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RNA binding proteins (RBPs) have been reported to be involved in cancer malignancy but

related functions in glioma have been less studied. Herein, we screened 14 prognostic

RBP genes and constructed a risk signature to predict the prognosis of glioma patients.

Univariate Cox regression was used to identify overall survival (OS)-related RBP genes.

Prognostic RBP genes were screened and used to establish the RBP-signature using the

least absolute shrinkage and selection operator (Lasso) method in The Cancer Genome

Atlas (TCGA) cohort. The 14 RBP genes signature showed robust and stable prognostic

value in the TCGA training (n = 562) cohort and in three independent validation cohorts

(Chinese Glioma Genome Atlas [CGGA]seq1, CGGAseq2, and GSE16011 datasets

comprising 303, 619, and 250 glioma patients, respectively). Risk scores were calculated

for each patient and high-risk gliomas were defined by the median risk score in each

cohort. Survival analysis in subgroups of glioma patients showed that the RBP-signature

retained its prognostic value in low-grade gliomas (LGGs) and glioblastomas (GBM)s.

Univariate and multivariate Cox regression analysis in each dataset and the meta cohort

revealed that the RBP-signature stratification could efficiently recognize high-risk gliomas

[Hazard Ratio (HR):3.662, 95% confidence interval (CI): 3.187–4.208, p< 0.001] andwas

an independent prognostic factor for OS (HR:1.594, 95% CI: 1.244–2.043, p < 0.001).

Biological process and KEGG pathway analysis revealed the RBP gene signature was

associated with immune cell activation, the p53 signaling pathway, and the PI3K-Akt

signaling pathway and so on. Moreover, a nomogram model was constructed for clinical

application of the RBP-signature, which showed stable predictive ability. In summary,

the RBP-signature could be a robust indicator for prognostic evaluation and identifying

high-risk glioma patients.
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INTRODUCTION

Glioma, a type of intracranial tumor, is characterized by high
invasiveness, obstinate recurrence and lethal malignancy (Jiang
et al., 2016). According to the World Health Organization
(WHO) classification, gliomas may be defined into four
grades (grades I–IV). Diffuse low-grade (WHO grade II)
and intermediate-grade (WHO grade III, anaplastic) gliomas
are usually grouped as lower-grade gliomas (LGGs), while
glioblastoma (GBM, WHO IV) is the deadliest type of glioma in
human adults (Cancer Genome Atlas Research Network, 2008;
Cancer Genome Atlas Research Network et al., 2015). Universal
treatment of glioma involves surgical resection combined
with chemotherapy or/and radiotherapy, but clean resection
is extremely difficult to achieve due to its high invasiveness.
Therefore, it is necessary to search for new effective biomarkers
or targets to improve therapeutic effects and enhance our
understanding of glioma treatment.

RNA-binding proteins (RBPs) are intracellular
multifunctional proteins that combine with target RNAs to
form ribonucleic protein complexes and regulate the processes
of gene expression at the post-transcriptional level. These
regulated processes include RNA splicing, polyadenylation,
attenuation, editing, modification, and translation and are
essential for maintaining cell metabolism and coordinating
the maturity, transport, stability, and degradation of various
RNAs (Gerstberger et al., 2014). Recent studies have found that
aberrant expression of RBPs could affect cellular functions,
leading to the occurrence and progression of various cancers,
including gliomas. Further, growing evidence has associated
RBP dysregulation to oncogenesis and cancer progression. For
instance, ADDIN EN.CITE The RNA binding protein LIN28
could cooperate with WNT signaling to drive invasive intestinal
and colorectal adenocarcinoma (Tu et al., 2015). HuR was
identified as a RNA binding protein which acts as a crucial
oncogenic driver and promote malignant peripheral nerve
sheath tumors (MPNSTs) growth and metastasis (Palomo-
Irigoyen et al., 2020). The YTH-domain family member 2
(YTHDF2) accelerates the degradation of EGFR mRNA by
directly binding to the m6A modification site of the 3’-UTR of
EGFR in HCC cells (Zhong et al., 2019).

RBPs are tightly associated with the initiation and progression
of cancers, and a number of RBPs have been found contributing
to the malignant phenotype of glioma, like the RNA binding
protein IMP2 could maintain the glioblastoma stem cells by
preventing let-7 target gene silencing (Janiszewska et al., 2012;
Degrauwe et al., 2016), the oncogenic role of RNA-binding
protein Musashi1 could be counteracted by miR-137 and
inhibited by Luteolin (Yi et al., 2018; Velasco et al., 2019). Thus,
we think exploring the roles and functions of latent RBPs in the
initiation and development of glioma is needed and meaningful.

In present study, we screened prognostic RBPs of gliomas
and constructed a 14 RBP gene-based risk signature to
predict the OS of glioma patients in The Cancer Genome
Atlas (TCGA) dataset. These results were validated in three
external independent cohorts (Chinese Glioma Genome Atlas
[CGGA]seq1, CGGAseq2, and GSE16011). Furthermore,

associated biological processes and pathways were identified
using differential expression of genes in low- and high-risk
glioma subgroups, which might provide some clue to the
potential function of these RBPs in glioma pathogenesis.
Furthermore, a nomogram model integrating the risk signature,
patient age, and the WHO grade was also constructed to predict
the 1-, 3- and 5-year OS rates of glioma patients, to encourage
the clinical application of our RBP-signature.

MATERIALS AND METHODS

Data Acquisition
Four independent glioma cohorts were included in the
present study. The transcriptome data of the TCGA training
cohort was obtained from the website of Genomic Data
Commons Data Portal (GDC; https://portal.gdc.cancer.gov/)
and the corresponding clinical, pathological and molecular
information was downloaded from the cBioPortal website
(https://www.cbioportal.org/). As for the two validation
RNA-seq cohorts CGGAseq1 and CGGAseq2, the related
expression data and clinicopathological information were
retrieved from the CGGA website (http://www.cgga.org.
cn/). The microarray data of the GSE16011 validation
cohort was obtained from the Gene Expression Omnibus
(GEO) repository (https://www.ncbi.nlm.nih.gov/geo/),
and the related clinical data was found in a previous
study (Gravendeel et al., 2009). Similarly, the list of
1542 RBPs was based on that of a previous published
study (Gerstberger et al., 2014).

Patient Exclusion Criterion
We set the criteria for excluding glioma patients as follows:
(a) glioma patients without OS information or OS < 30
days (to exclude statistical biases resulted for special short-
lived cases); (b) patients without WHO grade information or
expression data, and (c) patients with WHO grade I glioma.
From the exclusion criterion, we obtained three RNA-seq cohorts
(TCGA, CGGAseq1, and CGGAseq2) and onemicroarray cohort
(GSE16011), which included 562, 303, 619, and 250 gliomas,
respectively. The clinicopathological and molecular features of
the glioma patients included in the present study are shown
in Table 1.

Data Processing
For the three RNA-seq cohorts, the Fragments Per Kilobase of
transcript per Million (FPKM) data values were downloaded and
were transformed to Transcripts Per Kilobase Million (TPM)
values using an algorithm described in previous studies(Li et al.,
2010; Wagner et al., 2012). The TPM values were used in the
subsequent analysis. For the microarray data relative to the
GSE16011 cohort, the raw data of “CEL” files were used to
perform background adjustments and quantile normalization
using a robust multiarray averaging method (RAM) with the R
packages “affy” (Gautier et al., 2004) and “simpleaffy” (Wilson
and Miller, 2005).
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TABLE 1 | Clinicopathological and molecular information of glioma patients included in this study.

Features Total TCGA cohort CGGAseq1 cohort CGGAseq2 cohort GSE16011 cohort

(n = 1,734) (n = 562) (n = 303) (n = 619) (n = 250)

Overall survival (years)

Median (range) 1.54 (0.08–20.68) 1.18 (0.08–17.34) 2.22 (0.09–11.41) 2.16 (0.11–11.98) 1.27 (0.08–20.68)

<5 1,428 (82.4%) 512 (91.1%) 201 (66.3%) 509 (82.2%) 206 (82.4%)

≥5 306 (17.6%) 50 (8.9%) 102 (33.7) 110 (69%) 44 (17.6%)

Age (years)

Median (range) 45 (8–87) 47.5 (14–87) 42 (8–79) 43 (11–76) 51.5 (14–81)

<40 617 (35.6%) 197 (35.1%) 119 (39.3%) 235 (38.0%) 66 (26.4%)

≥40 1,115 (64.3%) 365 (64.9%) 184 (60.7%) 383 (61.9%) 183 (73.2%)

NA 2 (0.1%) 0 (0.0%) 0 (0.0%) 1 (0.2%) 1 (0.4%)

Gender

Male 1,035 (59.7%) 326 (58.0%) 187 (61.7%) 356 (57.5%) 166 (66.4%)

Female 699 (40.3%) 236 (42.0%) 116 (38.3%) 263 (43.5%) 84 (33.6%)

WHO grade

II 488 (28.1%) 196 (34.9%) 97 (32.0%) 173 (27.9%) 22 (8.8%)

III 598 (34.5%) 212 (37.7%) 73 (24.1%) 232 (37.5%) 81 (32.4%)

IV 648 (37.4%) 154 (27.4%) 133 (43.9%) 214 (34.6) 147 (58.8%)

Histology

Astrocytoma 401 (23.1%) 150 (26.7%) 62 (20.5%) 163 (26.3%) 26 (10.4%)

Oligoastrocytoma 414 (23.9%) 102 (18.1%) 72 (23.8%) 213 (34.4%) 27 (10.8%)

Oligodendroglioma 271 (15.6%) 156 (27.8%) 36 (11.9%) 29 (4.7%) 50 (20.0%)

Glioblastoma 648 (37.4%) 154 (27.4%) 133 (43.9%) 214 (34.6%) 147 (58.8%)

IDH mutation status

6 Mutant 823 (47.5%) 342 (60.9%) 165 (54.5%) 316 (51.1%) NA

Wild 304 (17.5%) 212 (37.7%) 137 (45.2%) 258 (41.7%) NA

NA 607 (35.0%) 8 (1.4%) 1 (0.3%) 45 (7.3%) NA

1p/19q codeletion status

Non-codeletion 1,080 (62.3%) 418 (74.4%) 235 (77.6%) 427 (69.0%) NA

Codeletion 329 (19.0%) 138 (24.6%) 63 (20.8%) 128 (20.7%) NA

NA 325 (18.7%) 6 (1.1%) 5 (1.7%) 64 (10.3%) NA

Construction of the RBP-Signature
As the training cohort, TCGA dataset was used to conduct
univariate Cox regression analysis to screen for OS-related
RBP genes in gliomas. A total of 662 OS-related RBP genes
were identified (p < 0.05). Next, Lasso Cox regression method,
a recommended method for regression of high-dimensional
microarray data, was used to fit the OS-related RBPs data and
construct a risk signature based on the selected 662 RBP genes. A
formula was generated to calculate risk scores for glioma patients
with the relative expression value of RBP genes and respective
coefficients. The formula obtained was the following:

risk score =

n∑

i=1

Coefi ∗ xi (1)

in which theCoefi is the coefficient of each RBP genes, and xiis the
TPM expression value or RMA normalized value of each selected
RBP gene in each cohort.

Biological Process and Pathway Analysis
Differential expression analysis was conducted between low-
and high-risk subgroups using the “limma” (Ritchie et al.,
2015) package to screen differentially expressed genes (DEGs)
in the TCGA cohort. The TPM expression value was used for
differential expression analysis and genes with log2 (fold change)
>1 and p < 0.05 were defined as DEGs between low- and high-
risk subgroups. A total 3,672 genes were identified and were used
to perform gene ontology biological processes (GO-BP) analysis
and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis
using the “clusterProfiler” package (Yu et al., 2012).

Construction and Validation of the
Nomogram Model
The R package “rms” was used to construct a nomogram model
and for its validation. By balancing the prognostic value and
accessibility of including predictors, the patient’s age, WHO
grade and risk score were included in our nomogram model,
based on the results of multivariate Cox regression. Due to the
existing batch effects among the four cohorts (3 RNA-seq cohorts
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and 1 microarray cohort), glioma patients were divided into
low- and high-risk, as a dichotomous variable, by the median
risk score in each cohort. Age and WHO grade were used as
continuous variables in the nomogram model. Calibration
plots were performed using the “calibrate” function of
the “rms” package.

Cell Line and Cell Culture
We purchased astrocytoma cell line SW1088 and GBM cell
line U251 and LN229 from the Chinese Academia Sinica Cell
Repository (Shanghai, China). Glioma cells were cultured using
Dulbecco’s modified Eagle’s medium (DMEM; Gibco, USA)
containing 10% fetal bovine serum (FBS) (Gibco, USA) and 1%
penicillin and streptomycin (Gibco, USA). All cells were cultured
at 37◦C in filtered air with 100% humidity and 5% CO2.

Western Blotting and Antibody
Cultured cells were rinsed with phosphate buffered saline (PBS)
and lysed for 15min by ice-cold cell lysis buffer (Solarbio,
China) on the ice. Then lysed cell samples were centrifuged
at 12,000g for 15min at 4◦C, and the supernatant liquid of
each sample was gathered. Bicinchoninic acid assay (BCA) kit
(KeyGEN Biotech, China) was used for protein concentration
measurement. Equivalent proteins of each sample were added in
each lane and separated by 10% sodium dodecyl sulfate (SDS)–
polyacrylamide gel electrophoresis. Subsequently, proteins were
transferred onto polyvinylidene difluoride-membranes (PVDF
membranes, Millipore, MA, USA) and membranes were blocked
in 10% bull serum albumin (BSA) at room-temperature for
1 h. Blocked PVDF membranes were incubated with primary
antibodies overnight at 4◦C. The antibodies used in present
study were rabbit anti-GNL1 (1:500, 14078-1-AP, Proteintech,
China), rabbit anti-RDM1 (1:500, 20156-1-AP, Proteintech),
rabbit anti-FBXO17 (1:500, 12844-1-AP, Proteintech), rabbit
anti-SPATS2L (1:500, 16938-1-AP, Proteintech, China), rabbit
anti-GAPDH (1:5000, 10494-1-AP, Proteintech) and rabbit anti-
bTubulin (1:1,000, 10068-1-AP, Proteintech). The membranes
were then incubated with horseradish peroxidase (HRP)-
conjugated affinipure goat anti-rabbit IgG (1:2,000, SA00001-2,
proteintech) for 2 h at room- temperature. The gray values of
the protein bands were calculated using the Image J software
(National Institutes of Health, USA) and normalized to the
GAPDH or b-Tubulin signal.

Statistical Analysis
The two-sided log-rank test was used to compare the clinical
outcomes between low- and high-risk subgroups or low-
and high-expression of low- and high-expression subgroups
of RBP genes using Kaplan-Meier curve analysis. Time-
dependent receiver operating characteristic (ROC) curves were
obtained to assess the OS predictive ability of the risk
score. The prognostic role of RBP genes were evaluated by
univariate Cox regression analysis. The Kruskal test was used
to compared the expression levels of RBP genes in gliomas
with different histological types and WHO grades. Regarding
OS information, univariate and multivariate Cox regression
analyses were used to assess the independent prognostic

power of the RBP-signature. All statistical analysis in present
study were conducted based on the R programming (version
3.6.1, https://www.r-project.org/) and SPSS Statistics version 25
(https://www.ibm.com/products/software).

RESULTS

Development of the Prognostic
RBP-Signature of Glioma Patients
A flow chart describing our study process is shown in Figure 1. In
the beginning, we extracted the RBPs expression matrix form the
four cohorts and intersected the RBPs detected in all cohorts. A
total 1,364 RBPs were detected in all cohorts (Figure 2A). Using
the univariate Cox regression analysis, we selected 662 prognostic
RBP genes, which were correlated with the OS of glioma patients
(p < 0.05), from the shared 1,364 RBPs in the TCGA training
cohort. These RBPs were used as the candidate prognostic genes
for constructing the RBP-signature for glioma patients.

Next, we performed the Lasso Cox regression analysis to
construct the RBP-signature in the TCGA training cohort
(Figures 2B,C) and the 14-RBP signature was built for
predicting the OS of glioma patients. Meanwhile, risk scores
were calculated for each glioma patient based on their 14 RBP
genes expression value and related coefficients. The risk score
= (ANG∗0.00704479286224555) + (APOBEC3F∗0.016648734
9839528) + (CARHSP1∗1.85993728316624e-05) + (CTIF∗-
0.00289009741903594) + (FBXO17∗0.0212696099048724) +

(GNL1∗-0.0077699903265289) + (ISG20∗0.0243466438725418)
+ (KHNYN∗0.00375904579150528) + (LSM12∗0.00192
073111674367) + (PABPC3∗0.0467898021506214) +

(PNRC2∗0.000388662732954364) + (RDM1∗0.0424311619
487984) + (SPATS2L∗0.00898980677256576) + (TTF2∗0.00638
90105865751).

The formula was also used to calculated risk scores for the
glioma patients in the three validation cohorts.

To judge the predictive ability of this RBP risk model, we
classified 562 glioma patients into low- and high-subgroups based
on the median value of the risk scores. Survival analysis revealed
that high-risk glioma patients were significantly associated with
worse clinical outcomes (Figure 2D, p < 0.0001). Furthermore,
survival analysis was also performed in LGGs (Figure 2E, p <

0.0001) and GBMs (Figure 2F, p = 0.004) patients in the TCGA
training cohort, using the median value of risk scores as the cut
off value because all GBMs in the TCGA cohort were categorized
as high-risk gliomas.

To determine the predictive ability of the RBP-signature, we
conducted a time-dependent ROC analysis using the risk scores
in the TCGA cohort. The results showed that the area under the
curves (AUC) of the 1-, 3-, 5-year OS predicted using the ROC
curves were 0.871, 0.922, and 0.870, respectively (Figure 2G). The
patient distribution plot indicated that high-risk glioma patients
were associated with lower OS (Figure 2H) and the patients’ risk
scores were positively related to their WHO grades (Figure 2I)
in the TCGA training cohort. These results indicated that our
RBP-signature possessed a predictive ability with high accuracy
for patients with gliomas.
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FIGURE 1 | Flow chart of this study.

Validation of the Prognostic Value of
RBP-Signature
To analyze the robustness and stability of the RBP-signature, we
performed a survival analysis and ROC analysis using the other
three cohorts (CGGAseq1, CGGAseq2, and GSE16011). Using
the same formula, risk scores were calculated for patients in the
validation cohorts dividing them into low- and high- subgroups
based on the median value in each cohort. According to our
validation results, glioma patients in the high-risk subgroups had
worse OS and survival rates compared to low-risk glioma patients
in the three validation cohorts (Figures 3A–C, p < 0.0001 for all
three cohorts). Furthermore, the high-risk subgroups in the three
validation cohorts had significantly worse OS compared with the
low-risk subgroups in the LGGs (Supplementary Figures 1A–C,
p < 0.001) and similar results were also obtained for the
GBMs (Supplementary Figures 1D–F) with p-values of 0.271
(CGGAseq1), 0.019 (CGGAseq2), and 0.0049 (GSE16011),
respectively. The results showed that the RBP-signature retained
its prognostic value in LGG and GBM patients.

The ROC analysis in the validation cohorts showed that the
RBP-signature had a stable and robust OS-predictive ability in
glioma patients. The AUC of predicting 1-, 3-, and 5-year OS
in the three validation cohorts were 0.708, 0.782, and 0.799
(CGGAseq1 cohort), 0.732, 0.748, and 0.742 (CGGAseq2 cohort),
and 0.792, 0.860, and 0.812 (GSE16011 cohorts), respectively
(Figures 3D–F). The patient distribution plots in the other three
validation cohorts also showed that glioma patients with higher
risk scores were associated with shorter OS (Figures 3G–I).

The Prognostic Value and Expression
Levels of the 14 RBPs in Gliomas
To assess the roles of each of the 14 RBPs in gliomas, we designed
a heatmap to visualize the associations between the expression
levels of the 14 RBPs and common molecular and pathological
features of gliomas, including the risk score, IDH mutational
status, 1p/19q codeletion status, WHO grade, and histological
type (Figure 4A). In addition, the expression levels of the 14 RBPs
for each of the WHO grades and histological types were also
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FIGURE 2 | (A) The Venn plot showing the 1364 RBP genes identified in all the four cohorts. (B,C) Least absolute shrinkage and selection operator (Lasso) regression

was performed to calculate (B) the minimum criteria and (C) coefficients. (D–F) The RBP-signature stratifies (D) glioma patients, (E) LGGs, and (F) GBMs into two

subgroups with significantly different clinical outcomes. (G) Receiver operating characteristic (ROC) curves showing the 1-, 3-, and 5-year OS predictive efficiency of

the RBP-signature. (H) The patient distribution plot showing that patients with higher risk scores are associated with shorter OS. (I) The box plot indicating that WHO

grades are positively associated with risk scores.

visualized using box plots (Figures 4B,C). The results showed
that CTIF and GNL1 mRNA expression was reduced and that
of ANG, APOBEC3F, CARHSP1, FBXO17, ISG20, KHNYN,
LSM12, PABPC3, PNRC2, RDM1, SPATS2L, and TTF2 mRNA
increased in WHO grade IV (GBM) compared with those of
LGGs. To evaluate the prognostic roles of these RBPs in glioma
patients, univariate Cox regression (Table 2) and a two-sided log-
rank test (Supplementary Figure 1) were performed. The results

showed that CTIF and GNL1 were potential protective genes
and ANG, APOBEC3F, CARHSP1, FBXO17, ISG20, KHNYN,
LSM12, PABPC3, PNRC2, RDM1, SPATS2L, and TTF2 might act
as risk factors in glioma patients.

Furthermore, we also measured the protein levels of four
selected RBPs (GNL1, SPATS2L, RDM1, and FBXO17) in
three glioma cell lines, one astrocytoma cell line (SW1088)
and two glioblastoma cell lines (U251 and LN229). Western
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FIGURE 3 | (A–C) Survival curves showing how the RBP-signature stratifies glioma patients into two subgroups with significantly distinct clinical outcomes in the

three validation cohorts. (D–F) Receiver operating characteristic (ROC) curves showing the 1-, 3-, and 5-year OS predictive efficiency of the RBP-signature in the three

validation cohorts. (G–I) Patient distribution plots showing patients with higher risk scores are associated with shorter OS in the three validation cohorts.

blotting results showed that protein level of GNL1 was
significantly lower in U251 and LN229 cells compared with
SW1088 cells (Supplementary Figure 2A), while SPATS2L,
RDM1, and FBXO17 protein expression levels were significantly
higher in U251 and LN229 compared with SW1088 cells
(Supplementary Figures 2B–D). These results were consistent
with the conclusions in the datasets analysis.

Identifying the RBP-Signature Related
Biological Processes and Pathways
To investigate the underlying biological processes and pathways
associated with the RBP-signature, we performed differential
expression analysis between the low- and high-risk glioma

patients in the TCGA cohort. A total of 3,672 DEGs were

identified with the standard of |log2(fold change)| >1 and

p-value < 0.05 and were used to perform GO-BP and KEGG

pathway analysis using the R package “clusterProfiler.” We

found that the DEGs were mainly enriched in immune cell-
related biological processes such as T cell activation, regulation
of lymphocyte activation, regulation of leukocyte activation,
regulation of immune effector process, lymphocyte mediated
immunity, leukocyte migration, leukocyte differentiation,
leukocyte cell-cell adhesion, and B cell mediated immunity
(Figure 5A). Cancer-associated pathways were also enriched
in the high-risk gliomas identified by the RBP-signature,
including transcriptional dysregulation in cancer, proteoglycans
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FIGURE 4 | (A) The heatmap showing the correlation between the expression levels of the 14 RBP genes and the clinicopathological features including the risk score,

1p/19q codeletion status, IDH mutational status, WHO grade, and histological types. (B) Expression levels of the 14 RBP genes among gliomas with different WHO

grades. (C) Expression levels of the 14 RBP genes among gliomas with different histological types. GBM, glioblastoma; A, astrocytoma; OA, oligoastrocytoma; OD,

oligodendroglioma. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

in cancer, the PI3K-Akt signaling pathway, the p53 signaling

pathway, the NF-kappa B signaling pathway, focal adhesion,

ECM-receptor interaction, and the chemokine signaling

pathway (Figure 5B).

Independent Prognostic Value of the
RBP-Signature Stratification
To assess the independent prognostic value of the RBP-signature,
we carried out univariate and multivariate Cox analysis in the
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TABLE 2 | Coeffients and univariate Cox regression analysis of 14 RBP genes.

Gene Coeffients Description HR HR.95L HR.95H p-value

CTIF −0.002890097 CBP80/20-dependent translation initiation factor 0.953 0.944 0.961 <0.001

GNL1 −0.00776999 Guanine nucleotide binding protein-like 1 0.965 0.959 0.971 <0.001

ANG 0.007044793 Angiogenin, ribonuclease, RNase A family, 5 1.083 1.068 1.099 <0.001

APOBEC3F 0.016648735 Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3F 1.307 1.256 1.360 <0.001

CARHSP1 0.0000186 Calcium regulated heat stable protein 1 1.024 1.019 1.029 <0.001

FBXO17 0.02126961 F-box protein 17 1.071 1.060 1.082 <0.001

ISG20 0.024346644 Interferon stimulated exonuclease gene 20kDa 1.173 1.143 1.203 <0.001

KHNYN 0.003759046 KH and NYN domain containing 1.077 1.064 1.091 <0.001

LSM12 0.001920731 LSM12 homolog 1.174 1.142 1.207 <0.001

PABPC3 0.046789802 poly(A) binding protein, cytoplasmic 3 1.371 1.299 1.446 <0.001

PNRC2 0.000388663 Proline-rich nuclear receptor coactivator 2 1.026 1.020 1.031 <0.001

RDM1 0.042431162 RAD52 motif 1 [Source:HGNC Symbol;Acc:19950] 1.552 1.439 1.674 <0.001

SPATS2L 0.008989807 Spermatogenesis associated, serine-rich 2-like 1.042 1.035 1.048 <0.001

TTF2 0.006389011 Transcription termination factor, RNA polymerase II 1.179 1.138 1.221 <0.001

FIGURE 5 | (A) Gene ontology biological process (GO-BP) analysis. (B) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis.

TCGA training cohort and in the three external validation
cohorts. Risk scores were dichotomized as low- and high-risk
according to the median value of risk scores in each cohort

to evaluate the prognostic value of RBP-risk stratification. The
results showed that the RBP-risk stratification method was
not only an OS-related prognostic factor in gliomas, but it
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FIGURE 6 | Univariate and multivariate Cox analysis of clinicopathological and molecular features (including age, sex, WHO grade, IDH mutational status, 1p/19q

codeletion status and RBP-signature) in each cohort and in the meta cohort.

was confirmed as an independent prognostic factor of glioma
patients in each independent cohort and in the combined cohort
(Figure 6). The RBP-signature could successfully identify high-
risk gliomas in each cohort and in the meta cohort (HR: 3.662,
95% CI: 3.187–4.208, p < 0.001) and was an independent
prognostic factor (HR: 1.594, 95% CI: 1.244–2.043, p < 0.001).
These data indicated that the RBP-signature may find clinical
application as a promising predictor of OS and to predict the
prognosis of glioma patients.

Establishment and Validation of a
Nomogram Model Based on the
RBP-Signature Stratification
To evaluate the potential clinical application of the RBP-
signature, we constructed a nomogram model based on age,
WHO grade, and the RBP-signature using multivariate Cox
regression in the TCGA training cohort (Figure 7A). Age
and WHO grade were included in the nomogram model for
their independent prognostic ability and clinical accessibility.
The calibration curves revealed that the nomogram had high
predictive accuracy in forecasting the 1-, 3-, and 5-year OS
of glioma patients in the TCGA cohort (Figures 7B–D), and

it also showed good accuracy of OS prediction in the other
three validation cohorts (Supplementary Figure 3). The C-index
was also calculated to evaluate the discriminative ability of our
nomogram model and it performed well (0.856 for the TCGA
training cohort and 0.723 for the CGGAseq1, 0.737 for the
CGGAseq2, and 0.732 for the GSE16011 validation cohorts).
These results indicated that the RBP-signature-based nomogram
model might represent a promising prognostic model for the
evaluation of clinical prognosis.

DISCUSSION

Numerous predictive models for prognosis have emerged for
cancer patients, which have also been followed by some avoidable
limitations. First, many studies have used Cox proportional
hazards regression analysis to generate a mRNA-based risk
model. However, the Cox proportional hazards regression model
was an effective approach to create a prognostic risk signature,
but it is not the most appropriate choice in the face of high-
dimensional RNA sequence or microarray data given the issue of
overfitting of data. Secondly, redundant genes could be a barrier
to clinical application. Some previously reported risk models

Frontiers in Cell and Developmental Biology | www.frontiersin.org 10 January 2021 | Volume 8 | Article 588368

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Tu et al. RNA-Binding-Protein Related Signature in Glioma

FIGURE 7 | (A) The nomogram constructed using age, WHO grade, and the RBP-signature in the TCGA cohort. (B–D) Calibration plots indicating how the

nomogram effectively predicts the 1-, 3-, and 5-year OS of glioma patients in the TCGA cohort.

contained too many genes or non-coding RNAs, and we thought
that a risk signature constructed by moderate genes could be
more feasible for clinical use. Finally, biases have been reported
when a risk model is constructed based on a cohort of a limited
number of patients a training cohort with fewer samples may lead
a labile model which may not be successfully validated in other
independent cohorts.

Growing evidence has indicated that dysregulation of RBPs
occurs in different types of cancers but only a few RBPs
have been verified to play a crucial role in oncogenesis and
cancer progression. The roles of RBPs in glioma require further
clarification. In present study, we identified 14 prognostic RBPs
and constructed an RBP-signature to improve the predictive
ability of OS time of glioma patients in the TCGA cohort (n =

562), which was assessed in four additional independent glioma
cohorts and confirmed its robust and stable prognostic value.

Since our RBP-signature with 14 RBP genes was a good
predictor of the survival risk of glioma patients, it is essential
for us to investigate the underlying mechanisms involved.
Potential relative biological processes and pathways of the RBP-
signature have been suggested in our study, and the results
showed that genes correlated with the RBP-signature were
enriched in immune cell activities, cell adhesion or extracellular
matrix organization, and in cancer-associated pathways. T cell,
lymphocyte cell, and B cell immunity were found to be associated
with our RBP-signature, which means patients with different
risk scores have distinct immune responses or present a specific
immune cell microenvironment within gliomas. Association
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with the biological processes of cell-adhesion and extracellular
matrix organization might indicate that gliomas with higher
risk scores possess higher invasive ability for infiltrating to
peritumoral tissues. The p53 signaling pathway, PI3K-Akt
signaling pathway and NF-kappa B signaling pathway, which
were highly dysregulated in cancers, were identified analysis
associated with the RBP-signature in the KEGG pathway analysis.
These data might provide some clues for the underlying
mechanisms that distinguish different OS of low- and high- risk
glioma patients defined by the RBP-signature.

The biological functions of the 14 RBP genes have been
moderately investigated but only a few have been reported in
glioma. GNL1, or guanine nucleotide binding protein-like 1,
belongs to the HSR1_MMR1 subfamily of nucleolar GTPases,
and may be involved in the acceleration of the cell cycle
and cell proliferation via enhancing the phosphorylation of
retinoblastoma protein (Boddapati et al., 2012). The protein
encoded by ANG, angiogenin, a member of the RNase A
superfamily, is also a powerful promoter of new blood vessel
formation. APOBEC3F, a member of the cytidine deaminase
gene family, is thought to play a role in the cell cycle or
growth control, and overexpression of APOBEC3F is also related
to poor recurrence-free survival of HBV-related hepatocellular
carcinoma (Yang et al., 2015). ISG20 is an interferon-induced
exoribonuclease and usually acts on single-stranded RNA and
exerts little effect on single-stranded DNA (Horio et al., 2004)
and it may be induced by thyroid hormone and promotes
angiogenesis in liver cancer (Lin et al., 2018). FBXO17
could promote liver cancer progression via the Wnt/β-catenin
pathway and accelerate lung adenocarcinoma cell proliferation
by activating the Akt pathway (Suber et al., 2018; Liu et al.,
2019). RDM1 is reported to be involved in the cell response
to cisplatin (Hamimes et al., 2005) and acts as an oncogene
in several cancers; however, loss of RDM1 could promote liver
cancer progression by the Ras/Raf/ERK and p53 pathways (Chen
et al., 2020). PNRC2 encodes a coactivator which interacts with
nuclear receptors using a proline-rich sequence (Zhou and Chen,
2001), and it may be targeted by mir-23a-3p to further promote
the progression of renal cell carcinoma (Quan et al., 2019).
Evidences above indicated that these screened RBPs might play
a vital role in cancer and attention should be given to their role
in glioma.

Despite the strengths of our study, there are also limitations
to be addressed. Firstly, the data analyzed in our study derived
from open-access datasets and our results were validated in
retrospective rather than prospective cohorts. Secondly, some
important molecular features in the GSE16011 cohort, including
the 1p/19q co-deletion and the IDH mutational status, were

missing; thus, they could not be analyzed in our study. Finally,
more experimental studies should be performed to investigate
the functional role of the 14 RBP genes included in the signature
and to explore the correlation between the RBP-signature and
prognosis of glioma patients.

In conclusion, this study successfully constructed an RBP-
based risk signature that can efficiently predict the OS of
glioma patients. The RBP-signature is a helpful complement
to the prognostic indicators of glioma patients. However,
our retrospective study requires further validation in other
prospective glioma cohorts.
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