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Abstract: The extracellular class of gadolinium-based contrast agents (GBCAs) is an essential tool for
clinical diagnosis and disease management. In order to better understand the issues associated with
GBCA administration and gadolinium retention and deposition in the human brain, the chemical
properties of GBCAs such as relative thermodynamic and kinetic stabilities and their likelihood of
forming gadolinium deposits in vivo will be reviewed. The chemical form of gadolinium causing
the hyperintensity is an open question. On the basis of estimates of total gadolinium concentration
present, it is highly unlikely that the intact chelate is causing the T1 hyperintensities observed in the
human brain. Although it is possible that there is a water-soluble form of gadolinium that has high
relaxitvity present, our experience indicates that the insoluble gadolinium-based agents/salts could
have high relaxivities on the surface of the solid due to higher water access. This review assesses the
safety of GBCAs from a chemical point of view based on their thermodynamic and kinetic properties,
discusses how these properties influence in vivo behavior, and highlights some clinical implications
regarding the development of future imaging agents.

Keywords: gadolinium-based contrast agents; thermodynamic stability; kinetic inertness; gadolinium
deposition; T1 hyperintensity

1. Introduction

Contrast agents in diagnostic magnetic resonance imaging (MRI) or magnetic res-
onance angiography (MRA) are intravenous drugs used to enhance the contrast of MR
images for clinical diagnosis and disease monitoring. Gadolinium-based contrast agents
(GBCAs), the most widely used MRI contrast agents, have been instrumental in research
and clinical applications for the detection of various pathologies including cancer, infec-
tions, bleeding, and neurological disorders. Since approval of the first GBCA in 1988, Bayer
estimated 450 million doses have been administered to patients worldwide [1].

All clinically approved GBCAs are neutral or negatively charged with nearly identical
biodistribution. GBCAs are generally extracellular fluid agents and rapidly equilibrate in
the extracellular space. The pharmacokinetic parameters (clearance rate, distribution and
elimination half-life and steady state distribution volume) that characterize the distribution
and elimination of the agent can be determined by fitting the plasma concentration vs.
time data to the standard two-compartment open model. As expected, based on their
highly hydrophilic nature, GBCAs are eliminated by renal filtration with a half-life of
approximately 90 min in healthy individuals [2–10]. It is worth noting that agents with
hydrophobic aromatic substituents (benzyloxymethyl or p-ethoxybenzyl) on the ligand
framework are also partly cleared by hepatobiliary excretion, and consequently, these
complexes are used as liver specific agents (Eovist, Multihance (Europe)).
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Although longer than normal, elimination half-life was noticed early on in patients
with renal failure; this had not raised any concerns until about a decade later. The first
published report describing nephrogenic systemic fibrosis (NSF) appeared in 2000 [11].
NSF is a devastating systemic disease characterized by the formation of scar tissue (fibrosis).
Connection between kidney failure and contrast-enhanced MRI in the etiology of NSF was
made in 2006 [12,13]. Reports of GBCA-linked NSF led to safety-related labeling changes
with class warning and contraindications in patients with poor renal function. These
safety measures eliminated NSF altogether. However, the safety of GBCAs came under
close scrutiny again in 2014, when high MRI signal intensity on unenhanced T1-weighted
brain images of patients who had repeated exposure to GBCAs was described [14]. This
observation was confirmed in numerous subsequent studies [15–18] and the presence of
gadolinium deposition was confirmed using inductive coupled plasma mass spectroscopy
(ICP-MS). These reports led to a new class warning for all GBCAs and restriction of the
use/suspension of the authorization of some linear GBCAs by the U.S. Food and Drug
Administration (FDA) and European Medicines Agency (EMA). In their statements, the
FDA and the International Society of Magnetic Resonance in Medicine (ISMRM) [19]
stressed other than in NSF, that there is currently no evidence that gadolinium deposition
in the brain and other tissues has caused any harm to patients.

It is our belief that despite its shortcoming, the extracellular class of GBCAs is still
among the safest drugs ever introduced. However, the preclinical and clinical reports on
GBCA deposition in various tissues indicate that there is room for improvement and these
observations should be taken into account in the design of future GBCAs. This review
assesses the safety of GBCAs from a chemical point of view based on their thermodynamic
and kinetic properties, discusses how these properties influence in vivo behavior, and
highlights some clinical implications regarding the development of future imaging agents.

2. Thermodynamic Stability and Kinetic Inertness of GBCAs

Gd3+ uniquely has a symmetric seven electron ground state (8S7/2) which imparts long
electronic spin relaxation time (T1e) to these unpaired electrons, making it highly efficient
at enhancing both the longitudinal (R1) and transverse (R2) relaxation rates (Ri = 1/Ti,
i = 1, 2, where T is the relaxation time) of water proton spins. Gd3+ is primarily utilized to
shorten the longitudinal (T1) relaxation time; therefore, GBCAs are known as T1 contrast
agents. Gd3+ has no natural biological role. It has an ionic radius of 0.99 Å, approximating
the size of Ca2+ but with a higher charge. It can thus efficiently compete with Ca2+ in
biological systems for Ca2+-binding enzymes, disrupting critical Ca2+-signaling pathways.
In pH > 6 solution, free Gd3+ either hydrolyzes to insoluble oxides and hydroxides or
quickly complexes with ions such as carbonate and phosphate to form stable precipitates.
In the design of contrast agents for MRI, Gd3+ is enclosed in a ligand to form a complex
that is expected to remain chelated in the body and be excreted intact. Nine GBCAs have
been approved by FDA. All ligands used as components of approved GBCAs are based
on two octadentate polyaminocarboxylate type chelators: DOTA (macrocyclic) and DTPA
(linear) (Figure 1). Gd3+ has a coordination number of 9; thus, all GBCAs contain a metal-
bound inner sphere water molecule occupying the ninth coordination site. Although the
relaxivity, a measure of the GBCA’s effectiveness at enhancing the relaxation times of the
water protons, is proportional to the number of coordinated water molecules (q), increasing
q can result in a decrease in complex stability. Currently, all approved GBCAs (Figure 2)
have only one inner sphere water molecule. Gadopiclenol, a macrocyclic pyclen-based
contrast agent going through clinical trial, is an exception with a q = 2 (Figure 3). The
exact prediction of complex stability in vivo is challenging. Physical properties such as
thermodynamic and kinetic stabilities gathered from in vitro and in vivo distribution data
allow a certain degree of prediction and explanation for the in vivo behavior of GBCAs.
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Figure 2. FDA-approved GBCAs utilized in the clinical practice.
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Figure 3. Structure of Gadopiclenol, a macrocyclic pyclen-based contrast agent.

The thermodynamic stability of the complex is characterized by the thermodynamic
stability constant, which is the equilibrium constant for the reaction between the metal ion
and the fully deprotonated ligand (Equation (1)).

Ln3+ + L 
 LnL

KLnL =
[LnL]
[Ln][L]

(1)

However, in aqueous solution, depending on the pH and its protonation constants
(basicity), the ligand will be fully or partially protonated. This means that the formation
of the metal complex is essentially a competition between protons and the metal ion
for the basic donor sites of the ligand. It is also important to emphasize that the true
thermodynamic stability of a complex at a given pH is characterized by the conditional
stability constant (KC), which takes into account the protonation of the ligand. Thus,
taking into account ligand protonation, the thermodynamic stability of a lanthanide chelate
with one metal-bound water molecule (inner sphere water molecule) is characterized by
Equation (2):

Ln(H2O)3+
8 + HnL 
 LnL(H2O) + nH+ + 7H2O

KC
LnL = [LnL]

[Ln][L]total
= [LnL]

[Ln][L]∝H
= KLnL

∝H

(2)

where [L]total is the total concentration of the free and protonated ligand species which
is not bound to the lanthanide ion and αH is the total/equilibrium ligand concentration
ratio and can be expressed using the pH and the protonation constants of the ligand as
αH = 1 + K1[H+] + K1K2[H+]2 + K1K2 . . . Kn[H+]n. Thus, if the ligand is protonated at
a particular pH, the conditional stability of a complex at that pH will always be lower
than its thermodynamic stability (KC < K) and will decrease as the solution becomes more
acidic and the ligand undergoes further protonation. Therefore, the thermodynamic sta-
bility constant is inadequate by itself to predict the behavior of GBCAs. In the case of
Omniscan, the relatively low conditional stability constant prompted addition of excess
ligand as the calcium complex of DTPA-bis(methylamide) (Caldiamide), into Omniscan
formulation to shift the equilibrium to the complex formation. Despite this, Omniscan
is tied to the largest number of NSF cases and has higher gadolinium levels remaining
in the body after administration than any other GBCA [20,21]. There is a more or less
linear relationship between the basicity of the ligand donor atoms and the thermodynamic
stability of the resulting metal complexes as more basic ligands generally form more sta-
ble complexes [22]. Although both linear and macrocyclic ligands used in GBCAs have
8 donor atoms, macrocyclic complexes exhibit a slight increase in thermodynamic stability
compared with the linear ones. This is known as the macrocyclic effect. Macrocyclic ligands
with a 12-membered DOTA chelate ring structure are inherently more pre-organized than
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their open-chain analogs with an internal cavity with oxygen and nitrogen binding sites.
The free macrocyclic ligand has the same or nearly the same solution conformation as
the gadolinium-bound chelate. It takes less energy for the macrocyclic ligand to convert
into the conformation necessary for complex formation than the linear ligand. The basic
mechanism for the complex formation of polyamino polycarboxylate ligands with trivalent
metal ions has been recognized for over 50 years [23]. The negatively charged carboxyl
groups of the ligand rapidly displace some of the inner sphere water molecules of the metal
ion and results in the formation of a protonated, “out-of-basket” intermediary complex in
which the metal is coordinated by only the carboxylates of the ligand and water molecules.
This is followed by the deprotonation and concomitant rearrangement of the protonated
intermediate to the final “in-cage” complex. This latter step determines the rate of the
entire process. It is generally very fast for flexible open-chain ligands such as EDTA and
DTPA that can easily wrap around the metal ion [24]. However, the deprotonation and
simultaneous rearrangement of the intermediate can be rather slow for rigid ligands. These
include rigidified open-chain chelators such as trans-cyclohexanediamine tetraacetic acid
(CDTA) and cyclen (1,4,7,10-tetraazacyclododecane) derivatives such as DOTA. Although
the complexation reaction with linear ligands happens in a matter of seconds or millisec-
onds, macrocyclic complexation is a more time-consuming process and can take several
hours or even days depending on the structure of the ligand and reaction conditions (pH,
temperature) [22,25,26].

The kinetics of dissociation for a lanthanide complex (LnL) is described by Equation (3).

− d[Ln(L)]t
dt

= kobs[Ln(L)]t (3)

Kinetic inertness is characterized by the experimentally observed rate constant of dis-
sociation, kobs or the corresponding half-life (t1/2). For a first order reaction, t1/2 = ln2/kobs.
There are several possible mechanisms for the dissociation. These include spontaneous,
acid catalyzed, base catalyzed, metal ion assisted (transmetallation) and ligand assisted
pathways [27,28]. Transmetallation describes the displacement of the lanthanide from its
chelate by another metal ion. In general, open-chain complexes dissociate much faster
than macrocyclic ones. In vivo, linear complexes undergo dissociation by acid catalyzed,
endogenous metal ion (Zn2+, Cu2+, Ca2+) and ligand (phosphate, carbonate, citrate) as-
sisted mechanisms. The macrocyclic complexes are much more inert. They dissociate
predominantly by proton assisted dissociation even at pH 7. The first step in the proton
assisted dissociation is the protonation of the complex, generally at one of the oxygens
of a coordinated carboxylate. This is followed by the transfer of the proton to one of
the nitrogens to form a protonated intermediate in which the metal is coordinated to the
carboxylates only [22]. This intermediate then can either undergo full dissociation or can
reform the complex [25]. Dissociation kinetic studies are usually performed in strongly
acid solutions often under different experimental conditions. There is also a slight dis-
crepancy in the reported stability constant values, depending on different experimental
conditions used by different research groups. Despite the lack of standardization, the
universal observation is that the kinetic stability of the FDA approved macrocyclic chelates
is far superior to that of the linear chelates. The significantly higher kinetic inertness of
macrocyclic GBCAs compared with the linear GBCAs undoubtedly contributes to the lower
retention of macrocyclic GBCAs in tissues.

Thermodynamic and kinetic properties of approved GBCA are summarized in Table 1.
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Table 1. Properties of approved GBCA. The t1/2 values were calculated for the specific acidic
condition of [HCl] = 0.1 M HCl: linear agent condition also has [Zn2+] and [Cu2+] to account for
metal exchange reaction.

GBCA
Commercial

Names

Common
Name

US Ap-
proval
Year

US
Application
and Status

Relaxivity at 20
MHz, 25 ◦C
(mM−1s−1)

Thermodynamic
Stability

logKGd(L) (25 ◦C)

Kinetic
Inertness; t1/2
(25 ◦C, 0.1 M

HCl)

Formulation a

[29,30]

Magnevist Gd-DTPA,
Gadopentetate 1988

Discontinued;
CNS, body,

head and neck
4.69 [31] 22.46 (0.1 M KCl)

[22]
7.9 × 10−3 s

[32]
0.5 M, 0.2 mol%

excess ligand

Omniscan
Gd-DTPA-

BMA,
Gadodiamide

1993 CNS, body 4.39 [31]

16.85 (0.1 M
NaCl)

16.64 (0.15 M
NaCl) [22]

0.66 s [32] 0.5 M, 5 mol%
excess ligand

Optimark

Gd-DTPA-
BMEA,

Gadoverse-
tamide

1999 Discontinued;
CNS, liver

5.7 (plasma, 37 ◦C)
[33]

16.84 (0.1 M
NaClO4) [22] <5 s [34] 0.5 M, 10 mol%

excess ligand

Multihance Gd-BOPTA,
Gadobenate 2004 CNS, MRA

9.7 (plasma, 39 ◦C)
[7]

5.2 [31]

22.59 (0.1 M KCl)
21.91 (0.15 M

NaCl) [22]
<5 s [34] 0.5 M, no excess

ligand

Eovist
Primovist

EOB-DTPA,
Gadoxetate 2008 Liver 8.7 (39 ◦C, 0.47 T)

[8] 23.46 [8] <5 s [34] 0.25 M, 0.5 mol%
excess ligand

Ablavar
Vasovist

MS-325,
Gadofosveset 2008

Product not
available;

MRA

6.6 (37 ◦C) [31]
33.4–45.7 (plasma,

0.47 T) [4]

22.06
23.2 (0.1 M

Me4NCl) [35]
N/A b

0.25 M,
0.13 mol% excess

ligand

Prohance Gd-HP-DO3A,
Gadoteridol 2003 CNS, head and

neck 3.7 (40 ◦C) [31] 23.8 [36] 36 years
(pH 5.3) [37]

0.5 M, 0.1 mol%
excess ligand

Gadovist
Gadavist

Gd-BT-DO3A,
Gadobutrol 2011 CNS, head and

neck
5.2 (plasma 37 ◦C)

[3] 21.8 [38] 65 years
(pH 5.3) [37]

1 M, 0.1 mol%
excess ligand

Dotarem
Clariscan

Gd-DOTA,
Gadoterate 2013

CNS (adult,
pediatric,
neonates)

4.74 [31] 25.6 [9]
24.7 [32]

85 days (pH 2)
[32]

37 years (pH
5.3, 37 ◦C) [37]

0.5 M, 0.1 mol%
excess

ligand [9] c

a Formulation: Formulation of commercial GBCAs, % excess free ligand. b kobs was not reported. The kinetic
inertness of Ablavar was estimated to be 10–100 times higher than that of Magnevist from metal exchange
reactions [35]. c Some reports indicate the absence of free ligand.

3. When Does Kinetic Inertness Matter?

Upon entering the body, GBCAs are exposed to endogenous metal ions (Cu2+, Zn2+),
proteins, and biologically available anions such as phosphates and carbonates, all of
which have the potential to assist in gadolinium complex dissociation. To minimize the
dissociation, gadolinium complexes must be kinetically inert under this condition. In
healthy humans, GBCAs have an elimination half-life of ~90 min [2–10]. The short plasma
residence time means that thermodynamic equilibrium is not established, and kinetic
inertness determines whether the complex would dissociate at this time. Models developed
to predict in vivo fate of GBCA based on only thermodynamic stability constants especially
fail when applied to macrocyclic GBCA [39–42]. They provide an incomplete picture and
also misguided prediction: based on thermodynamic stability, Multihance and Magnevist
are predicted to be slightly more stable than Gadavist, a macrocyclic agent, an observation
not supported by both in vitro and in vivo experiments [43,44]. The results of these in vivo
preclinical experiments were similar to human studies [21,45] where they studied the
concentration of GBCAs in bone of patients who underwent hip arthroplasty with prior
administration of Prohance or Omniscan. Omniscan had significant higher bone tissue
retention than Prohance. Gadolinium deposition reports are in agreement with in vitro
dissociation kinetic data. In an experiment measuring gadolinium released in human
serum at 37 ◦C, the amount of gadolinium disassociation was found to follow this order:
DTPA bis(aminde)s > DTPA and side arm substituted DTPA > backbone substituted DTPA.
Predictably, there was negligible gadolinium release from macrocycic agents.

However, thermodynamic stability plays a more important role in pathological con-
ditions where GBCAs excretion is affected (e.g., patients with impaired kidney function)
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and the complex stays in the body longer than in healthy individuals [46]. The impor-
tance of thermodynamic stability is well illustrated in experiments [47] where Ominiscan,
Magnevist, and Dotarem were incubated in cell culture medium (0.91 mM phosphates) for
24 h. The long incubation time allowed a thermodynamic equilibrium to be established
between the free Gd3+ and the ligand. The amount of free metal released and precipitated
as insoluble phosphate salt was exclusively determined by the thermodynamic stability
constant. Omniscan with the lowest thermodynamic stability produced a larger amount
of precipitation and thereby exhibited a higher degree of dissociation than Magnevist
and Dotarem. Therefore, we believe that in situations when a pseudo-equilibrium can
be established in vivo, complexes with low thermodynamic stability may generate more
gadolinium deposit than ones with higher thermodynamic stability.

4. What Structural Features Govern Kinetic Inertness?

Over the years, a substantial amount of research has been invested into studying
the factors that influence the kinetic properties of lanthanide complexes. As a result,
it is now clear that the kinetic behavior of the complex is determined by the rigidity
of the ligand framework and the presence and basicity of possible protonation sites in
the complex. A more rigid ligand framework translates into higher kinetic inertness
because the conformational changes necessary for the release of the metal ion from the
coordination cage take place slower in a more rigid structure [48]. All DTPA and DOTA
based complexes contain five membered chelate rings, which are essential to the overall
rigidity. Six membered chelate rings can be incorporated into the structure by inserting an
extra CH2 unit into the ligand backbone or sidearm. This results in faster exchange rate
of the inner sphere (metal-bound) water molecule and thereby higher relaxivity because
of the increased steric hindrance around the metal-bound water molecule. However, this
structural modification generally also results in a significant decrease in the kinetic inertness
because 6-membered chelate rings are more flexible than the 5-membered ones. Chelate
rings (not to be confused with the macrocyclic ring of DOTA) are structural units composed
of the metal ion, two ligand donor atoms, and a bridge linking the donor atoms, usually a
2 or 3-carbon chain for 5- and 6-membered chelate rings, respectively [49,50].

The higher kinetic inertness of DOTA based complexes is largely due to the more rigid
macrocyclic backbone of DOTA in comparison with the flexible open DTPA derivatives.
The most common way to improve kinetic inertness of both linear and macrocyclic com-
plexes is the introduction of substituents to the ligand backbone and/or acetate sidearms.
These substituents increase rigidity by increasing the steric bulk as well as by imparting
chirality to the ligand backbone and/or sidearm, which results in a preference for a spe-
cific coordination geometry. These effects slow down internal conformational motions
thereby increasing kinetic inertness [48]. The effect of substitution is well illustrated by the
improved kinetic inertness of Multihance and Eovist over Magnevist (Table 1). Likewise,
the rigidity of DOTA can significantly be enhanced by placing alkyl substituents on the
macrocyclic and/or sidearm methylene carbons [51–53]. The effect of these substitutions
on the kinetic inertness of DOTA complexes is much more dramatic in comparison with the
open-chain DTPA chelates. For example, placing four ethyl substituents in S-configuration
at 2, 5, 8, and 11 positions of the macrocyclic ring in Gd-DOTA prevents the intercon-
version of the square antiprism (SAP) and twisted square antiprism (TSAP) coordination
isomers, thereby allowing their separation and characterization. The kinetic inertness of
these complexes was measured in 1 M HCl and compared with that of Gd-DOTA. Virtually
no decomplexation was observed for the SAP isomer and only minimal amount of metal
was released from the TSAP isomer after 487 h. The half-life of Gd-DOTA under these
acidic conditions was about 25 h [54]. A related approach for increasing the rigidity of the
complex, albeit without inducing chirality, is the incorporation of a pyridine ring into the
ligand backbone. It was shown some time ago that lanthanide complexes of the heptaden-
tate ligand PCTA (3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene-3,6,9-triacetic
acid), which contain a pyridine moiety fused to the cyclen ring, have surprisingly high
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kinetic inertness for a bishydrated chelate [55]. Both of these principles (pyridine fusion and
sidearm substitution) were applied in the design of Gadopiclenol, a high relaxivity GBCA
currently in human clinical trials [56–59] to achieve excellent kinetic stability. A 2- to 3-fold
greater relaxivity enhancements compared with current GBCA were achieved through a
combination of two coordinating water molecules and slower molecular motion [57].

For DTPA-based GBCAs, a similar improvement in inertness can be achieved by at-
taching substituents to either the acetate arms or diethylenetriamine backbone of the DTPA
ligand. As mentioned earlier, in the cases of Ablavar, Multihance, and Primovist/Eovist,
the hydrophobic substituents also alter the biodistribution of the agent and improve the
relaxivity via interaction with serum albumin.

The first step in acid catalyzed dissociation is the protonation of an oxygen in the
coordinating sidearm followed by proton transfer to the nitrogens. Therefore, unlike
thermodynamic stability, the kinetic inertness usually decreases with increasing ligand
basicity as this enhances the rate of proton-assisted dissociation. A good example is the
gradual decrease of kinetic inertness upon stepwise substitution of methylenephoshonate
coordinating sidearm for the acetates in DOTA complexes. The coordinated phosphonate
group can be easily protonated on the noncoordinating oxygen in the pH range 5–7, which
promotes acid catalyzed dissociation [60,61]. The opposite effect can be observed when
in DOTA-tetraamide complexes: the half-life of dissociation dramatically increases when
the carboxylates are replaced with carboxamides (acid-catalyzed dissociation rates of
lanthanide DOTA-tetraamides are 25- to 30-fold slower than those of the corresponding
DOTA complexes) [62,63].

5. What Prediction Can We Make about Gadolinium Deposition? How Do Those
Predictions Relate to Preclinical Results?

The pharmacokinetics and physiological profiles of GBCA are related to the chemical
structures of the GBCA, specifically linear or macrocyclic. The linear GBCAs have flexible
chelators whereas the macrocyclic agents have rigid caged structures. The higher flexibility
of the linear agents results in more rapid dissociation of gadolinium from the chelate and
a higher likelihood of transmetallation than the macrocyclic agents. In the case of NSF,
virtually no new cases have been reported over the last decade. This is partly due to
recommendations made by the American College of Radiology and other organizations
about a reduction in the use of linear GBCAs that have been associated with the most
cases of NSF [64,65]. Based on what we know about the chemistry of these complexes,
we could predict that macrocyclic GBCAs would likely be cleared as intact chelates rather
than deposited in the brain, whereas linear chelates may be more likely to dissociate and
potentially leave gadolinium-containing deposits. In situations where GBCAs secretion
is limited and a pseudo-equilibrium establishes, the degree of GBCA retention would be
strongly influenced by the thermodynamic stability.

It was previously thought that GBCAs do not cross the blood–brain barrier and are
cleared from the brain via venous drainage. From preclinical studies, we now know that
regardless of the chemical structure, all GBCAs enter the rat brain intact [66–73]. There are
several proposed pathways on how GBCAs enter the brain: directly from the blood via
the blood–brain barrier or move from the blood to cerebrospinal fluid and then enter the
brain parenchyma via the ependyma or the perivascular pial-glial basement membranes
system [74]. A number of publications suggest the involvement of the glymphatic sys-
tem [75–79]. The glymphatic system is responsible for waste removal (soluble proteins
and metabolites) as well as distribution of glucose, lipids, amino acids, growth factors,
and neuromodulators in the central nervous system by utilizing a network of paravas-
cular channels formed by astroglial cells. The cerebrospinal fluid (CSF) entering these
paravascular spaces mixes with interstitial fluid (ISF), and thereby directs waste products
into lymphatic vessels and subsequently clears them from the body [80–82]. Evidence
seems to indicate that although all GBCAs enter intact, macrocyclic GBCAs are subse-
quently cleared from the brain without appreciable dissociation, whereas linear agents
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are more likely to dissociate and leave behind residual gadolinium. There is a signif-
icant association between the concentrations of GBCA administration, chelate subtype
(macrocyclic vs. linear) and the extent of deposition. Macrocyclic agents have diminished
elemental gadolinium tissue deposition compared with linear agents. Within linear agents,
Robert et al. studied the trend of gadolinium deposition in brain of healthy rat and found
the following trend: Omniscan > Magnevist > MultiHance [68]. This trend follows the
thermodynamic stabilities of these compounds. Lohrke et al. observed a similar trend
when studying rat brain and skin [66]. Within macrocyclic agents, there are more clinical
and preclinical reports of MRI and histopathologic findings associated with gadolinium
retention for Gadovist than for Dotarem and Prohance [83]. Animal studies performed with
repeated administration (up to 20 administrations overall, 4 injections/week over 5 weeks)
of high doses (0.6 mmol/kg) of macrocyclic agents (ProHance, Dotarem, Clariscan, and
Gadovist) [84,85] revealed that gadolinium levels measured by ICP-MS in the rat brain were
significantly lower after cumulative administration of ProHance (gadoteridol) than the rest
of the agents [Dotarem/Clariscan (gadoterate meglumine), and Gadovist (gadobutrol)]. It
should be noted that these experiments were performed using much higher amounts of
GBCAs than the clinical dosages. Therefore, the observations may not represent a clinical
scenario. The mechanism by which macrocyclic agents would be retained is unknown,
although a recent report on interaction of macrocyclic GBCAs with collagen [86] suggests
that binding of intact macrocyclic complexes to components of the extracellular matrix may
account for the retention of intact macrocyclic GBCAs complexes. This study showed that
all macrocyclic agents have similar affinity to collagen type I, but the maximum amount
of collagen bound was slightly different: it decreased following the order of gadoterate
meglumine > gadobutrol > gadoteridol. Collagen is positively charged at pH 7.4 and this
trend was attributed to differences in whole or fractional charge at pH 7.4 and/or the hy-
drogen bonding ability of the complexes. Table 2 summarizes the Gd-deposition data with
repeated GBCA exposure. Overall, the majority of imaging findings of T1 hyperintensity in
the dentate nuclei of patients with repeated GBCA exposure are with linear agents and not
with macrocyclic agents.

Table 2. Overview of gadolinium depositions from GBCAs in humans.

Agents Omniscan Magnevist MultiHance Eovist Ablavar Optimark Dotarem Prohance Gadovist Gadopiclenol

NSF risk a High High Intermediate Intermediate Intermediate High Low Low Low Low b

Human
tissue de-
positions

Skin
Yes [87–
90]/No

[91]

Yes
[92,93]/No

[91]
Yes [94] Yes [93]

Bone Yes
[21,45,95] Yes [96] Yes [97] Yes [97] Yes [21,45,

95,97] Yes [97,98]

Brain Yes
[17,99–101]

Yes
[101,102]

Yes
[97,103] Yes [97] Yes [97] Yes [97]

T1 hyperin-
tensity in

brain tissue

Yes [14–
16,18,104–

106]

Yes [14,102,
107–112]

Yes [18,
105]/No

[113]
No [114]

Yes
[115]/No
[16,116–

119]

No [106,
117,120]

Yes
[121]/No
[104,107,
112,118,

122]

No b

a Based on the EMA recommendation [123,124]. b Low risk by design [57,58,125–128], no T1 hyperintensity in
animal models [56,126,129].

6. Mechanism of GBCA Retention and the Chemical Form of Deposited Gadolinium

Since the first reports of an increased signal intensity in non-enhanced T1-weighted
MRI of some brain regions in patients with normal renal function who had previously
received multiple doses of GBCAs [14,16,17,100,120,130,131], there have been a number
of studies looking into the amount and chemical form of the retained gadolinium in
human tissues and preclinical animal models. In the majority of clinical cases, gadolinium
retention is detected by T1-weighted imaging and gadolinium levels are not measured by an
analytical method. However, in some cases, the amount of deposited gadolinium in various
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human tissues has been determined by ICP-MS. These data reveal gadolinium levels in
the tens of µg/g tissue range. Christensen et al. found a mean gadolinium concentration
of 71.4 ± 89.4 µg/g dry tissue (6.3–348.7 µg/g dry tissue) in the skin of patients with
NSF [132]. Non-NSF patients usually have lower levels of gadolinium even after repeated
exposre to GBCAs. In human brain autopsy studies, McDonald et al. found that all patients
exposed to multiple doses of Omniscan had between 0.1 to 58.8 µg gadolinium per gram of
brain tissue [17]. Kanda et al. observed a mean of 0.25 ± 0.44 µg/g of brain tissue from
patients who had undergone linear GBCA administration (Magnevist and Omniscan) more
than twice [101].

In preclinical studies, GBCAs were injected into rodents at significantly higher dosages
than clinical use to study their gadolinium retention/deposition in brain and other tissues.
Yet, the deposited gadolinium levels in murine brain tissue were around 1 µg/g wet tissue,
somewhat lower than those found in human tissues [69,133]. This may not be surprising as
rodents’ renal function/clearance may not be at all similar to those of humans. In addition,
the physiological mechanisms of GBCA clearance from the brain are not well understood
in either species. Additionally, the comparison between structured studies in rats versus
anecdotal reports in humans creates uncertainty in the interpretation. In most animal
studies, retained gadolinium concentrations were quantified with inductive coupled plasma
mass spectroscopy (ICP-MS) [66–69,73], transmission electron microscopy (TEM) [73] and
laser ablation ICP-MS [134]. Overall, all GBCAs were tested with the exception of Optimark
and Ablavar, most likely due to their discontinued status. Across these studies, one
can draw the conclusion that the amount of retained gadolinium was much higher in
animals exposed to linear agents compared with those exposed to macrocyclic ones. This
is in good agreement with the results of human studies. Signal intensity enhancement in
the brain on unenhanced T1-weighted MR images in adults have largely been observed
after repeated exposure to linear GBCAs. Similar findings were not reported after serial
injections of macrocyclic GBCAs [14–16,18,107,120,122,131,135,136]. There is an ongoing
debate about a report of enhanced signal intensity after exposure to Dotarem in pediatric
population [115,137–140]. Although this report [115] suggests that GBCA retention in the
brain may also occur with macrocyclic agent, it should be kept in mind that this particular
study was carried out on pediatric patients who received radiation therapy to the brain.
Therefore, blood–brain barrier disruption due to radiotherapy might be involved in the
retention of Dotarem [139]. Others observe no enhancement after exposure to macrocyclic
GBCAs in the pediatric brain [108,111,119,139–141].

Thus, a general picture of gadolinium retention/deposition can be given as follows.
As we discussed above, it was hypothesized that all GBCAs enter the rat brain through
the glymphatic system intact. Macrocyclic agents are then cleared from the brain over
time as intact chelates [15,18,97,118,121,142]. Jost et al. showed evidence of macrocyclic
GBCAs continuously excreted from the brain rather than being deposited, similar to linear
GBCAs, during a period of 1 year [134]. On the other hand, linear agents are more likely
to undergo dissociation and cause gadolinium deposition. The deposited linear agents
could be found in various forms: insoluble inorganic salts, intact chelate, and a soluble Gd-
macromolecular fraction. Aime et al. and Frenzel et al. suggested the presence of a 300 kDA
gadolinium containing macromolecular complex based on gel permeation chromatography
(GPC) and ultra-performance liquid chromatography—electrospray mass spectrometry
(UPLC-ESI-MS) speciation studies [69,133]. They attributed the observed hyperintensity
detected in the T1-weighted images to the soluble gadolinium containing macromolecular
species, arguing that the intact chelate and insoluble inorganic salts would not be able to
account for the observed signal enhancement. Although this conclusion is likely to be true,
our group showed that insoluble gadolinium compounds could exhibit high longitudinal
relaxivities on the surface of the solid due to unrestricted access to water (Figure 4). One
can only speculate about the chemical forms of the insoluble and of the highly relaxing
gadolinium containing species based on the currently available data in the literature. It
is also important to note that the various studies used different experimental protocols
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regarding type of contrast agents, dosage/injection, total dosage, injection frequency, and
sample handling/analysis. In order to compare and build on observations from different
groups, it may be important to standardize experimental approaches used in animal studies
regarding dosing, injection and tissue harvesting timing, tissue processing, and chemical
analytical analysis.
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Figure 4. At 1 Tesla, GdPO4 phantom shows enhancement at the solution solid interface.
(a) T1-weighted spin echo image (TR/TE = 350/13.1 ms), (b) T2-weighted spin echo image
(TR/TE = 1600/120 ms), (c) A photo of the microcentrifuge tubes making up GdPO4 phantom: the
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From the point of view of inorganic chemistry, also supported by the experience of
NSF, it is plausible that the insoluble species may be gadolinium phosphate. GdPO4 is
extremely insoluble in water and has a solubility product comparable to the dissociation
constant of Gd-DOTA, which has the highest thermodynamic stability among the FDA
approved GBCAs [143–145]. Analysis of lesional skin and other organs in NSF patients
revealed gadolinium deposition [87,88,146]. George et al. examined autopsy skin tis-
sues from a NSF patient using synchrotron X-ray flurorescence (SXRF) microscopy and
showed that the insoluble deposits contained gadolinium coordinated in a sodium calcium
phosphate material [147]. Xia et al. examined human brain tumor biopsies following
contrast-enhanced MR scans in patients without severe renal disease with scanning elec-
tron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS) and found insoluble
deposits containing gadolinium associated with phosphorus and calcium [148]. However,
the situation is complicated by the fact that the morphology of lanthanide phosphates and
calcium phosphate doped with lanthanide ions depends on the reagents and experimental
conditions used for the precipitation, although some of these clearly not relevant for the
in vivo formation of GdPO4. The various forms include crystalline solids, gel-like precipi-
tation or colloid nanoparticles and it is quite conceivable that these will have different T1 or
T2 shortening properties [149–153]. In our hands, a gel-like precipitate of GdPO4 showed
strong T1 enhancement on the surface demonstrating that T1 hyperintensity lesions could
contain some form of deposited gadolinium phosphate.

7. Clinical Effects of Gadolinum Deposition (-NSF)

At the present time, there are no rigorous studies that have shown association of
gadolinium deposition with clinical symptoms or data that suggest that it is harmful to
patients. Self-reported clinical symptoms of “gadolinium deposition disease” such as
generalized sensory symptoms lack clinical evidence to exclude alternative causes for these
symptoms. Published studies [154–156] suffered from considerable selection bias and a
definite discordance between radiological evidence and individual clinical symptoms.

Gadolinium is considered a pregnancy category C drug, in 2018, the American College
of Radiology (ACR) recommends that in pregnant women, “GBCAs should only be used if
their usage is considered critical and the potential benefits justify the potential unknown
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risk to the fetus” [157]. Although there are no well-controlled studies in humans on the
effects of GBCA to the fetus, De Santis et al. [158] reported no adverse effect on pregnancy
and neonatal outcome in 26 pregnant women who was exposed to GBCAs in the first
trimester. In a nonhuman primate model, Prola-Netto et al. [159] showed that even though
GBCA, specifically Gadoteridol (Prohance), crosses the placenta, there is a rapid and almost
complete clearance of GBCA from fetal circulation back to the mother. The amount of
quantified gadolinium in juvenile macaque tissues up to 7 months post-delivery were
mostly undetectable.

There are no rigorous clinical studies suggesting a long-term health consequence due
to gadolinium deposition/retention. GBCAs were developed to answer a clinical need:
to enable a timely and accurate disease diagnosis for better patient care. For a patient
with a medical condition requiring evaluation with contrast-enhanced MRI, such as the
tens of millions of patients who have received gadolinium contrast safely for years, the
risk/benefit ratio currently strongly favors contrast administration.

8. Conclusions

In summary, this paper provides a chemical perspective on GBCAs safety assessment.
Although there are continuous efforts to design alternative non-gadolinium-based MRI
contrast agents (paramagnetic Mn2+ or Fe3+ complexes and diamagnetic chemical exchange
saturation transfer agents) as well as imaging methods that allow clinical diagnosis with-
out contrast administration, it is highly unlikely that gadolinium contrast agents will be
replaced in the near future, especially for oncology application. The recent favorable results
from Gadopiclenol phase III clinical trials demonstrate value in future GBCA research
development. The importance of developing compounds that are kinetically and thermo-
dynamically stable for in vivo application is evident from studies of NSF and gadolinium
tissue deposition. Efforts have also been made to lower the administered dose by improving
the agents’ relaxivity. The question of what the chemical nature of gadolinium deposits is
in regions exhibiting T1 hyperintensities remains open. However, available data suggest
that in case of the kinetically less inert agents, it is likely a form of gadolinium phosphate.
A better understanding of gadolinium retention/deposition requires more rigorous and
standardized analytical approach in both animal and human studies. This knowledge in
turn could provide important directions for the development of safer and more efficient
MR imaging agents. It is important to emphasize that at the present time, there are no
rigorous studies that have shown any clinical effects of gadolinium retention/deposition in
the brain [160].
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