodegenerative
diseases with a fundamental pathological feature of cell death,
such as strokes with a high number of neurons dying by necrosis
(Tian et al., 2019; Zhou et al., 2020). Some researchers have

TABLE 4 | Biomarkers of RCDs used in diagnostic, prognostic and research histopathology.

Items Type Markers References

Apoptosis Diagnostic Bcl-2, p53, FasL, TNF-α, DNA fragmentation, BBC3,
PMAIP1, M30, XIAP, Survivin

Karamitopoulou et al., 2007; Farnebo et al., 2011; Omori et al., 2011;
Sen et al., 2015; Heng et al., 2016; Bani-Ahmad et al., 2018; Chen
et al., 2019; Henrich et al., 2019; Moledina et al., 2019; Schiffmann
et al., 2019

Prognostic Bcl-2, Bax, p53, Fas, FasL, caspase-2, caspase-3,
caspase-7, caspase-8, caspase-9, TNF-α, DNA
fragmentation, Bak, Bok, Bim, PUMA, PMAIP1, MCL1,
BCL2L10, TRAIL, TRAIL-R1/2/3, c-FLIP, IAPs

Wang P. et al., 2017; Feng et al., 2018; Huang K.H. et al., 2018

Necroptosis Diagnostic NLRP3, AUNIP, RIPK1/3 He et al., 2016; Lee et al., 2016; Yang Z. et al., 2019

Prognostic NLRP3, MLKL, RIPK1/3, TLR3/TICAM1, AURKA Yuan et al., 2015; Yao et al., 2017; Conev et al., 2019; Soleymani Fard
et al., 2019; Sun et al., 2019; Malhotra et al., 2020

Autophagy Diagnostic LC3, Na+/K+-ATPase, mTOR Mijatovic et al., 2012; Mete et al., 2018; Sui et al., 2018

Prognostic LC3, ATG, BECN1, Na+/K+-ATPase, AMPK, mTOR Cao et al., 2016; Cheng et al., 2016; Schläfli et al., 2016; Li et al., 2017;
Gajate et al., 2018; Guo et al., 2019

Ferroptosis Diagnostic GPX4, ALOX15, SLC7A11, BAP1, HSP90, HSPB1,
FANCD2, TP53

Kamal et al., 2004; Guerriero et al., 2015; Saif et al., 2016; Hui et al.,
2017; Davidson et al., 2018; Xu et al., 2019

Prognostic GPX4, ACSL4, SLC7A11, TFRC, GLS2, DPP4,
NCOA4, BAP1, PEBP1, CARS, VDAC2, HSP90,
HSPB1, ITGA6, ITGB4, OTUB1, TP53, HSPA5,
FANCD2

Wada et al., 2006; Xu et al., 2010; Zhou et al., 2014; Yang Z. et al.,
2015; Chen et al., 2016; Luchini et al., 2016; Lu et al., 2017; Sotgia
et al., 2017; Sun and Xu, 2017; Zhao et al., 2017; Dimas et al., 2018;
Huang Z.C. et al., 2018; Jiao et al., 2018; Kinowaki et al., 2018; Zhang
L. et al., 2018; Li M. et al., 2019; Saha et al., 2019; Dinarvand et al.,
2020; Feng et al., 2020; Wu G. et al., 2020

Pyroptosis Diagnostic GSDMD, caspase-4 Terlizzi et al., 2018; Xu et al., 2018

Prognostic GSDMD, LPS, caspase-1, caspase-4, PKA, IL-1β,
IL-18

Del Gobbo et al., 2016; Wȩdrychowicz et al., 2018; Gao et al., 2018;
Hosonaga et al., 2018; Terlizzi et al., 2018; García de
Guadiana-Romualdo et al., 2019; Gil and Kim, 2019
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used multiple detection methods to achieve signaling pathway
mining and clinical guidelines, such as the detection of RIP3
and phosphorylated RIP3s using western blots, and verifying the
necroptosis of retinal ganglion cells using EM in retinal diseases
research (Liao et al., 2017).

In the immune system, many potentially dangerous or useless
immune cells could be eliminated through RCD pathways
such as the positive selection and negative selection of T
cells (Opferman, 2008; Anuradha et al., 2013). The functions
of the immune system are also connected to RCDs, such as
apoptotic cells being efficiently cleared in a quiescent manner
through the immune system (Kolb et al., 2017). Similarly, the
breakage of the steady state is closely related to various immune
diseases, such as apoptosis-related autoimmune disease and
autophagy-related immune renal disease (Mihaljevic et al., 2018;
Ye et al., 2019). Elsewhere, in the circulatory system, platelet
apoptosis is characterized by platelet-derived microparticle (MP)
formation and cell shrinkage in different cellular compartments
(mitochondria, cytosol, and plasma membrane) or at the whole-
cell level, has a strong correlation with platelet-related diseases
such as vascular restenosis, atherosclerosis, wound healing,
angiogenesis, inflammation and immune responses (Smyth et al.,
2009; Semple et al., 2011; Gyulkhandanyan et al., 2012). In
many cancer types, the value of the apoptotic index (AI) in
diagnosis or prognosis has been developed but the results of its
accurate evaluation and/or standard settings are controversial
(Becker et al., 2014; Fu et al., 2014). It has been reported that the
subsequent development of diseases is tied closely to AI, which
may be a useful biomarker for prospective studies (Braga et al.,
2016), but the results still remain controversial.

Furthermore, we have summarized the biomarkers of RCDs
used in diagnostic and prognostic assessment in Table 4 as well
as some related clinical applications in Supplementary Table 2.
The detection of biomarkers in RCDs are widely used in these
assessments, but there are still challenges for their accuracy
and effectiveness of detection, tissue and species specificity, etc.
Furthermore, targeting RCDs is beneficial for not only diagnosis
and prognostication, but also treatment through using drugs to
regulate the proteins or genes involved in the RCD pathway.

CONCLUSION AND PERSPECTIVE

Regulated cell deaths, a controlled cellular process during
development, contribute to a balance in physiological conditions
for cell clearance, tissue integrity, and homeostasis in multi-
cellular organisms, whereas the dysregulation of RCDs results
in various pathological conditions, such as neurodegenerative
diseases, developmental and immunological disorders, and
cancer. RCDs include many types of cell death: apoptosis,
necrosis, autophagy, ferroptosis, and pyroptosis, each of
which plays an important role in different physiological
and pathological conditions via various proteins, genes, and
cofactors, building a complex cell signaling network. In the last
few years, tremendous progress has been made in digging out
the secrets of RCD and striving toward translational medicine
and precision medicine. Our team has been engaged in this field

of RCD for many years (Huang et al., 2013; Shang et al., 2014,
2017; Ding et al., 2015; Adams et al., 2016; Xiong et al., 2016; Li
et al., 2016; Liao et al., 2017; Wang et al., 2018b,c, 2020b; Guo
et al., 2020; Wu X. et al., 2020). Remarkably, cryo-EM, emerging
as a powerful technique, has been used in a growing number
of structural determinations for the assays of high-resolution
protein structures besides the proteins involved in RCDs
(Cheng et al., 2015). Even realistic presentation of the proteins
in their native cellular microenvironment has been achieved
through cryo-electron tomography (cryo-ET) (Danev et al.,
2019; Kuwana, 2019; Wang et al., 2019a). Also, flow cytometry
is regarded as a preferred method since it is sensitive, fast and
multifaceted, and this method is constantly improving and being
integrated into clinical applications, such as image-based flow
cytometry (Kranich et al., 2020). So many methods also show
great potential in research and clinical applications, such as real-
time fluorometry, or PET and single-photon emission computed
tomography (SPECT) with specific tracers, multicolor labeling
and sophisticated morphometric analysis, etc. (Grootjans et al.,
2016; Wimmer et al., 2020). Remarkably, combining the special
markers as indicators for RCDs monitoring would lead to
more accurate ways to identify various types of RCDs. All
in all, these powerful and specific methods will provide us
with stronger evidence to describe the pattern of cell death by
identifying molecular players and unraveling the biochemical
pathways of death.
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