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Abstract
Major depressive disorder (MDD) is known to be associated with altered interactions between distributed brain regions. How
these regional changes relate to the reorganization of cortical functional systems, and their modulation by antidepressant
medication, is relatively unexplored. To identify changes in the community structure of cortical functional networks in
MDD, we performed a multiscale community detection algorithm on resting-state functional connectivity networks of
unmedicated MDD (uMDD) patients (n = 46), medicated MDD (mMDD) patients (n = 38), and healthy controls (n = 50), which
yielded a spectrum of multiscale community partitions. we selected an optimal resolution level by identifying the most
stable community partition for each group. uMDD and mMDD groups exhibited a similar reconfiguration of the community
structure of the visual association and the default mode systems but showed different reconfiguration profiles in the
frontoparietal control (FPC) subsystems. Furthermore, the central system (somatomotor/salience) and 3 frontoparietal
subsystems showed strengthened connectivity with other communities in uMDD but, with the exception of 1 frontoparietal
subsystem, returned to control levels in mMDD. These findings provide evidence for reconfiguration of specific cortical
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functional systems associated with MDD, as well as potential effects of medication in restoring disease-related network
alterations, especially those of the FPC system.
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Introduction
Many neuroimaging studies have demonstrated that major
depressive disorder (MDD) is associated with altered functional
and structural connectivity of distributed brain regions (Sheline
et al. 2010; Zeng et al. 2012; Dutta et al. 2014; Korgaonkar et al.
2014; Gong and He 2015; Mulders et al. 2015). Altered connec-
tions include those mediating interactions within and between
multiple brain systems supporting several specific functions,
such as emotion, attention, cognitive control, and self-referential
processing. Furthermore, the neuropathology of MDD involves dis-
rupted interactions between different brain systems (Drevets 2001;
Price and Drevets 2010). Therefore, MDD may be thought of as a
“network disease,” where a small local change may lead to global
dysfunction expressed across the whole brain (Fornito et al. 2015).

The dysfunction of 3 systems are particularly relevant to
MDD (Kaiser et al. 2015; Mulders et al. 2015): default mode (DM)
system, frontoparietal control (FPC) system, and salience sys-
tem. The DM system involved in self-referential process
(Raichle et al. 2001; Greicius et al. 2003; Buckner et al. 2008) is
related to pathological introspection of MDD patients like rumi-
nation (Zhu et al. 2017). The dysfunctional top–down control by
FPC system (Corbetta and Shulman 2002; Fox et al. 2005) is
associated with deficient cognitive control in depression (Stange
et al. 2017). The salience system (overlapping with ventral atten-
tion system), supporting detecting and orientating to salient sti-
muli (Seeley et al. 2007), has a role in biased attention in MDD
patients (Beevers et al. 2015). Moreover, abnormal interactions
among these 3 systems have been observed in MDD patients
(Manoliu et al. 2014; Kaiser et al. 2015; Mulders et al. 2015).
Neurocognitive models of MDD suggested that imbalanced con-
nectivity of FPC with DM and salience systems results in imbal-
anced control over introspection and external attention and
furthermore affects mood regulation (Disner et al. 2011; Rayner
et al. 2016). The triple-network model (Menon 2011), a common
framework for multiple psychiatric disorders, also emphasizes
that the deficient communication of these 3 core systems plays
an important role in the psychopathology of psychiatric disor-
ders. Thus, investigating the intrinsic organization and interac-
tions of different functional systems in the brain network can
help to identify preserved, dysfunctional, and compensatory
subsystems in MDD and further help to understand the psycho-
pathology of MDD, which may lead to targeted treatments.

Graph theory provides a useful tool to characterize the brain
network (Sporns et al. 2005; Bullmore and Sporns 2009). The
community structure is one of the most functionally relevant
graph metrics to study the organization and interaction of
functional systems in the brain network (Petersen and Sporns
2015). A community is a set of more densely interconnected
nodes (or brain areas) within the set compared with between
other sets (Fortunato 2010; Fortunato and Hric 2016; Sporns and
Betzel 2016). The community structure (or modular organiza-
tion) can delineate the functional segregation and integration
of the whole-brain network. Researchers have identified com-
munity structure in both structural and functional networks in
the healthy human brain (Chen et al. 2008; He et al. 2009;
Meunier et al. 2009).

Identifying the community structure of the brain is also of
great interest to clinical researchers because disrupted commu-
nity structures were found in diverse brain disorders (Cary et al.
2016; Glerean et al. 2016; Lerman-Sinkoff and Barch 2016),
including MDD (Bohr et al. 2012; Lord et al. 2012; Tao et al. 2013;
Peng et al. 2014). Lord et al. (2012) detected community structure
of functional network for individuals with unipolar depression.
They found that superior regions in frontal and parietal cortex
increased intercommunity connections, whereas inferior regions
like occipital, temporal, and inferior frontal cortex increased
intracommunity connections in patients. The participation indi-
ces (an index of how dense nodes are connected across multiple
communities) of 15 nodes mainly located in frontal, parietal,
and occipital cortex occupied top 25 informative metrics, which
can identify patients from the healthy by machine learning.
These findings indicate that the community structures are sig-
nificantly reorganized in depressive patients by the alterations
in widespread brain areas. However, they did not describe the
specific alterations of the community structures in depression.
Peng et al. (2014) reported different community structures
between MDD group and the healthy controls (HC). They
observed that an integrated community comprised the DM and
FPC systems in the HC, but parts of this community belonging to
the FPC system were separated in MDD group. Another commu-
nity responsible for affective processing also split in MDD group.
They suggested that these alterations might account for abnor-
mal cognitive and affective processing in MDD. Tao et al. (2013)
applied a reference community structure based on HC to first-
episode MDD and resistant MDD patients and found widespread
altered connections, mostly belonging to the attention system.
These studies indicate that MDD-related alterations of func-
tional connectivity underling altered community structures are
distributed in different functional systems like the default, cog-
nitive control, attention, and affective systems. This corresponds
to the theoretical model. However, a limited number of studies
on community structure in MDD reported inconsistent results,
which calls for more investigations with solid methodology for
robust identification of the neural alterations in MDD.

Previous studies have reported that antidepressant treatment
modifies functional connectivity in distributed regions in MDD
(Dichter et al. 2015; Gudayol-Ferre et al. 2015). Gudayol-Ferre et
al. (2015) reviewed that antidepressant treatment mainly
affected connectivity of portions of the DM and cortical–limbic
networks. This suggests that the medication effect is widespread
and complex, highlighting the need to examine its effect on the
large-scale system level. Although these studies indicate that
changes in functional network communities accompany MDD,
none so far have 1) systematically examined the community
structure of functional networks in both medicated and unmedi-
cated MDD (uMDD), 2) addressed methodological problems with
modularity maximization such as the resolution limit (Fortunato
and Barthelemy 2007) and degeneracy (Good et al. 2010;
Lancichinetti and Fortunato 2012), or 3) taken into account com-
munity partitions across multiple scales (Betzel et al. 2014b).

The primary aim of this study is to address these limita-
tions, by examining changes in the community structure of
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cortical functional networks in both uMDD and medicated MDD
(mMDD), across multiple resolutions. To achieve this goal, we
identified an optimal resolution parameter for each group
based on the stability of the community structure against small
changes in the resolution parameter, quantified as the varia-
tion of information (Meila 2003). We hypothesized that both
MDD patient groups would exhibit altered community structure
compared with that of HC group.

Materials and Methods
Participants

A total of 134 participants aged 18–65 years were included, con-
taining 46 drug-naive MDD patients, 38 mMDD patients, and 50
age-, gender-, and education-matched HC participants (Table 1).
No significant differences of age, gender, education, and head
motion existed among the 3 groups. All participants were part of
an ongoing depression research project, which was conducted
by Southwest University, China. All the MDD patients were
recruited from the psychiatric department of the First Affiliated
Hospital of Chongqing Medical University and diagnosed with
the Structured Clinical Interview of the DSM-IV by experienced
psychiatric physicians. HC participants were screened without
current or past Axis I or II disorder. All participants had 1) no neu-
rological, organic brain diseases and other psychiatric disorders;
2) no family history of psychiatric disorders on their first-degree
relatives; and 3) no physical contraindication for undergoing mag-
netic resonance imaging (MRI). The medicated participants had
accepted antidepressant treatment before the MRI scan, in most
cases including selective serotonin reuptake inhibitors including
citalopram, escitalopram, fluoxetine, paroxetine, and sertraline;
serotonin–norepinephrine reuptake inhibitors such as venlafax-
ine; serotonin antagonists and reuptake inhibitors such as trazo-
done; tetracyclic antidepressant such as mirtazapine; and tricyclic
antidepressant such as amitriptyline and melitracen-flupentixol.
All patients underwent assessment for depressive symptom by
the 17-item Hamilton Rating Scale for Depression (HRSD) and the
Beck Depression Inventory-II (BDI). The mMDD group had lower
scores on BDI than the uMDD group, but there was no difference
on HRSD and illness duration (Table 1). This study was approved
by the Ethics Committee of Southwest University and First
Affiliated Hospital of Chongqing Medical School. All participants
provided informed written consent.

Image Acquisition

Magnetic resonance images were acquired from a 3T Siemens
TrioTim scanner. The resting-state functional images were
obtained with an echo-planar imaging (EPI) sequence (volumes =
242, TR/TE = 2000/30ms, flip angle = 90°, matrix = 64 × 64,

thickness/gap = 3/1mm, voxel size = 3.4 × 3.4 × 3mm3). The
structural images were from a high-resolution, T1-weighted
magnetization–prepared rapid gradient echo sequence (TR/TE/TI
= 1900ms/2.52ms/900ms, flip angle = 9°, matrix = 256 × 256,
slices = 176, voxel size = 1 × 1 × 1mm3).

Image Preprocessing

All the imaging data were preprocessed by using the Connectome
Computation System pipeline (Xu et al. 2015), which provide a
platform for processing multimodal images by integrating func-
tions of analysis of functional neuroimages (Cox 1996), FreeSurfer
(Dale et al. 1999; Fischl et al. 1999a), and FMRIB Software Library
(Jenkinson et al. 2012). Structural MRI preprocessing included
following steps of removing spatial noise by a nonlocal mean fil-
tering (Xing et al. 2011; Zuo and Xing 2011) and then running
recon-all command in FreeSurfer 5.1 to conduct brain extraction,
structural segmentation, and surface reconstruction.

The preprocessing of functional images was completed by 1)
removing the first 5 EPI volumes; 2) replacing temporal spikes; 3)
slice timing correction; 4) head motion correction; 5) generating
brain mask; 6) normalization of global mean intensity of 10 000;
7) nuisance variable regression (Fox et al. 2005; Lund et al. 2006) by
regressing out mean signals from white matter, cerebrospinal
fluid, Friston-24 head motion parameters (Friston et al. 1996; Yan
et al. 2013) and the global mean signal; 8) band-pass filtering
(0.01–0.1 HZ); 9) removing linear and quadratic trends; and 10) spa-
tial smoothing with a 6-mm full-width at half-maximum filter.
Functional images were coregistered to the native anatomical
images by using boundary-based registration (BBR, Greve and
Fischl 2009) and then were projected onto the fsaverage surface
template and resampled to fsaverage5 surface (Fischl et al. 1999b).
The global mean signal was removed in order to reduce physiolog-
ical noise, such as movement and respiration (Power et al. 2014).

We performed quality control procedure on all imaging data
to ensure the quality of preprocessing. First, visual inspection
was conducted on screenshots of the following steps, including
brain exaction, structural segmentation, surface reconstruction,
and BBR-based functional images registration. Then, the mean
frame-wise displacement (meanFD) was calculated as the head
motion criterion (meanFD < 0.2mm). All the participants
included in the final study passed this criterion.

Functional Network Construction

The whole-brain surface was parceled into 114 regions derived
from a previously established functional parcellation of 17 net-
works (Yeo et al. 2011). Functional connectivity can be esti-
mated from intrinsic spontaneous activity of brain regions
(Biswal et al. 1995; van den Heuvel and Hulshoff Pol 2010), by
computing the Pearson correlations of time series from all pairs
of regions. For each subject group, the connection matrices
obtained from each subject were averaged into a single group
matrix used to detect network communities.

Community Detection

We used a multiscale community detection technique to iden-
tify the community structure of a large-scale functional net-
work for each group (Fig. 1). One widely used strategy is to
maximize connections within each community while minimiz-
ing connections between communities (Newman and Girvan
2004; Rubinov and Sporns 2010; Sporns and Betzel 2016). To
achieve this, we maximize the quality function:

Table 1 Demographic information

Unmedicated Medicated Control

Age (years) 39.46 (18–63) 39.77 (19–66) 40.4 (19–63)
Gender (male/
female)

12/34 10/28 19/31

Education (years) 12.28 ± 3.55 11.13 ± 3.26 12.04 ± 4.11
meanFD (mm) 0.07 ± 0.04 0.06 ± 0.03 0.07 ± 0.03
BDI 23.82 ± 7.71** 18.86 ± 8.59** —

HRSD 23.61 ± 4.33 23 ± 4.33 —

Duration (weeks) 106.11 ± 166.45 119.25 ± 132.45 —

**P < 0.01, obtained by 2-sample t-test.
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A = [Aij] is a weighted and signed functional connectivity
matrix where Aij represents the connection weight between
node i and j estimated by Pearson correlation coefficient
between 2 regional time series. gi is the assignment of the node
i to a community. Modularity maximization is subject to a “res-
olution limit”; that is, it is unable to detect communities smal-
ler than a given scale (Fortunato and Barthelemy 2007;
Fortunato and Hric 2016). Here, we included a tunable resolu-
tion parameter γ to mitigate this problem (Reichardt and
Bornholdt 2006). By adjusting the value of γ from low to high,
one can detect few large-size communities to more numerous
small-size communities, which also corresponds to the

“constant Potts model” (Traag et al. 2011) suitable for networks
based on correlation matrices (MacMahon and Garlaschelli
2015).

We used a Louvain algorithm implemented in a MATLAB
software package (Blondel et al. 2008; Jutla et al. 2011) to per-
form community detection. We varied γ within a range from 0.1
to 0.4 in increments of 0.001. The limits of this range were cho-
sen such that they retrieve community partitions with signifi-
cantly lower (γ = 0.1) or higher (γ = 0.4) numbers of
communities than are included in a standard resting-state net-
work partition (Yeo et al. 2011). For each of 301 settings of the γ

parameter, we performed community detection 10 000 times
and then identified a single consensus partition from the agree-
ment matrix (Lancichinetti and Fortunato 2012).

After deriving the consensus partition at each γ, we selected
a single level of γ for further analysis. Prior work used stability
as a criterion, by looking for a plateau in the number of

Figure 1. Multiscale community detection schematic. (A) The whole-brain surface comprised 114 parcels. A weighted adjacency matrix of functional connectivity of

114 brain regions was constructed for each subject. The matrices of subjects in each group were averaged into a single group-level matrix as the functional network.

(B) The multiscale community detection was applied on each group matrix across a range of resolution parameter values. For each resolution parameter γ, 1) we

repeated community detection 10 000 times and 2) finally obtained a single consensus community structure. (C) We chose the optimal γ based on the resolution sta-

bility, by calculating the averaged variation of information (VI) between the partition of each γ and its two contiguous neighbors (γ(i−1) and γ(i + 1)). Then, we targeted

the broadest range of continuous γ values for which the VI remained equal to zero. For example, in the bottom plot, γ = 0.18 is chosen as the optimal.
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communities (Swanson et al. 2016) or by calculating the simi-
larity of partitions across a range of γ values (Misic et al. 2016).
Here, we adopted an approach similar to the latter criterion by
defining the stability of γ across a small window at each point
across the range. Specifically, we used the variation of informa-
tion (VI) (Meila 2003) to evaluate the variability between differ-
ent partitions computed under small variations of γ for
multiscale resolution stability. First, we calculated the VI aver-
aged between the partition of each γ and each of its two contig-
uous neighbors (γ(i-1) and γ(i + 1)). This measure represents the
stability of the partition when γ is changed slightly. Then, we
targeted the broadest range of continuous γ values for which
the averaged VI remained equal to zero (Fig. 1), taken to repre-
sent the most stable partition across multiscale resolutions.

Network Properties

To further examine the connectivity patterns of each commu-
nity and the relationship between communities, we compared
each community’s intracommunity and intercommunity con-
nectivity strengths based on the community structure from HC
as a reference. First, we averaged all the intracommunity func-
tional connectivity between each pair of nodes within each
community. Second, we averaged all intercommunity func-
tional connectivity between each community and all other
communities. Finally, we compared the averaged intracommu-
nity and intercommunity connectivity among 3 groups.

Statistics

Permutation testing was used to assess differences of network
properties between groups with 10 000 permutations and tested
at significance level 0.05 for a 2-tailed test. Before permutation

test, age, gender, and the meanFD were regressed out from
each network metric as covariates. In order to control any puta-
tive differences in whole-brain connection strength and focus
on community-specific connectivity, individual mean whole-
brain connection strength was also regressed out as covariate.
The False Discovery Rate (FDR) was used for multiple compari-
son correction at α = 0.05 (Benjamini and Hochberg 1995;
Genovese et al. 2002).

Results
Optimal Parameter of Resolution in Multiscale
Community Detection

We identified the optimal resolution parameter γ for each group
based on the resolution stability (see Materials and Methods).
As a result, we identified the optimal γ as 0.238 for HC, 0.173 for
uMDD, and 0.181 for mMDD (Fig. 2).

Community Structures

The community structure of functional network of each group
is shown in Figure 3. Figure 4 illustrates the community assign-
ment of each brain region in 3 subject groups. Overall, the
decomposition of the functional network using our multiscale
community detection method (and the optimal γ) was similar
to previous functional parcellations (Power et al. 2011; Yeo et
al. 2011); we compared our community structures with the 7
networks previously reported in Yeo et al. (2011) by calculating
their mutual information (Fig. 3). For the 3 groups, we obtained a
mutual information of 0.718 (HC), 0.650 (uMDD), and 0.710
(mMDD). Our community detection approach disclosed 12 com-
munities in the HC, 9 communities in uMDD, and 10 communities

Figure 2. Selection of the optimal partition for each group. The plot illustrates the resolution stability VI value (shown as the histogram) and the number of communi-

ties (shown as the continuous line) obtained across a range of resolution parameter γ in 3 subject groups. For 3 groups, the optimal γ was marked in the plot, as 0.238

for the HC, 0.173 for uMDD, and 0.181 mMDD, for which the VI is equal to zero with the broadest range.
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in mMDD, and the community structures of both patient groups
appeared similar to each other while differing from that of the HC
group (Fig. 4). In addition, the mMDD group exhibited some new
features of community structure that differed from the other two
groups.

In particular, in the HC group, the communities we detected
consist of visual association (VA), central (somatomotor/
salience), FPC-A, FPC-B, FPC-C, and DM systems (ignoring
small-sized communities with only 1 or 2 nodes). In contrast,
the uMDD group showed that the VA and FPC-A systems have
partly been fragmented, with parts merging with the central
system (e.g., bilateral occipito-temporal sulcus, parieto-
occipital gyrus, and superior parietal lobe from VA and bilateral
posterior part of superior frontal sulcus, intraparietal sulcus,
posterior part of inferior temporal gyrus, left inferior part of
precentral sulcus, left anterior part of inferior frontal sulcus,
and right posterior part of inferior frontal sulcus from FPC-A).
FPC-B was split into 2 parts, one of which joined the DM system
including the bilateral middle frontal gyrus and right angular
gyrus. For the DM system, some regions including the bilateral
superior temporal sulcus and the left inferior frontal gyrus
formed an independent community, and the left posterior
region of inferior parietal lobule combined with FPC-C. In addi-
tion, the bilateral medial orbital gyrus and temporal pole inte-
grated into one community.

However, mMDD exhibited some new features of commu-
nity structure in FPC-A and FPC-B that differed from the other 2
groups (Fig. 4). A part of FPC-A (including bilateral posterior
part of inferior temporal gyrus, intraparietal sulcus, left poste-
rior part of superior frontal sulcus, and left inferior frontal sul-
cus) and FPC-B (including bilateral posterior part of inferior
temporal sulcus, lateral frontopolar cortex, middle part of

medial superior frontal gyrus, left posterior middle frontal
gyrus, and left anterior angular gyrus) combined together with
bilateral posterior part of anterior cingulate cortex into an inde-
pendent community. The right posterior region of inferior pari-
etal lobule split from the DM system to join the FPC-C. In
addition, some single nodes merging with other large commu-
nities in uMDD, like left orbital sulcus and right middle part of
ACC, became independent in mMDD.

Intracommunity and Intercommunity Connectivity

To further determine the origin of the changes in the commu-
nity structure in uMDD and mMDD patients, we examined
intracommunity and intercommunity connectivity of each
community based on the community structure of HC (see
Materials and Methods for details). No significant differences of
intracommunity connectivity among the 3 groups were found
(Fig. 5). However, several communities in the uMDD group,
including the central, FPC-A, FPC-B, and FPC-C systems, exhib-
ited increased intercommunity connectivity compared with the
HC (central, P = 0.004; FPC-A, P = 0.002; FPC-B, P = 0.006; FPC-C,
P = 0.040; FDR corrected) and mMDD except FPC-A system (cen-
tral, P = 0.001; FPC-B, P = 0.007; FPC-C, P = 0.05; FPC-A, P = 0.086;
FDR corrected). Meanwhile, the mMDD group showed reduced
intercommunity connectivity in the DM system compared with
the other 2 groups (HC, P = 0.003; uMDD, P < 0.001; FDR
corrected).

Discussion
Using a multiscale community detection approach, we identi-
fied the most stable community partitions of functional networks

Figure 3. The community structures for 3 groups and the mapping with Yeo’s 7 network. The upper panel shows community structures of functional networks of 3

groups. Twelve communities for HC, 9 communities for uMDD, and 10 communities for mMDD were separately identified. The bottom panel illustrates how our parti-

tions compare with the 7 networks of Yeo et al. (2011), represented by 7 different colors. VN: visual network; SMN: somatomotor network; DAN: dorsal attention net-

work; VAN: ventral attention network; LMN: limbic network; FPN: frontoparietal network; DMN: default mode network; TEM: TempPar (independent regions not

belong to 7 networks).
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for each group. Importantly, we could delineate patterns of reorga-
nization in the community structure of functional brain networks
in MDD patients with or without antidepressant treatment. In par-
ticular, we observed disturbances in the community structure
of VA and DM systems that were similar in uMDD and mMDD
groups, while also identifying reconfigurations of the FPC sub-
systems that differed in the 2 patient groups. Moreover, further
analysis of intracommunity and intercommunity connectivity
revealed that changes in intercommunity connectivity mainly
accounted for the observed changes in community organiza-
tion in MDD patients. Specifically, in the uMDD group, the
intercommunity connectivity in the central system and 3 FPC
subsystems was stronger than both the HC and medicated
patients (except the FPC-A system). The mMDD group addition-
ally showed attenuated intercommunity connectivity in the
DM system compared with the other 2 groups.

Multiscale Community Detection

Previous studies have demonstrated that structural and func-
tional human brain networks are organized into a modular
architecture (Hagmann et al. 2008; He et al. 2009; Meunier et al.
2009; Power et al. 2011). Functional communities are robustly
identified with a variety of community detection methods
(Sporns and Betzel 2016) and the resulting communities have
been shown to correspond to functional brain systems that are
coherently engaged in both rest and task conditions (Crossley
et al. 2013; Bertolero et al. 2015). Thus, the community organi-
zation of large-scale human functional networks appears to
reflect underlying neurobiological mechanisms, and variations

in community structure may signal significant changes in the
brain’s functional capacities.

Although examining the community organization of human
brain networks has been extremely fruitful for uncovering the
organizing principles of the human brain, methodological lim-
itations of community detection methods such as resolution
limit and degeneracy of optimal solutions of community struc-
ture have so far remained largely unaddressed (Fortunato and
Barthelemy 2007; Good et al. 2010; Lancichinetti and Fortunato
2012; Fortunato and Hric 2016). In the present study, we
addressed some of these limitations by identifying an optimal
resolution parameter γ associated with a highly stable commu-
nity structure based on resolution stability measure for each
group. The community structure of the control group was
broadly similar to that identified in previous studies (Power et
al. 2011; Yeo et al. 2011); yet, we found characteristic patterns
of reconfiguration of functional networks, which differed
among unmedicated and medicated patient groups.

Changes in Functional Networks in uMDD

We compared the community structure of MDD groups with
the HC to locate disease-related changes in organization of
functional networks. Notable differences were found in the
composition of communities, especially in the DM, FPC-B, and
VA systems. Each of them fragmented into 2 parts in the uMDD
group compared with the healthy group. One segregated part of
FPC-B joined the DM system, and one part of VA together with
FPC-A joined the central system. This reconfiguration of com-
munity structure was associated with increased intercommu-
nity connections, like the central system, 3 FPC subsystems in

Figure 4. Community assignment of 114 brain regions. The left alluvial diagram (modified from https://github.com/mbojan/alluvial) illustrates changes of community

assignments of brain regions across 3 groups. Each block represents a community and each line corresponds to a brain region. For example, comparing to HC,

Community 1 fragmented to 2 parts, one of which joined Community 2 in uMDD and mMDD. The right image shows the brain surface mapping of community parti-

tions. The color-coding is as same as the left diagram, corresponding to distinct communities. Major communities in HC includes (1) visual association (VA), (2) cen-

tral system, (4) frontoparietal control-A (FPC-A), (9) frontoparietal control-B (FPC-B), (10) frontoparietal control-C (FPC-C), (11) DM system.
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uMDD. These findings support the “hyperconnectivity hypothe-
sis” of depression, which suggests that increased connectivity
might be a biomarker of the mood disorder (Perrin et al. 2012).
This is also consistent with a recent meta-analysis, which con-
cluded that MDD involved imbalanced connectivity among
functional networks, for example, DM, FPC, and attention net-
works (Kaiser et al. 2015).

The alterations of the DM, FPC, and central systems (overlap
with salience system) have been widely reported in MDD
(Mulders et al. 2015) and with high power for discriminating
MDD from HC (Qin et al. 2015a, 2015b). Disturbed DM functional
connectivity is related to excessive negative rumination in
MDD (Zhu et al. 2017), which may underlie the negative inter-
nal processes occurring in MDD. The FPC system supports
tasks/cognition control (Corbetta and Shulman 2002; Fox et al.
2005), which is suggested to be associated with maladaptive
cognitive control in MDD, like controlling over attention and
emotion (Joormann and Gotlib 2010; Joormann and Quinn
2014). The salience system (ventral attention system) is
involved in detecting salient stimuli (Seeley et al. 2007), which
is known to be affected in MDD (Peckham et al. 2010; Disner et
al. 2011; Beevers et al. 2015). Our findings support the neurocog-
nitive models of MDD, which propose that the symptoms of
MDD can be attributed to disturbed connections of the FPC net-
work with other networks involving attention, emotion, and
internal mentation (Disner et al. 2011; Kaiser et al. 2015; Rayner
et al. 2016). The imbalanced connectivity between FPC and DM
results in the domination of self-focused introspection over

external orientation. The disturbed connectivity between FPC
and salience system causes the disruption of cognitive control
of biased attention. Here, the altered community structure and
increased connectivity of 3 FPC subsystems imply that FPC
plays a vital role in the pathophysiology of MDD. Their separate
recombination with the DM and central systems may reflect
their different roles in abnormal control on emotional internal
thought and external attention (Manoliu et al. 2014; Kaiser et
al. 2015).

The central system (salience and somatomotor systems)
showed stronger intercommunity connectivity in uMDD. This
hyperconnectivity may explain the community recombination
of the central system with parts of the VA system and the FPC-
A system (Fig. 4). The shifted part of VA included the superior
parietal, tempo-occipital sulcus, and parieto-occipital gyrus, are
respectively in 2 visual processing pathways supporting cogni-
tive processing of visual input, as the ventral and dorsal visual
pathway (Goodale and Milner 1992). Studies suggested that
altered occipital regions were related to negatively biased pro-
cessing of visual inputs in uMDD (Graham et al. 2013; Cheng et
al. 2016). Here, the recombination of the central system with a
part of the VA system may reflect abnormal control of attention
in visual processing in MDD, which lead to negative perception
(Peckham et al. 2010; Zhou et al. 2010; Desseilles et al. 2011;
Disner et al. 2011; Beevers et al. 2015; Tozzi et al. 2017). In addi-
tion, the somatomotor system has been found to be associated
with depression severity in MDD, suggesting that it was related
to abnormal pain processing (Tadayonnejad et al. 2015). The

Figure 5. The intracommunity and intercommunity connectivity strengths. The intracommunity connectivity strength was quantified as the averaged functional con-

nectivity between each pair of nodes within each community. The intercommunity connectivity strength was calculated as the averaged functional connectivity

between the nodes within a community and all the other nodes outside the community. There was no significant difference in intracommunity connectivity among

3 groups. But significant differences were found in intercommunity connectivity (shown in rectangles of bottom panel). For C2 (central), C9 (FPC-B), C10 (FPC-C),

uMDD showed increased intercommunity connectivity than the other 2 groups. For C4 (FPC-A), uMDD showed increased connectivity than HC. For C11 (DM), mMDD

had lower connectivity strength than others. The gray dots represent outliers.
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dysfunction of somatomotor regions may be associated with
physical symptoms like pain and fatigue in MDD (Bair et al.
2003). Together, hyperconnectivity of the central system may
underlie nonemotional symptoms involving biased attention
and somatosensation.

Effects of Medication on Network Topology of MDD

Several studies have reported that various kinds of antidepres-
sants have heterogeneous effects on functional connectivity
across the visual, DM, salience, and cognitive control networks
(Dichter et al. 2015; Gudayol-Ferre et al. 2015; Wang et al. 2015).
However, most of these studies investigated seed-based con-
nectivity, without addressing the whole-brain system level.
Using network analysis, we found that antidepressants affected
the community structure mainly by modulating patterns of
intercommunity connectivity, which more closely resembled
those found in HC. In mMDD patients, decreased intercommu-
nity connectivity appeared in almost all affected systems as
opposed to increased intercommunity connections in unmedi-
cated patients (except FPC-A), which may indicate normaliza-
tion/restoration effects of medication. This normalization
parallels recent findings showing that antidepressants can
renormalize increased cortical thickness of widespread regions
in depressive patients (Bansal et al. 2017) and could reduce
increased functional connectivity of orbitofrontal cortex with
distributed regions (Cheng et al. 2016). However, the commu-
nity structure in medicated patients was largely the same as
that of uMDD, except that FPC-A and FPC-B systems combined
together. But the community structures of mMDD and the HC
appear more similar to Yeo’s network partition (Yeo et al. 2011).
We speculate that antidepressants may contribute more to
adaptive connectivity changes between communities rather
than the general organization of the community structure.

A key finding of the antidepressant effect is that the FPC
subsystems exhibited alterations in both community organiza-
tion and connectivity. Previous studies have found that depres-
sion treatment could change functional connectivity of FPC
(Aizenstein et al. 2009; Perrin et al. 2012; Liston et al. 2014).
Perrin et al. (2012) found a reduced average global functional
connectivity of dorsolateral prefrontal cortex after electrocon-
vulsive therapy, which is consistent with our findings. Both the
FPC and the DM systems exhibited reduced functional connec-
tivity after antidepressant administration in healthy partici-
pants (McCabe et al. 2011; van de Ven et al. 2013). As we have
shown that the FPC system is vital in the pathophysiology of
MDD, we propose that it is also a potential therapeutic target of
antidepressant medication. As the number of studies about the
antidepressant effect on the FPC system is limited, further
studies are needed.

A growing body of studies have reported altered connections
by antidepressant treatment within DM system or between DM
and other systems, like FPC system or limbic system, implying
its prominent involvement in depression (Dichter et al. 2015;
Gudayol-Ferre et al. 2015). Of note, in our findings, the inter-
community connectivity of the DM system in mMDD decreased
below the level of the control group and uMDD. This may imply
a compensatory mechanism of antidepressants on the DM sys-
tem. In MDD patients, the connectivity of the DM system was
associated with the antidepressant response (Pizzagalli 2011;
Wang et al. 2015), and whole-brain connectivity of regions in
the DM system can be reduced by the antidepressant (Fu et al.
2015; Wang et al. 2015). Its alteration of intracommunication
and intercommunication is associated with MDD remission

(Qin et al. 2015a, 2015b). However, some studies suggested that
the normalization effect of antidepressants only took part in
certain subsystems of the DM system (Li et al. 2013; Shen et al.
2015). Additional work is needed to provide more solid conclu-
sions and interpretations regarding the role of antidepressants
in modifying functional brain connectivity.

Limitations

Several limitations in the current study need to be noted. First,
functional networks using only cortical regions are explored in
this study. However, subcortical regions also play an important
role in the pathophysiology of MDD (Heller 2016). Second, while
other parcellations may be explored, our choice of a previously
published parcellation based on data from 1000 participants
(42) was based on its consistency with other canonical maps of
brain functional systems (Power et al. 2011) and wide usage in
the field (Baker et al. 2014; Betzel et al. 2014a; Yeo et al. 2015).
Third, the antidepressant treatment is quite heterogeneous.
The type of medication and treatment duration differs across
subjects, which does not allow us to directly examine the
effects of specific drugs or drug regimens on MDD. Previous
studies have also incorporated diversely medicated patients
because the subjects are patients that limits the sample size
(Heller et al. 2013; Li et al. 2013; Qin et al. 2015a, 2015b; Gong et
al. 2018). Studies comparing different medications have found
similar effects on brain functional connections (Lisiecka et al.
2011; McCabe and Mishor 2011). In addition, many studies using
different medications have found a convergent normalization
effect on elevated functional connectivity, which are in line
with our results. This suggests that there might be a general
normalization effect across antidepressant treatments (Lisiecka
et al. 2011; McCabe and Mishor 2011; Li et al. 2013; Wang et al.
2015; Fu et al. 2015; An et al. 2017). Thus, we included all the
types of drugs to see if there is a general modulation effect of
treatments. In order to characterize drug effects on functional
connectivity more rigorously, longitudinal design with more
uniform patient groups and drug treatments are needed in the
future.

Conclusion
In the current study, we examined the community structure of
cortical functional networks in uMDD, mMDD, and HC using a
multiscale community detection method. Although uMDD and
mMDD patients showed similar reorganization of community
structure in VA and DM systems, the FPC subsystems, in partic-
ular, reconfigured differently in the 2 patient groups. uMDD
patients were characterized by intercommunity connectivity
increased in the central system and 3 FPC subsystems implicat-
ing altered communication among multiple large-scale sys-
tems, which appears partially restored or overly compensated
in mMDD patients. Together, these findings provide a global
picture of community structure alterations of cortical func-
tional networks in uMDD and mMDD patients and suggest
potential medication effects in restoring disease-related net-
work alterations.
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