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In August 2019, a suspected outbreak of canine distemper was observed in a masked

palm civet farm that also received stray civets and rescued wild civets in Henan Province

of China. A virulent canine distemper virus (CDV) strain, named HN19, from vaccinated

masked palm civets was the etiologic agent identified in this outbreak using RT-PCR

and sequencing of the complete genome. Serological analysis indicated a lower positive

rate of CDV-neutralizing antibody in wild civets than in captive civets. Phylogenetic

analysis of viral hemagglutinin (H) and the complete genome showed high identities

with Rockborn-like strains at the nucleotide (98.7∼99.72%) and the closest nucleotide

similarity with a strain that killed lesser pandas in China in 1997, but low identities with

America-1 strains (vaccine strains). Most importantly, one distinct amino acid exchange

in the H protein at position 540 Asp→Gly (D540G), which confers CDV with an improved

ability to adapt and utilize the human receptor, was observed in HN19. This study

represents the first reported outbreak of a Rockborn-like CDV strain infection in masked

palm civets in China. Based on this report, the existence of Rockborn-like strains in

Chinese wild animals may not only cause immune failure in captive animals, but may

also confer increased zoonotic potential.

Keywords: canine distemper virus (CDV), civet (Viverridae), China, phylogenetic analysis, zoonotic potential

INTRODUCTION

Morbilliviruses belong to the order Mononegavirales, the family Paramyxoviridae and include a
group of highly pathogenic viruses, such as measles virus (MeV), rinderpest virus (RPV) and canine
distemper virus (CDV). In contrast to host-specificMev and RPV, CDV has higher genetic diversity
and causes a highly contagious disease in a wide broad of animals, including dog, civet, phocine,
ferret, lion, raccoon, fox, etc. (1–6). Thus, spillover and spillback transmission of CDV between
domesticated animals and wildlife reservoir hosts has been documented (6). Even more alarmingly,
the host range of CDV has been expanded to other species that are evolutionarily more distant to
canids, such as Asian marmots (Marmota caudata) and Japanese monkeys (Macaca fuscat) (7, 8).

The hemagglutinin (H) gene of CDV encodes the receptor-binding protein. Currently, the
signaling lymphocyte activation molecule (SLAM) (also known as CD150) and the cell adhesion
molecule Nectin-4 (also known as poliovirus receptor-like protein 4, PVRL4) are known to engage
with H protein (9, 10). Of these, SLAM, as the principal cellular receptor for morbilliviruses, has
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been shown to be critical for host susceptibility and virus entry,
whereas nectin-4 is required for clinical disease and efficient virus
shedding (11, 12). A recent study revealed that a substitution in
CDV H protein at residue 540, Asp to Gly (D540G), is sufficient
to allowCDV to bind to human SLAM in vitro, which could cause
CDV to potentially adapt human target cells (13).

The masked palm civet Paguma larvata (order Carnivora,
family Viverridae) is distributed in tropical and subtropical Asia
(14). In China, masked palm civets are raised as new farm
animals mainly in the southern provinces for meat production.
Civets have been thought to be potential intermediate hosts
that can provide an effective way for the virus, such as severe
acute respiratory syndrome (SARS) which appeared in southern
China in 2003, to spread from animals to humans (15). In
addition, several studies have shown that the masked palm civet
may potentially be involved in transmission of some zoonotic
pathogens such as Salmonella enterica, Bartonella henselae, and
Toxoplasma gondii (16–18).

Up to now, in China, there are none reports of Rockborn-
like strain detected from a civet. The present study aimed to
investigate the CDV infection in civets, analyze the genotypes
of epidemic strains, and report the cross-species transmission
of CDV.

MATERIALS AND METHODS

Sample Collection
In August 2019, sudden and unexplained fever, severe lethargy
and weakness, loss of appetite, mild-to-marked upper respiratory
disease and neurological dysfunction (severe lethargy, loss of
appetite, epilepsy and twitching) were observed in a masked
palm civet farm that also received stray civets and rescued wild
civets in Luoyang city, Henan Province. Seventy percent of the
sick civets died on days 7∼10 of the illness after accepting new
wild animals. Although the immune status of the wild and stray
animals was unclear, all the cultured animals had been vaccinated
with the American-1 strain. We randomly collected ocular, nasal
and rectal swab specimens, and serum samples from 44 healthy
and 57 sick civets. Fresh tissues harvested from 9 dead animals
were used for histopathological analysis, immunohistochemical
analysis and viral isolation. After collection, the samples were
immediately transported to our laboratory in an icebox for
further use.

TABLE 1 | Detection of civet CDV in sick and healthy animals using PCR and SN test.

Species Total No. Vaccination status Health status(dead/total) Rate

PCR+ (swabs) SN+ (blood)

Wild and stray 30 Unknown Healthy (0/4) 1/4 2/4

Sick (26/26) 25/26 3/26

Captive 291 Vaccinated Healthy (0/260) 2/40 38/40

Sick (14/31) 29/31 28/31

Total 321 57/101 71/101

+Positive.

Viral Detection and Isolation
All samples were stored at −80◦C and tested, initially by
Anigen Rapid CDV Ag Test Kit (BioNote, Inc.Gyeonggi-do,
South Korea) according to the manufacturer’s instructions.
Total RNA was extracted from the tissues with a QIAamp
Viral RNA Mini Kit (Qiagen, USA). The RNA was converted
into cDNA using a Vazyme HiScript II 1st Strand cDNA
Synthesis Kit (Vazyme Biotech Co., Ltd., China) in accordance
with the manufacturer’s instructions. To validate the presence
of CDV, reverse transcription polymerase chain reaction (RT-
PCR)/PCR was performed to detect a 681 bp RT-PCR amplicon
encompassing the fusion protein signal-peptide (Fsp)-coding
region (405 bp) using a previously described primer (19). For
virus isolation, the tissues were homogenized in 20 % (w/v)
sterile phosphate-buffered saline (PBS, pH 7.4) and filtered
through 0.22 ummembrane filters. Supernatants of homogenized
lung filtered through 0.22 um membrane filters were used to
inoculate Vero-raccoon dog-SLAM cells as described previously
(20), and the cytopathogenic effect was observed within 120
hours. Vero-raccoon dog-SLAM cells were constructed by the
authors and were maintained in DMEM containing 5% FBS (data
not published).

Electron Microscopic Analysis
The Vero-SLAM cells at 4 days post-infection were used for
electronmicroscopic analysis. Cell supernatants were centrifuged
at 12,000 × g for 5min at 4◦C. Virus-containing supernatants
were negatively stained and examined using transmission
electron microscopy (TEM) (21).

Whole Genome Sequencing and
Phylogenetic Analysis
The complete H gene of the CDV isolate and virus contained
in brain and lung samples from deceased civets was amplified
for sequencing by RT-PCR using H gene specific primers
(20). The entire genome of civets CDV isolated with Vero-
raccoon dog-SLAM cells was amplified and sequenced using
a set of 15 primer pairs to generate overlapping PCR
amplicons (20). Multiple sequence alignments were performed
and sequence similarities determined using DNASTAR software.
The neighbor-joining (NJ) method with 1,000 bootstrap
replicates was used to construct a phylogenetic tree in MEGA
version 7.0 (22).
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Histopathological Examination and
Immunohistochemical Analysis
For histological studies, samples intended for histopathological
examination (brain, lung, heart, liver, kidney and

FIGURE 1 | Histopathological and immunohistochemical staining of lungs and

brains of fresh dead civets. (a) Microscopic examination of brain samples

showed neuronal degeneration and necrosis, perivascular edema. (b) The

alveolar wall capillaries were dilated and congested, and part of the alveolar

cavity was filled with abundant inflammatory exudates containing edematous

fluid and lymphocytes. Moreover, lymphocytes and macrophages can be seen

in the bronchus. (c) Immunohistochemical staining showed that some nerve

cells in the brain tissue were positive for CDV. (d) CDV was positively detected

in some bronchial epithelial cells. The scale bar indicates 100µm.

testicle) were fixed in 4% buffered formaldehyde
solution and 4µm thick paraffin sections were mounted
on silane-coated slides. Slides were stained with
hematoxylin and eosin (HE) according to the standard
histopathological procedure.

Immunohistochemical analysis was performed in the same
tissues using the chain polymer-conjugated method (2). Briefly,
slides were deparaffinised and rehydrated. After antigen retrieval
and endogenous peroxidase blocking, slides were incubated with
an anti-CDV nucleoprotein monoclonal antibody at a 1:100
dilution (VMRD Inc., Pullman, WA. Cat. P180221). Then,
the slides were incubated using the Dako REAL EnVision
Detection System (Dako, Glostrup, Denmark), at 37◦C as a
secondary antibody, and the positive antigen-antibody complex

was then visualized by labeling with 3, 3
′

-diaminobenzidine
tetrahydrochloride (DAB) and counterstaining with Mayer’s
hematoxylin. Positive control slide was performed on lung tissue
from a CDV-infected dog that was positive in the RT-PCR assay,
while the Tris-HCl buffer instead of the primary antibody was
used as a negative control.

Virus Neutralizing Antibody Titers (VNT)
CDV virus neutralizing (VN) antibody titers were determined in
Vero-SLAM cells using a TCID50 microtiter assay as previously
described (23) with minor modifications. Briefly, serial 2-fold
dilutions of heat-inactivated serum starting at 1:8 were added
to ∼100 TCID50 of vaccine strain CDV3 (EU726268) and tested
in quadruplicate. The titers were calculated using the method of
Reed and Muench.

FIGURE 2 | Phylogenetic analyses of CDV HN19 strain. (A) Phylogenetic analyses of the nucleotide sequences of the complete genome of CDV HN19 strain.

(B) Phylogenetic analyses of H gene nucleotide sequences of CDV HN19. Evolutionary history was inferred using the maximum likelihood method with the Tamura-Nei

model and gamma-distributed rate heterogeneity in MEGA 7. The percentage of replicates in which the associated virus clustered together in the bootstrap test

(1,000 replicates) is shown next to the branch in each tree. The strain isolated in this study is identified by N. The percentage bootstrap support is indicated by the

value at each node. Scale bar denotes nucleotide substitutions per site.
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RESULTS

Fatal CDV Infection in Masked Palm Civets
RT-PCR analysis was used to detect viral nucleic acid. Tissue
samples from all of the dead civets were all CDV infection-
positive. The swab samples (n = 101) showed a detection
rate of 56.44%. Serological analysis indicated a lower positive
rate of CDV-neutralizing antibody in wild civets than in
captive civets, regardless of the health condition. The results
of all samples tested by PCR and neutralizing antibodies are
summarized in Table 1. The cytopathogenic effect (CPE) was
observed in Vero-SLAM cells within 96∼120 h after infection
from positive lung tissue. Numerous spherical, enveloped virus
particles of ∼200 nm in diameter were observed by negative-
staining electron microscopy in isolated strain (named HN19)
(data not shown).

Histopathological Analysis
Briefly, histopathologic findings in the brain included neuronal
degeneration and necrosis, perivascular edema (Figure 1a).
Interstitial pneumonia with infiltrates of inflammatory cells
comprising lymphocytes and macrophages can be seen in
the bronchus (Figure 1b). Immunohistochemical analysis
revealed the CDV antigen in some areas of the lung and
brain (Figures 1c,d). Additionally, generalized more severe
lymphocyte depletion was found in the spleen, liver, intestine,
while no obvious pathological changes were found in kidney
(data not shown).

Phylogenetic Analysis
The complete viral genome of the HN19 strain was sequenced.
This sequence has been deposited in GenBank under the
accession numberMT448054. Phylogenetic analysis andmultiple
sequence alignments based on the H gene sequence showed
that HN19 strain belongs to the Rockborn-like strain cluster
(Figure 2A). Sequence comparisons of the H gene of HN19
strain showed high identities with Rockborn-like strains at
the nucleotide (98.7∼99.72%) and the deduced amino acid
(97.78∼99.15%) levels (Table 2). Additionally, HN19 clustered
with a strain that killed lesser pandas in China in 1997 (24)
(Figure 2A). Sequence comparisons of the complete genome
showed that HN19 had low sequence identities with America-
1 strains (Figure 2B). The H gene sequence of the HN19 stain
demonstrated a low nucleotide similarity (92.16∼92.68%) with
America-1 CDVs. Similarly, at the amino acid level of H gene,
HN19 had slightly lower identity (89.48∼90.60%) to America-1
CDVs (Table 2).

The complete H gene sequence detected from brain and lung
was as same as that detected from the isolate. Sequence analyses
of H gene revealed that the same unique amino acid residues
105S and 265S existed in HN19, lesser panda isolates, giant
panda isolates and two other tiger derivatives from China. Most
importantly, the adaptive mutation D540G in the H protein was
unique, which has been supposed to be required for adaptation
of CDV to the human entry receptors (13). In addition, there
were another two unique amino acid residues, 376T and 548M, T
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which could be associated with vaccination failure and unusual
clinical signs.

DISCUSSION

Previous reports have demonstrated that CDV is a lethal
infectious agent to susceptible free-living and captive Viverridae,
including civets (2, 25, 26). Here, we have documented a
Rockborn-like CDV strain infection in masked palm civets in
China. Because CDV had never appeared at this farm before,
and this strain belonged to the Rockborn-like group along
with another strain from wild animals, this outbreak might
be attributed to stray animal contact or wild animal adoption.
The Rockborn vaccine strain, as a canine isolate, was made
on primary canine kidney cells in the 1950s (27). Compared
with other CDV vaccines, Rockborn strain was considered to
be less attenuated and less safe, and withdrawn from several
markets after the mid-1990s (28). However, the isolation of
Rockborn-like CDVs, respectively, from masked palm civets
and lesser pandas in China suggests that Rockborn-like viruses
are still circulating in the field or that vaccine-derived viruses
were introduced in different carnivores on several occasions
in China.

In this farm, vaccination failure was observed in 31/291
captive animals (10.65%) with an America-1 strain vaccination
record. The efficacy of vaccines relies on the antigenic relatedness
between the vaccine and the circulating field strains. The
CDV H gene is the most heterogenic and antigenic variable
among all different strains of CDV, which could result in the
generation of antibodies with widely different neutralization
capacity or vaccine breakdown. Phylogenetic analysis of the
complete genome and viral H gene showed that HN19 shared low
identities with America-1 strains, which could be a reason for this
immune failure.

Morbilliviruses such as MeV and CDV use the species
orthologs of CD150 and nectin-4 expressed on immune and
epithelial cells, respectively, as receptors. Several studies have
demonstrated that amino acid substitutions in the H protein
may contribute to the expanded host range (13, 29). Among
substitutions, 540 Asp→Gly (D540G) confers good fusion
capacity to viral envelope proteins binding with human CD150,
which may facilitate CDV adaptation to human target cells (13).
The amino acid exchangeD540G has been also observed inHN19
strain, a natural isolate from civets, implying that the zoonotic
potential of CDV might be a matter of concern.

Through the investigation of CDV infection in civets in
China, we formulated three hypotheses. The first was that a
kind of Rockborn-like strain was circulating in wild animals
in China. The second hypothesis was that the America-
1 vaccine could not provide adequate protection for civets.
Finally, the third hypothesis was Rockborn-like strain with the
D540G mutation in Chinese wild animals might have zoonotic
potential. Therefore, the information provided with this study
emphasizes the need for the regular surveillance of wild animals,
mandatory effective vaccination in wild animals and reduction
of the increasing threat of CDV to animals and public health
in China.
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