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ABSTRACT

Diabetic cardiomyopathy was originally described as the presence of ventricular dysfunction 
in the absence of coronary artery disease and/or hypertension. It is characterized by 
diastolic dysfunction and is more prevalent in people with diabetes than originally realized, 
leading to the suggestion in the field that it simply be referred to as diabetic heart disease. 
While there are currently no approved therapies for diabetic heart disease, a multitude of 
studies clearly demonstrate that it is characterized by several disturbances in myocardial 
energy metabolism. One of the most prominent changes in myocardial energy metabolism 
in diabetes is a robust impairment in glucose oxidation. Herein we will describe the 
mechanisms responsible for the diabetes-induced decline in myocardial glucose oxidation, 
and the pharmacological approaches that have been pursued to correct this metabolic 
disorder. With surmounting evidence that stimulating myocardial glucose oxidation can 
alleviate diastolic dysfunction and other pathologies associated with diabetic heart disease, 
this may also represent a novel strategy for decreasing the prevalence of heart failure with 
preserved ejection fraction in the diabetic population.

Keywords: Diabetic cardiomyopathies; Diabetic heart disease; Diastolic dysfunction;  
Cardiac energetics; Pyruvate dehydrogenase; Glucose oxidation

INTRODUCTION

People living with diabetes, both type 1 and type 2 (T1D/T2D), are at increased risk 
of cardiovascular disease, many of whom will ultimately die from either myocardial 
infarction (MI) or heart failure.1 Diabetes has proven to be such a powerful risk factor 
for cardiovascular disease that it is now viewed as a “cardiovascular risk equivalent,” 
whereby subjects with diabetes but without coronary heart disease have similar coronary 
mortality rates to nondiabetic subjects who had a previous coronary event.2 Because of 
this increased cardiovascular risk, there has been a significant effort invested towards 
elucidating the mechanisms by which diabetes contributes to cardiovascular disease, as 
well as understanding the cardiovascular safety profiles of glucose-lowering medications. 
Excitingly, the completion of numerous cardiovascular outcomes trials from 2 of the most 
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recently approved therapies for T2D, the glucagon-like peptide-1 receptor (GLP-1R) agonists 
and sodium-glucose cotransporter-2 inhibitors, has demonstrated that these agents decrease 
death rates from cardiovascular causes in subjects with T2D.3,4

Of clinical relevance, people during the early stages of T2D are likely to have diastolic 
dysfunction, a defining feature of diabetic cardiomyopathy. Diabetic cardiomyopathy was first 
observed by Rubler et al.5 in 4 subjects (3 females/1 male) who had diabetes of at least 3 years 
duration with gross cardiomegaly and congestive heart failure, culminating in its original 
description of the presence of ventricular dysfunction in the absence of coronary artery 
disease and/or hypertension in a person with diabetes. Based on this description in the 1970s, 
diabetic cardiomyopathy was a pathological condition thought to not be highly prevalent 
in people with diabetes. However, the increasing recognition that diastolic dysfunction is 
often present in early stage T2D is shifting the consensus view in the field, whereby support 
for diabetic cardiomyopathy being more prevalent in people with diabetes is gaining 
traction. Furthermore, this diastolic dysfunction is often asymptomatic and unfortunately 
undiagnosed in diabetic subjects, since routine cardiovascular screening is often ignored in 
people with T2D until notable cardiovascular decline becomes evident.3,6 Therefore, it has 
been proposed that due to the significant advancements made in the 21st century regarding 
the pathology of diabetic cardiomyopathy, it may be time to perhaps change its definition, 
or re-term the condition, with the suggestion it now be referred to as “diabetic heart 
disease.”6 Indeed, we share that viewpoint, especially with diastolic dysfunction and diabetic 
cardiomyopathy being key risk factors contributing to the progression of heart failure with 
preserved ejection fraction (HFpEF). Because HFpEF is enriched in people with diabetes, 
developing therapies that can reverse the pathology of diabetic cardiomyopathy, which we 
will herein refer to as diabetic heart disease, may represent a potential long-term strategy to 
decrease HFpEF prevalence.

With improved characterization of multiple animal models of diabetes,7 our knowledge 
of the various mechanisms that contribute to the pathology of diabetic heart disease has 
greatly increased.6,8 Some of the most extensively interrogated mechanisms include oxidative 
stress, endoplasmic reticulum stress, microvascular dysfunction, cardiomyocyte apoptosis, 
cardiac lipotoxicity, and alterations in cardiac energetics that may be secondary to insulin 
resistance and/or mitochondrial dysfunction.6,8,9 With regards to the latter, the defining 
metabolic features of the myocardium in T2D include an elevation in fatty acid oxidation 
rates, concomitant with a decline in glucose oxidation rates (Fig. 1).6,9,10 The latter will be the 
primary emphasis of this review, where we will interrogate the mechanisms responsible for 
the decline in myocardial glucose oxidation in diabetes, and whether this may represent a 
pharmacological target to alleviate diabetic heart disease.

MYOCARDIAL GLUCOSE OXIDATION & PYRUVATE 
DEHYDROGENASE (PDH) IN DIABETES
While fatty acids are the predominant fuel source of the heart, carbohydrates (i.e., glucose) 
are also a major fuel source for the heart, especially following nutrient ingestion and largely 
driven by increased insulin secretion.11 The 2 primary transporters mediating glucose uptake 
in cardiomyocytes are glucose transporter 1 and 4, the latter of which is insulin sensitive. 
Once taken up into the cardiomyocyte, glucose is rapidly phosphorylated to glucose-6-
phosphate by hexokinase, which has a very high affinity for glucose. The ensuing glucose-
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6-phosphate can either metabolically proceed towards glycogen synthesis (energy storage), 
glycolysis and glucose oxidation (energy production), or the pentose phosphate pathway, 
though metabolism through the latter is negligible in the heart.12

Numerous preclinical models of diabetes, both T1D and T2D, result in marked declines 
in myocardial glucose oxidation rates. A single administration of 55 mg/kg streptozotocin 
(STZ) in male Sprague Dawley rats (up to 230–250 g) to induce T1D, leads to a robust decline 
in glucose oxidation rates assessed during aerobic isolated working heart perfusions, with 
glucose oxidation accounting for less than 5% of overall oxidative energy production.13 
Likewise, both leptin deficient male ob/ob mice and leptin receptor deficient male db/db mice 
at 4-weeks and 15-weeks of age, exhibit marked declines in glucose oxidation rates assessed 
during aerobic isolated working heart perfusions.14 Similarly, aerobic perfusion of isolated 
working hearts from male C57BL/6J mice subjected to experimental obesity via provision 
of a high-fat diet (60% kcal from lard) for 8-weeks also revealed a marked impairment of 
glucose oxidation in the absence or presence of insulin.15 Finally, experimental T2D resulting 
from high-fat diet provision plus a single low-dose injection of STZ (25 mg/kg in rats or 
75 mg/kg in mice) also produces a robust decline in myocardial glucose oxidation rates as 
assessed using either 13C hyperpolarized nuclear magnetic resonance (NMR) (in rats),16 or 
perfusion with [U-14C]glucose in isolated working hearts (in mice).17,18 13C hyperpolarized 
NMR studies have also identified reduced myocardial glucose oxidation rates in a mouse 
model of diabetes resulting from inducible expression of a Kir6.2-V59M transgene in islet 
β-cells that does not cause obesity or dyslipidemia.19 Conversely, saponin permeabilized 
myocardial biopsy samples from subjects with T2D and coronary artery disease displayed 
similar ADP-stimulated respiration rates with pyruvate as a substrate, when compared 
to subjects with coronary artery disease without T2D.20 Although reasons for these 
discrepancies remain unresolved, respiration rates in permeabilized fibers are not indicative 
of actual in vivo flux through glucose oxidation, and coronary artery disease itself already 
impairs glucose oxidation.21 Unfortunately, due to limitations in methodologies to assess in 
vivo metabolic flux in humans,22 there have been minimal studies to date exploring whether 
myocardial glucose oxidation rates are decreased in human subjects with diabetes. Studies 
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Fig. 1. Myocardial energy metabolism in diabetic heart disease. The heart in diabetes (both type 1 and type 2) experiences several perturbations in intermediary 
energy metabolism. In particular, the heart in an individual with diabetes produces the majority of its energy (ATP) from the mitochondrial oxidation of fatty acids 
(right half of the figure), which comes at the expense of a severe impairment in the mitochondrial oxidation of carbohydrates (i.e., glucose) (left half of the figure). 
This figure was created with BioRender.com.
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using positron emission tomography imaging with 18F-fluourodeoxyglucose (FDG) have 
demonstrated decreased myocardial glucose uptake in obese, prediabetic women, but this 
does not necessarily reflect a decrease in glucose oxidation since 18F-FDG is not metabolized 
further once phosphorylated by hexokinase.22 However, the advancements in sensitivity 
afforded by 13C hyperpolarized NMR have been successfully used to measure myocardial 
pyruvate metabolism in human subjects,23 and provide an opportunity to confirm that 
myocardial glucose oxidation is impaired in diabetes. Indeed, recent studies in 13 subjects 
with T2D and 12 control participants fasted for at least 9 hours prior to receiving an oral 
glucose tolerance test (75 g glucose), observed marked reductions in myocardial glucose 
oxidation using 13C hyperpolarized NMR.24

Mechanisms responsible for the diabetes-mediated decline in myocardial glucose oxidation 
can be secondary to insulin resistance, which would result in decreased myocardial glucose 
uptake for subsequent energy production.25 Furthermore, the glucose-fatty acid cycle 
attributed to findings from Philip Randle and colleagues26 (though first reported by Shipp 
et al.27), whereby glucose and fatty acids compete for oxidative metabolism in the heart, 
represents another mechanism for the decline in glucose oxidation, as myocardial fatty acid 
oxidation is increased in both T1D and T2D.6,8-10

Molecular perturbations also contribute to the impaired myocardial glucose oxidation 
observed in diabetes, and primarily reflect decreased activity of the PDH complex, the rate-
limiting enzyme of glucose oxidation, which is responsible for decarboxylating pyruvate into 
acetyl coenzyme A.28,29 The mammalian PDH complex is a multienzyme complex comprised 
of multiple copies of 6 components, which includes 3 catalytic enzymes; PDH (designated 
as E1), dihydrolipoamide acetyltransferase (designated as E2), and dihydrolipoamide 
dehydrogenase (designated as E3). The PDH complex also contains a binding protein, 
E3-binding protein, and 2 regulatory enzymes that maintain the phosphorylation status of 
PDH, PDH kinase (PDHK) and PDH phosphatase (PDHP). Our focus herein will be on the 
specific role of PDH (E1) in the control of myocardial glucose oxidation in diabetic heart 
disease, and we refer the reader to more extensive reviews dealing with the multifaceted 
regulation of the PDH complex.28,30 With regards to phosphorylation, PDH is primarily 
regulated via phosphorylation mediated inactivation by 4 isoforms of PDHK (PDHK1–4), 
or dephosphorylation mediated activation by 2 isoforms of PDHP (PDHP1–2) (Fig. 2).28,29 
However, it is now becoming increasingly recognized that PDH is also subject to regulation 
via other post-translational modifications, including acetylation, which has been proposed 
to decrease PDH activity (Fig. 2).31 Recent studies have also demonstrated that PDH can 
be S-glutathionylated, which can also decrease PDH activity and impair glucose oxidation 
(Fig. 2).32 In addition to post-translational modifications, PDH can also be regulated via 
mitochondrial calcium levels similar to the dehydrogenase enzymes of the Krebs Cycle,28,29 
whereby calcium increases the affinity of PDHP for phosphorylated PDH to relieve its 
inhibition.33 It has been observed in mice with experimental T2D via high-fat diet provision 
plus low-dose STZ (75 mg/kg), that protein expression of the mitochondrial calcium 
uniporter complex inhibitory subunit (MCUb) increases, thereby decreasing mitochondrial 
matrix calcium levels and reducing myocardial PDH activity.34

Supporting the notion that impaired myocardial PDH activity and subsequent reductions 
in glucose oxidation contribute to the pathology of diabetic heart disease, cardiac-specific 
deletion of PDH (PDHCardiac−/−) in mice produces a diabetic heart disease-like phenotype.35 Male 
PDHCardiac−/− mice exhibit a near complete abolishment of glucose oxidation during isolated 
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working heart perfusion studies, and these mice also display signs of diastolic dysfunction 
following ultrasound echocardiography analysis (reduced E/A ratio). In addition, a robust 
cardiac hypertrophy is also present in male PDHCardiac−/− mice. Accordingly, it will be important 
for future studies to understand how these various post-translational modifications of PDH 
integrate during the pathology of diabetic heart disease, and which are most relevant to the 
decline in myocardial glucose oxidation. Acquiring such knowledge will play an essential role in 
identifying the most effective strategies to stimulate PDH activity, which can then be leveraged 
to guide drug development aimed at promoting glucose oxidation.

STIMULATING PDH ACTIVITY TO INCREASE MYOCARDIAL 
GLUCOSE OXIDATION AND ALLEVIATE DIABETIC HEART 
DISEASE

A simple yet effective approach to increase myocardial glucose oxidation is to use 
small molecules to activate PDH. This can be achieved by inhibiting PDHK to prevent 
the phosphorylation mediated inactivation of PDH, which is the molecular target of 
dichloroacetate (DCA).36,37 In a rat model of T2D involving high-fat diet supplementation 
for 7-weeks with a single dose of STZ (25 mg/kg) administered at day 12 of the protocol, 
treatment with DCA (dissolved in the drinking water at 1 mM) during the final 4-weeks 
produced salutary actions.16 13C hyperpolarized NMR was utilized to confirm that DCA 
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Fig. 2. Post-translational modifications impacting PDH activity. PDH activity is subject to numerous post-translational modifications, including phosphorylation, 
which is the best characterized. PDHK mediated phosphorylation inhibits PDH activity, whereas PDHP mediated dephosphorylation stimulates PDH activity. PDH 
may also be inactivated by acetylation, with recent studies suggesting that increases in mitochondrial acetyl CoA increase mitochondrial protein acetylation 
nonenzymatically, whereas Sirt3 has been demonstrated to increase PDH activity via deacetylation. Finally, PDH is also subject to S-glutathionylation mediated 
inactivation, though the role of GST and GRX in catalyzing and removing S-glutathionylation modifications of PDH, respectively, remains to be determined. 
PDH, pyruvate dehydrogenase; PDHK, pyruvate dehydrogenase kinase; PDHP, pyruvate dehydrogenase phosphatase; CoA, coenzyme A; Sirt, sirtuin; GST, 
glutathione-S-transferases; GRX, glutaredoxins.
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increased myocardial glucose oxidation rates in male rats with T2D, which was associated 
with an alleviation of diastolic dysfunction as determined by a decreased E/e' ratio.

Another strategy to promote myocardial glucose oxidation is to target the transcriptional 
expression of the 4 Pdk isoforms, which are the genes that encode for PDHK1–4. Pdk 
isoforms are transcriptionally regulated by several transcription factors including peroxisome 
proliferator activated receptor α, estrogen related receptor α, hypoxia inducible factor 1α, and 
forkhead box O1 (FoxO1).38-41 Studies have demonstrated that FoxO1 is a key transcription 
factor regulating Pdk4 (but not Pdk1, Pdk2, or Pdk3) expression in the heart.39 Furthermore, both 
experimental obesity in male C57BL/6J mice, or genetic obesity in male ob/ob and db/db mice 
result in increased myocardial FoxO1 protein expression and activity.42 Targeting this FoxO1-
PDHK4 axis has been shown to alleviate diastolic dysfunction in male C57BL/6J mice subjected 
to experimental T2D via high-fat diet provision for 10-weeks with STZ (75 mg/kg) administered 
at week 4 of the protocol.18 Indeed, treatment with the FoxO1 antagonist, AS1842856 (100 mg/
kg), twice daily during the final 2-weeks of the 10-week protocol increased PDH activity and 
glucose oxidation rates assessed during isolated working heart perfusions. An alleviation of 
diastolic dysfunction was also observed during ultrasound echocardiography experiments, 
reflected by an increase in the mitral E/A ratio, an increase in the Tissue Doppler e'/a' ratio, 
and a decrease in the E/e' ratio. Confirming that the increase in myocardial glucose oxidation 
was required for the FoxO1 inhibition-induced protection against diabetic heart disease, 
AS1842856 treatment failed to alleviate diastolic dysfunction in PDHCardiac−/− mice subjected to 
experimental T2D. Similarly, inhibiting FoxO1 to promote PDH activity and glucose oxidation 
also appears beneficial in preclinical models of T1D. Male Sprague Dawley rats (up to 
200–250 g) subjected to experimental T1D via administration of STZ (65 mg/kg) treated with 
AS1842856 (50 mg/kg twice daily) for 1-week demonstrated improved parameters of cardiac 
function during invasive hemodynamics with pressure-volume conductance catheters.43 
Cardiomyocytes isolated from these rats demonstrated decreased PDH phosphorylation 
(indicative of increased PDH activity28,29), as well as an increased oxygen consumption rate 
with either glucose or pyruvate as a substrate using a Seahorse XF24 analyzer.

As previously mentioned, GLP-1R agonists have been shown to improve cardiovascular 
outcomes in subjects with T2D, though much of this improvement appears to be attributed to 
actions that mitigate atherothrombosis and decreased rates of MI.4,44 Nonetheless, insulin is a 
potent stimulator of myocardial glucose oxidation,25 and as GLP-1R agonists augment glucose-
stimulated insulin secretion, this class of glucose-lowering medication may also have utility 
against diabetic heart disease. In support of this statement, treatment with the GLP-1R agonist 
liraglutide (30 ug/kg once daily) during the final 2-weeks in male C57BL/6J mice subjected to 
experimental T2D via high-fat diet provision for 10-weeks with STZ (75 mg/kg) administered 
at week 4 of the protocol, mitigated diabetic heart disease.17 This was reflected by an increased 
mitral E/A ratio and decreased E/e' ratio during ultrasound echocardiography studies. Of 
interest, an increase in glucose oxidation rates was only observed in the isolated working 
heart, if hearts were extracted from mice treated systemically with liraglutide, but not if the 
working heart was directly treated with liraglutide added to the perfusate. Such observations 
are entirely consistent with GLP-1R expression being absent in cardiomyocytes,4,45 and that 
GLP-1R agonist-induced increases in myocardial glucose oxidation are dependent on its 
canonical actions on the islet β-cell GLP-1R to promote insulin secretion.

In support of increases in the MCUb inactivating PDH activity in T2D, it has been shown that 
gene therapy using an adeno-associated viral vector to express a dominant negative MCUb 
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transgene restored myocardial glucose oxidation in mice with experimental T2D due to high-
fat diet provision plus low-dose STZ (75 mg/kg) administration.34 However, parameters of 
diastolic function were not assessed in this study. Thus, it cannot be concluded whether the 
authors strategy to promote glucose oxidation alleviated diabetic heart disease, though isolated 
Langendorff perfusion studies demonstrated a restored responsivity to adrenergic stimulation.

MECHANISMS EXPLAINING HOW INCREASED 
MYOCARDIAL GLUCOSE OXIDATION ALLEVIATES 
DIABETIC HEART DISEASE AND POTENTIAL CONCERNS

The predominant view in the field as to why increases in myocardial glucose oxidation 
impart protection against diabetic heart disease centers on an improvement in cardiac 
efficiency. Cardiac mechanical efficiency refers to the relationship of work performed by the 
myocardium and the energy it consumes (i.e., oxygen consumption) throughout the course 
of cardiac contraction, a concept first introduced by Bing et al.46 in the late 1940s. As the 
oxidation of glucose produces more ATP per mole of oxygen consumed than the oxidation 
of a fatty acid, glucose is the more efficient fuel to support cardiac work, and numerous 
studies have demonstrated that increasing glucose oxidation does indeed improve cardiac 
mechanical efficiency in the diseased myocardium.47-49 However, whether this does explain 
how increasing myocardial glucose oxidation alleviates diabetic heart disease remains to be 
conclusively determined. Furthermore, as diabetic heart disease is characterized by diastolic 
dysfunction, it will be imperative for future studies to investigate the mechanisms by which 
increasing glucose oxidation may facilitate improved ventricular relaxation. Of relevance, 
myocardial relaxation during diastole is also an energy dependent process,50 thus it may be 
possible that an improvement in cardiac efficiency is also mechanistically involved. It is also 
likely that increased myocardial glucose oxidation mediated protection against diabetic heart 
disease is multifactorial, as increases in myocardial PDH activity have been shown to alleviate 
cardiomyocyte apoptosis, and may even lead to decreased cardiac fibrosis.18,51 The latter 
would lead to decreased ventricular stiffness and may also explain how increases in glucose 
oxidation specifically alleviate diastolic dysfunction.

While the aforementioned studies support that promoting myocardial glucose oxidation 
has salutary actions against diabetic heart disease, there are potential concerns with such 
a strategy that need to be considered. The most prominent concern stems from Randle’s 
glucose-fatty acid cycle,26 since increases in glucose oxidation in the myocardium often 
result in a corresponding decline in fatty acid oxidation, keeping overall energy production 
constant with energy demand. A decline in myocardial fatty acid oxidation may increase 
steatosis and lipid accumulation, thereby promoting cardiac lipotoxicity. Nonetheless, the 
majority of studies that have focused on stimulating myocardial glucose oxidation to treat 
diabetic heart disease have not reported any notable cardiac lipotoxicity that exacerbated 
the disease pathology. Moreover, increases in myocardial steatosis and triacylglycerol 
accumulation secondary to a reduction in fatty acid oxidation may not necessarily be 
harmful, as such increases may buffer from potential increases in other lipid intermediates 
that can be toxic to cardiomyocytes, including diacylglycerols and ceramides.9
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FINAL SUMMARY AND THE FUTURE SURROUNDING 
PDH-FOCUSED DRUG DEVELOPMENT
Advancements in models of diabetic heart disease, imaging technologies to assess in vivo 
cardiac function, and methods to assess intermediary metabolism have clearly demonstrated 
that myocardial energy metabolism is severely impacted by diabetes. One of the most 
notable defects is a marked impairment in glucose oxidation. It is likely that this reduction in 
myocardial glucose oxidation directly contributes to the pathology of diabetic heart disease, 
as numerous preclinical studies support that promoting myocardial glucose oxidation can 
alleviate diastolic dysfunction and improve cardiovascular outcomes in experimental models 
of both T1D and T2D.

Pharmacological stimulation of PDH activity is thus an attractive therapeutic target for 
diabetic heart disease. However, the most extensively characterized agent that can promote 
PDH activity, DCA, is limited by poor pharmacokinetics (i.e., very short half-life37) that would 
not be ideal in the setting of diabetic heart disease, where chronic therapy lasting decades 
may be required. Inhibitors with improved specificity against PDHK isoforms relative to DCA 
are in development.52 This includes 2-[(2,4-dihydroxyphenyl)sulfonyl]isoindoline-4,6-diol, 
which has been demonstrated to increase myocardial PDH activity and glucose oxidation in 
obese mice,53 though whether it can alleviate the pathology of diabetic heart disease remains 
unknown. Antagonism of FoxO1 to prevent the transcription of Pdk4 is another promising 
approach to potentially stimulate PDH activity in diabetic heart disease. On the contrary, as 
a transcription factor regulating the expression of numerous genes that influence multiple 
aspects of cell biology, there may also be unforeseen concerns relating to toxicity with 
chronic FoxO1 inhibition.

GLP-1R agonists may represent the most feasible approach to stimulate myocardial glucose 
oxidation in diabetic heart disease, as this glucose-lowering drug class used in the management 
of T2D has also been demonstrated to improve cardiovascular outcomes,4 illustrating the 
translational relevance of this approach. However, GLP-1R agonists are not used for the 
treatment of T1D, and not all patients with T2D are amendable to therapy with GLP-1R agonists, 
especially those with waning β-cell function. Taken together, the specific development of new 
pharmacological agents that can either inhibit PDHK or directly stimulate PDH, represent an 
exciting approach for the specific treatment of diabetic heart disease.
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