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Abstract: Hypertension is the leading cause of cardiovascular disease in the United States, affecting
up to one-third of adults. When compared to other ethnic or racial groups in the United States, African
Americans and other people of African descent show a higher incidence of hypertension and its
related comorbidities; however, the genetics of hypertension in these populations has not been studied
adequately. Several genes have been identified to play a role in the genetics of hypertension. They
include genes regulating the renin-aldosterone-angiotensin system (RAAS), such as Sodium Channel
Epithelial 1 Beta Subunit (SCNN1B), Armadillo Repeat Containing 5 (ARMC5), G Protein-Coupled
Receptor Kinase 4 (GRK4), and Calcium Voltage-Gated Channel Subunit Alpha1 D (CACNA1D).
In this review, we focus on recent genetic findings available in the public domain for potential
differences between African Americans and other populations. We also cover some recent and
relevant discoveries in the field of low-renin hypertension from our laboratory at the National
Institutes of Health. Understanding the different genetics of hypertension among various groups is
essential for effective precision-guided medical therapy of high blood pressure.

Keywords: genetics; hypertension; African American; low-renin; ARMC5; SCNN1B; GRK4; CACNA1D;
endocrine hypertension

1. Introduction

Hypertension is the leading cause of cardiovascular disease in the United States, affecting 29% of
adults, or approximately 75 million people [1]. The economic burden of hypertension in America is
enormous [2], often raising concerns about its major impact on health disparity [3–5]. When compared
to other ethnic or racial groups in the United States, African American and others of African descent
show a higher incidence of hypertension and its related comorbidities, including cardiovascular
and end-stage renal diseases [2]. Moreover, African Americans and others of African descent may
have higher blood pressure beginning in childhood, as well as a higher incidence and prevalence
of hypertension across the lifespan [6–11]. The age-adjusted prevalence of hypertension in African
Americans is ~45%, significantly higher than in other ethnicities, including ~32% among non-Hispanic
whites and ~30% among Hispanics [2].

Major predictors of hypertension in African Americans exist. For example, impaired arterial
elasticity [12–14] has been demonstrated to be more prevalent than in whites [5,15–17]. Brown et al.
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found in a large cohort study of untreated normotensive participants (Multi-Ethnic Study of
Atherosclerosis) that subjects who were found to have a suppressed renin phenotype were more likely
to be African Americans, and had higher systolic blood pressure [18]. In a recent observational study
on normotensive African Americans, aldosterone sensitivity (magnitude of the association between
plasma aldosterone concentration and blood pressure) increased with age and was associated with
plasma aldosterone concentration and the aldosterone-to-renin ratio, suggesting that mineralocorticoid
receptor activity may increase with age, especially in African Americans [19]. Other factors that
distinguish hypertension in African Americans from other ethnicities include increased awareness
of diagnosis, increased intensity of treatment, poor BP control, and more resistant hypertension [20].
On the other hand, hypertensive diagnostic inertia, defined as a failure to investigate the underlying
cause of hypertension, is an ongoing issue in African Americans with cardiovascular disease [21,22].
Moreover, adrenocortical hyperplasia was found to be more common in African Americans and other
patients of African descent [23], suggesting the possibility of aldosterone and/or cortisol excess as an
important contributor to the pathogenesis of hypertension in this ethnic group.

The regulation of blood pressure is complex. Research that examines the association of the
various pathophysiological factors with incident hypertension among African Americans and others
of African descent is limited, as detailed in Table 1. Despite heredity contributing 40–50% to the
pathogenesis of essential hypertension and genome-wide association studies identifying ~6% of the
genetic contribution [24,25], little is known about the genetic diversity of hypertension in African
American populations, particularly in relation to the factors listed in Table 1. Some researchers have
focused on genes implicated in altered renal sodium handling in the kidneys and volume loading,
which are key players in the development of low-renin hypertension in this at-risk population [26,27].
Studies that failed to discover any relationship between African American and hypertension were
limited by several factors, including variation in allele frequency, small statistical power, and the
possibility of weak ancestral effects [28–30]. Large sample size studies could exclude > 95% of the
genome as harboring risk loci of > 1.3 due to African or European ancestry, further suggesting the
complexity of understanding the underpinning of hypertension across various ethnicities. Ongoing
studies are examining genetic susceptibility and environmental factors as determinants of hypertension
in African Americans [31].

Table 1. Examples of pathophysiological mechanisms of hypertension in individuals of African descent.

Mechanism

Psychosocial factors [32]
Endothelial dysfunction [33,34]
Kidney injury and function [35]

Renin-angiotensin system activation [36]
Insulin resistance [37]

Impaired baroreflex [38]
Oxidative stress [39]
Genetic factors [20]

Adrenomedullary/cortical hormones [23]
Blood volume [40]

Salt retention [20,41]
Socioeconomic determinants [42]

Diversity may exist within African descent population. Clinical and genetic data of African-
Americans and others of African descent should be interpreted and compared with caution. Chor et al.
studied blood pressure profiles of 15,103 civil servants in Brazil and found a high prevalence of
high blood pressure among browns (38.2%) and blacks (49.3%) [11]. Importantly, they found that
hypertensive characteristics of Brazilian brown populations were like that seen in the individuals of
African descent.
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Genetic sequencing has gained enormous popularity in the scientific field. Affordability and
fast throughput are promising to deliver “Genetic Health Risk and Carrier Status” for as little as $99,
through direct-to-consumer salivary collection kits [43]. However, the clinical interpretation of an
individual’s genome, its utility in clinical practice, and the overall cost has yet to be implemented as
a standard of care approach in universal clinical management guidelines. One of the major goals of
understanding the genetics of hypertension includes the transfer of genomic knowledge into daily
clinical practice [10], for potential gene-targeted medical therapies [5], among other useful utilities.

In this review, we briefly highlight the mechanistic and genetic underpinnings of hypertension in
African Americans and other populations of African ancestry. We have focused our discussion on the
biologically plausible hypertension candidate gene loci in African Americans [44]

2. Hypertension in African Americans: Clinical Differences and Genetics

2.1. Renin and Aldosterone

African Americans excrete a sodium load more slowly and less completely than whites [45]. This
results in suppression of the renin-aldosterone-angiotensin system (RAAS) due to volume-loading that
typically begins in childhood [46–49]. Ultimately, a low-renin state, which compensates for the relative
tendency to retain sodium, ensues [50]. Low-renin hypertension is a frequent cause of hypertension,
with a prevalence of 20%–30%, and higher in African Americans [51–53]. One study demonstrated
lower levels of plasma renin activity and aldosterone in normotensive African Americans across
all ages, with BP positively correlating with plasma aldosterone, an effect that increased as plasma
renin activity decreased [48]. Thus, a typical biochemical profile in an African American person
with hypertension is a low or high plasma aldosterone concentration, a low or suppressed plasma
renin activity or direct renin concentration, and suppressed angiotensin I and II [36,50,54,55]. This
results in a normal or elevated aldosterone-to-renin ratio, which can be categorized into two broad
hypertension phenotypes: low or suppressed renin and elevated aldosterone (primary aldosteronism
type, or hyporeninemic hyperaldosteronism) and low renin and low aldosterone (Liddle syndrome
type, or hyporeninemic hypoaldosteronism) [56]. The threshold set to diagnose a low renin state
is assay specific but generally defined as a plasma renin activity < 0.65 ng/mL/h or a direct renin
concentration < 15µU/mL [52].

2.2. Regulation of Sodium Reabsorbtion

It has been speculated that several genes implicated in the regulation of sodium reabsorption
in the kidneys were likely selected as an adaptation to high temperature environments, particularly
in people from Sub-Saharan Africa [20,57]. These include genes regulating RAAS, such as (Sodium
Channel Epithelial 1 Beta Subunit (SCNN1B) and Neural Precursor Cell Expressed, Developmentally
Down-Regulated 4 (NEDD4) that alter sodium retention from the kidneys, and possibly armadillo
repeat containing 5 (ARMC5) that might be responsible for increased aldosterone production from the
adrenal cortex (see below).

These genetic factors may have played an important physiological adaptation (“natural selection”)
to the low sodium environments and survival of African Americans during their passage from
Africa to America on ships [20,57], where they witnessed extreme conditions including severe heat,
hyperhidrosis, and fluid loss through sickness. Indeed, this selection process may have contributed to
the increased prevalence of hypertension in this population [58,59]. In this section, we cover the most
important known genetic contributions to hypertension in African Americans.

2.3. ENaC Function

The amiloride-sensitive epithelial sodium channel (ENaC) is in the distal nephron and responsible
for regulating the amount of sodium reabsorbed by the kidneys, primarily through the action of
aldosterone. ENaC is composed of 3 homologous subunits of similar structure and encoded by separate
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genes: Sodium Channel Epithelial 1 Alpha Subunit (SCNN1A) on 12p13.31, Sodium Channel Epithelial
1 Beta Subunit (SCNN1B) on 16p12.2, and Sodium Channel Epithelial 1 Gamma Subunit (SCNN1G) on
16p12.2. There are two transmembrane domains (TM1 and TM2) and two short intracellular domains
(C- and N-terminus); the C-termini contain a binding site for Nedd4 (neural precursor cell expressed,
developmentally down-regulated 4), a ubiquitin E3 ligase protein encoded by NEED4 on 15q21.3 and
responsible for the internalization and the proteasomal degradation of ENaC [60–62].

2.3.1. Liddle’s Syndrome

Constitutive activation variants of SCNN1B or SCNN1G result in salt-sensitive hypertension
known as Liddle’s syndrome, an autosomal dominant form of monogenic hypertension that is
characterized by early-onset of low-renin hypertension [63]. Patients with Liddle’s syndrome
are resistant to mineralocorticoid antagonist therapy but respond to an ENaC inhibitor, such as
amiloride therapy [63,64]. Gain-of-function variants in the genes encoding for ENaC are in the
carboxyterminal cytoplasmic tail of the protein, which is involved in down-regulation of channel
number or activity [50,65]. This area of the nephron is the final regulator of sodium balance and
activating variants in ENaC leads to sodium retention, potassium excretion, low renin/aldosterone
(hyporeninemic hypoaldosteronism), and volume overload [20,66].

2.3.2. Hyporeninemic Hypoaldosteronism (Liddle Phenotype)

Hyporeninemic hypoaldosteronism not due to Liddle’s syndrome, also referred to as the
Liddle phenotype, is more common in African Americans for multiple reasons, including the
interplay of certain genes that lead to ethnic differences in proximal and distal tubular sodium
reabsorption [67]. Tu et al. confirmed this association between ENaC overreactivity and hypertension
in African Americans by demonstrating increased retention of sodium and water after stimulation
with 2 weeks of 9-α fludrocortisone [48]. Moreover, ENaC over-activation could also be due to altered
internalization and degradation by NEDD4 and acquired or inherited causes of aldosterone excess. On
the other hand, loss-of-function variants in other segments of ENaC cause pseudohypoaldosteronism,
an autosomal recessive condition that is characterized by salt-loss and mineralocorticoid resistance [68].

2.3.3. SCNN1B and NEED4

Activation of ENaC, either due to structural variants of the channel subunits (e.g.,: SCNN1B) or
altered activity of regulatory processes (including NEED4), could underlie low-renin hypertension in
African Americans. One study showed that ENaC channel activity, as assessed by nasal transmucosal
electrical potential difference, was greater in African Americans than in whites [69]. In a mixed
ancestry population of South Africans, a variant in SCNN1B (p.R563Q) was present in 18 people,
of whom 17 were hypertensive [50]. In another study, this variant was present in 6% of Africans
from urban South Africa that responded to treatment with amiloride therapy [70]. This variant was
associated with a resistant form of hyporeninemic hypoaldosteronism hypertension, analogous to
Liddle syndrome. Moreover, the p.T594M but not p.G442V (which causes lower aldosterone secretion,
suggesting increased ENaC activity) variants in SCNN1B may also contribute to hypertension in
African Americans [71]. In another study, individuals with variants in NEDD4 were linked to increased
BP and adverse cardiovascular outcomes [20,72,73].

2.3.4. ENaC Function, CYP4A11 and Responsiveness to Amiloride Therapy

Individuals with variants affecting ENaC function and hypertension may respond preferentially
to amiloride therapy. Studies from salt-sensitive hypertensive rodent models showed decreased
expression of Cyp4a and increased ENaC activity responsive to amiloride [74,75]. Human studies on
African American patients with resistant hypertension demonstrated homozygosity for the C allele
at rs3890011 of Cytochrome P450 Family 4 Subfamily A Member 11 (CYP4A11) (1p33), which has
been previously associated with blood pressure in various populations [30,76], and a positive response
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to amiloride therapy [77]. A large high-density admixture scan in 1670 African Americans with
hypertension identified this locus as a candidate gene for hypertension [30]. CYP4A11 encodes
a member of the cytochrome P450 superfamily of enzymes, a monooxygenase which catalyze
reactions involved in the synthesis of cholesterol, steroids, and other lipids and localized to the
endoplasmic reticulum. Several lines of evidence suggest that this gene serves as a modulator
of ENaC function [75,77], likely through decreased epoxygenase activity and renal synthesis of
epoxyeicosatrienoic acids [20,77]. Collectively, although these variants are more frequent in African
Americans, their association with hypertension has been weak and/or inconsistent [50,78,79]. Further
studies with a larger population size are required to study their effects on hypertension in the African
American populations.

2.4. Adrenocortical Hyperplasia, Tumors, and Primary Aldosteronism

2.4.1. KCNJ5, CACNA1D, ATP1A1, ATP2B3, and CTNNB1

Primary aldosteronism is the most common cause of endocrine hypertension [80]. Autonomous
secretion of aldosterone from the adrenal glands suppresses endogenous renin production, which
results in an increased volume status. The most frequent cause of primary aldosteronism is bilateral
adrenal hyperplasia [81], often referred to as idiopathic adrenal hyperplasia. Recent evidence
suggests that these lesions harbor areas of hyperplasia due to cytochrome P450 family 11 subfamily B
member 2 (CYP11B2)-expressing cells from an unknown germline variants, and at least 1 CYP11B2-
positive aldosterone-producing cell cluster (APCC, that typically develops with aging) or micro-
aldosterone-producing adenomas, in part due to calcium or potassium channel variants (Calcium
Voltage-Gated Channel Subunit Alpha1 D (CACNA1D), 58%; Potassium Voltage-Gated Channel
Subfamily J Member 5 (KCNJ5), 1%) [82].

Recently, Nanba et al. studied the genetic characteristics of 73 aldosterone-producing adrenocortical
adenomas in 79 subjects of African American decent who had primary aldosteronism; 65 subjects
had somatic alterations in driver genes. The genetic landscape of these tumors was different than
in non-African Americans: alteartions in CACNA1D (n = 42%), KCNJ5 (34%), ATPase Na+/K+
Transporting Subunit Alpha 1 (ATP1A1) (8%), and ATPase Plasma Membrane Ca2+ Transporting
3 (ATP2B3) (4%) represented the spectrum [83]. No variants in ARMC5 were found in this study.
These results suggest that CACNA1D could be one of the most frequently mutated aldosterone-driver
gene in African Americans, suggesting a possible primary role for calcium channel blockers in the
management of these individuals.

Familial or inherited causes of primary aldosteronism are rare and caused by disease-causing
germline activating variants in several genes as detailed elsewhere [81].

2.4.2. Bilateral Adrenocortical Hyperplasia

Bilateral adrenocortical hyperplasias are grossly divided into the micronodular and macronodular
disease. The micronodular subtypes are usually diagnosed in children and young adults and are
either pigmented (primary pigmented nodular adrenocortical disease [PPNAD] as seen in Carney
complex) or not pigmented. The macronodular subtypes, which are usually diagnosed in adults
over the age of 40, may be sporadic or familial and caused by disease-causing variants in ARMC5,
Adenomatous Polyposis Coli (APC), Multiple Endocrine Neoplasia type 1 (MEN1), and Fumarate
Hydratase (FH) [84–86]. African Americans with hypertension and a biochemical phenotype of
hyporeninemic hyperaldosteronism are more likely to have bilateral adrenal hyperplasia, with or
without nodules [84,85,87–91].

2.4.3. ARMC5

The ARMC5 gene is a putative tumor-suppressor that is located on chromosome 16p11.2 and
belongs to the family of armadillo (ARM)-repeat-containing proteins. In humans, ARMC5 consists
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of 8 exons and has an unknown function. The ARMC5 gene has been recently implicated in
endogenous hypercortisolemia due to a rare form of adrenocortical hyperplasia, termed primary
bilateral macronodular adrenal hyperplasia (PBMAH) [84,92,93]. This condition is characterized
by multiple macronodules (>1 cm) in the adrenal cortex and hypercortisolemia; it is also rarely
associated with primary aldosteronism [85]. Biallelic inactivating variants in ARMC5 (germline
and somatic) are required for the development of adrenocortical hyperplasia, which is consistent
with the two-hit hypothesis of tumorigenesis [84,85,92]. Most variants in ARMC5 are frameshift
and/or nonsense, and lead to loss of function of the gene. Our group has recently shown that
Armc5 knockout mice died during early embryonic development, while a third of heterozygotes
developed hypercorticosteronemia at 18 months of age [94]. Several pathways may be involved in
Armc5 haploinsufficiency, including cyclic AMP (protein kinase A, its catalytic subunit Cα) and the
Wnt/β-catenin pathways [94].

Our laboratory has recently identified an association between biallelic variants of ARMC5 in
African Americans and primary aldosteronism [85]. We hypothesized that these variants likely act as a
selective advantage for people of African descent to excrete water more slowly as a survival mechanism
in hot climates through enhanced excretion of aldosterone from the adrenal cortex [95]. Our initial
studies showed that 20 unrelated and two related study subjects (39.3%) harbored 12 germline ARMC5
variants that were predicted to be damaging by in silico analysis. Interestingly, all patients carrying a
variant predicted to be damaging were African Americans (Table 2).
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Table 2. Genes associated with pulse pressure, systolic, diastolic blood pressure and hypertension. Adapted by permission from Springer Nature: [Springer Nature]
[Journal of Cardiovascular Translational Research] [Hall, J.L.; Duprez, D.A.; Barac, A.; Rich, S.S. A review of genetics, arterial stiffness, and blood pressure in African
Americans, 5, 302-308.e), [Springer Science+Business media, LLC] (2012).

Study Race-ethnicity Traits Discovery

Primary aldosteronism NIH
study [85]

ARMC5 variants in AA with PA (n = 22)/ARMC5
variants ESPS6500 Sample (n = 2203)

Primary aldosteronism
and hypertension

ARMC5 maps to 16p11.2. rs35461188 (Benign),
rs200655247 (Damaging), rs142376949 (Benign),

University of Michigan study
and NIH [83]

Black patients from USA, n = 79 (73 patients had
aldosterone-producing adenoma)

Primary aldosteronism
and hypertension

73 adrenocortical tumors from 79 PA patients expressed
CACNA1D (42%), KCNJ5 (34%), ATP1A1 (n = 8%),

ATP2B3 (4%).

University of California San
Diego/Kaiser/VA/Loyola [96]

AA (n = 383), Combined cohort Kaiser/VA (n =
527), Nigerian cohort Loyola

Systolic Blood Pressure,
hypertension

SCG2 (two transactivating factors were identified, ARIX
(PHOX2A) and PHOX2B

The State University of NY
Health Science Center [97] AA (n = 342), Caucasians (n = 263) Systolic Blood pressure AGT (-217A variant)

Family Blood Pressure
Program [98]

AA (n = 3962)/Whites
(n = 3667)/Hispanics

(n = 1612)/Asian (n = 1557)
U.S.

Pulse pressure

Chromosome 7 at 75 cM, LOD 3.1 in AA, chromosome
19 at 0 cM LOD 3.1 in combined sample whites and AA,
and a region on chromosome 18 at 71 cM LOD score of

3.2 in whites, AA, and Hispanics.

HyperGEN [13] AA (n = 1251) U.S. Pulse Pressure Chromosome 1, 215 cM, LOD 3.08, Chromosome 14, 85
cM, LOD 2.42

Howard University
Family Study [99]

AA (n = 1017) U.S.
A 2nd cohort of 980 West

Africans
Systolic BP

rs5743185, rs16877320, rs11160059, rs17365948,
rs12279202, rs3751664. SLC24A4 (a

sodium/potassium/calcium exchanger) and CACNA1H
(a voltage-dependent calcium channel),

Family Blood Pressure Program
and Nigerian cohort [27]

AA (n = 737) (cases)
European Americans

(n = 573) (controls)
Hypertension

5 markers on chromosome 6q (near region 6q24); 2
markers on chromosome 21 (near region 21q21) may
contain genes influencing risk of hypertension in AA

Dallas Heart Study [100]
AA (n = 1743), White
(n = 1000), Mexican
American (n = 581)

Hypertension rs2272996

Candidate Gene Association
Resource Consortum [101]

AA (n = 6303), replication
Cohorts: Women’s Health Initiative, Maywood,

GENOA, Howard University
Family Study, native Nigerian

African Sample (n = 11,882)

Systolic and diastolic
blood pressure rs7726475 between genes SUB1 and NPR3
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Table 2. Cont.

Study Race-ethnicity Traits Discovery

International
Consortium for
Blood Pressure

Association Studies [102]

AA (n = 19,775), Europeans
(n = 200,000), East Asians
(n = 29,719), South Asians

Systolic and Diastolic
blood pressure,
hypertension

rs13082711 (SLC4A7) (SBP/DBP); rs419076 (MECOM),
(SBP); rs13107325 (SLC39A8) (SBP/DBP); rs13139571

(GUCY1A3-GUCY1B3) (SBP/DBP); rs1173771
(NPR3-C5orf23) (SBP); rs11953630 (EBF1) (SBP/DBP);

rs805303 (BAT2-BAT5) (DBP); rs7129220 (ADM)
(SBP/DBP); rs633185 (FLJ32810/TMEM133) (SBP);
rs2521501 (FURIN-FES) (SBP/DBP); rs17608766

(GOSR2) (SBP/DBP); rs1327235 (JAG1) (SBP/DBP);
rs6015450 (GNAS-EDN3) (SBP/DBP); rs17367504
(MTHFR-NPPB) (SBP/DBP); rs3774372 (ULK4)

(SBP/DBP); rs1458038 (FGF5) (SBP/DBP); rs1813353
(CACNB2(3′) (SBP/DBP); rs11191548 (CYP17A1-NT5C2)
(SBP/DBP); rs381815 (PLEKHA7) (SBP/DBP); rs3184504
(SH2B3) (SBP/DBP); rs1378942 (CYP1A1-ULK3) (SBP):

rs12940887 (ZNF652) (SBP/DBP)
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In a different study, we investigated a large cohort of African Americans in the Minority Health
Genomics and Translational Research Bio-Repository Database (MH-GRID) study. The MH-GRID
genomic database comprises a large group of subjects with hypertension, both resistant and severe
subtypes. We hypothesized that a direct association between ARMC5 variants and increased risk
of hypertension in African American exists. 1377 subjects (mean age: 48.25 (SD ± 6.06), controls
43.35 (SD ± 7.23), P = 1.17×10-40) and 44 variants within ARMC5 (3 common, 4 low frequency
and 37 rare variants) were considered for analysis. ARMC5 variant rs116201073 reached nominal
significance (P = 0.044) and odds ratio (OR) = 0.7, suggesting a protective effect for this variant. A set
of 16 rare variants significantly associated with hypertension was identified and combined with the
common variant, associated with hypertension in the single-variant analysis, representing a variant set
associated with hypertension (P = 0.0121). These results confirmed our previous report of increased
germline ARMC5 variants that may be associated with hypertension. Further genetic and molecular
studies are needed to confirm these findings [103].

2.5. Other genes

This section highlights several variants in genes that have been associated with hypertension in
African Americans, which are also listed in Table 2.

2.5.1. GRK4

G protein-coupled receptor kinases (GRKs) participate in the desensitization of G protein-coupled
receptors, including D1 receptors, in the proximal renal tubules; variants in GRK4 (4p16.3) were
shown to improperly excrete sodium in rodents and humans with hypertension [104]. A recent report
using genetic sequencing of genes implicated in sodium and water retention in African Americans
revealed variants associated with amino acid changes were implicated with low renin resistant
hypertension [105]. Three variants in GRK4 (pR65L, p.A142V, and p. A486V) were 94.4% predictive
of salt-sensitive hypertension. Additionally, the number of GRK4 variants was inversely related to
salt excretion [105], suggesting that GRK4 is an important gene in the regulation of the hyporeninemic
hypoaldosteronism phenotype in African Americans with hypertension. In this study, other variants
that were reported in association with hypertension in the same population included CYP11B2, which
encodes for aldosterone synthase.

2.5.2. SCG2, PHOX2A and PHOX2B

Wen et al. reported on the association between a regulatory variant in secretogranin II (SCG2) in
African Americans [96]. They sequenced the entire gene from 180 diverse ethnic group and showed
that variant 736 was common among subjects of African descent. Two transactivating factors were
identified, including ARIX (PHOX2A) and PHOX2B, while a positive selection of the protective
allele within the human lineage was observed [96]. In another study, a single variant that converts
methionine to threonine at amino acid 235 (M235T) of the angiotensinogen gene (AGT) was found to
be associated with hypertension in Caucasians [106]. Kumar et al. reported an A/G polymorphism
at position -217 of the AGT gene promoter and found that the frequency of allele A is increased in
African Americans [97].

2.5.3. GPR25 and SMOC1

The Family Blood Pressure Program, which included 10,798 participants in 3320 families (3962
African Americans) observed a significant linkage on chromosome 7 (logarithm of odds [LOD] = 3.1)
in African Americans people from the GenNet Network [98]. Sherva et al. identified loci contributing
to arterial stiffness in a cohort 1251 Black people (HyperGEN study) [13]. Scientists identified two
regions which were highly suggestive of linkage on chromosome 1 (LOD = 3.08), and another one on
chromosome 14 (LOD = 2.42). Two candidate genes ((G Protein-Coupled Receptor 25 (GPR25), SPARC
Related Modular Calcium Binding 1 (SMOC1)) were in the linked regions [13].
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2.5.4. SLC24A4 and CACNA1H

The Howard University Family Study studied a panel of over 800,000 variants from 1,017 African
Americans from the Washington, D.C., metropolitan region and found two genes (Solute Carrier
Family 24 Member 4 (SLC24A4) and Calcium Voltage-Gated Channel Subunit Alpha1 H (CACNA1H))
as potential candidates for blood pressure regulation [99].

2.5.5. CYP11B2

The CYP11B2 gene encodes for a cytochrome P450 protein, a monooxygenase which catalyzes the
synthesis of cholesterol, steroids, and other lipids in the inner mitochondrial membrane; also known
as aldosterone synthase, this enzyme has an 18-hydroxylase activity to synthesize aldosterone and
18-oxocortisol as well as steroid 11 beta-hydroxylase activity and is the rate limiting step in aldosterone
production [107].

The largest study to date from 3 African countries examined several variants of genes implicated
in low renin-resistant hypertension in Africans with suppressed renin and increased aldosterone.
Six candidate genes were sequenced, including CYP11B2, SCNN1B, NEDD4L, GRK4, Uromodulin
(UMOD), and Natriuretic Peptide A (NPPA) based on the renin-aldosterone status [105]. Fourteen
nonsynonymous variants of CYP11B2 were found, with 3 previously described and associated with
alterations in aldosterone synthase production (R87G, V386A, and G435S) [105]. Further studies are
required to ascertain these findings.

Apparent mineralocorticoid excess (AME) refers to a rare autosomal recessive disorder leading to
low renin hypertension due to alterations in HSD11B2 (16q22.1), which encodes for the corticosteroid
11-beta-dehydrogenase. This is a microsomal enzyme complex responsible for the interconversion of
cortisol and cortisone in the kidneys, thus preventing the activation of the mineralocorticoid receptor
by glucocorticoids. Variants in this gene have been associated with essential hypertension [108–110],
likely through decreased cortisol inactivation to cortisone which is seen with aging, and biochemically
confirmed as elevated urinary tetrahydrocortisol (THF, A-ring-reduced cortisol metabolite) +
alloTHF to tetrahydrocortisone (THE, cortisol metabolite) [(THF+alloTHF)/THE] [111]. One study
demonstrated an association between microsatellite markers close to the HSD11B2 gene and
hypertension in African Americans that also suffered from end-stage renal disease likely due to
hypertension [53,112]. Further studies are required to confirm this association with the increased
predisposition of African Americans to low-renin, salt-sensitive hypertension.

2.5.6. Other Genetic Variants

Zhu et al. performed admixture mapping for hypertension loci with genome-scan markers from
individuals of African descent and European Americans (Family Blood Pressure Program). They
found that chromosome 6q24 and 21q21 may contain genes associated with risk of hypertension in
African Americans [27]. Another admixture mapping in African Americans was done in the Dallas
Heart Study [100]. Researchers genotyped a panel of 2270 variants in a random sample of 1743
African Americans and found a missense variant in Vanin 1 (VNN1) (rs2272996) that was significantly
associated with hypertension in African Americans. In the Candidate Gene Association Resource
(CARe) consortium, a novel variant (rs7726475) on chromosome 5 (between the SUB1 Homolog,
Transcriptional Regulator (SUB1) and Natriuretic Peptide Receptor 3 (NPR3) genes) and rs7726475
was found to be associated with both systolic and diastolic hypertension [101].

Finally, in the International Consortium for Blood Pressure Genome-Wide Association (19,775
subjects of African ancestry) [102], scientists identified a large number of variants associated with
either systolic or diastolic hypertension in Africans, including: rs13082711 (SLC4A7) (SBP/DBP);
rs419076 (MECOM), (SBP); rs13107325 (SLC39A8) (SBP/DBP); rs13139571 (GUCY1A3-GUCY1B3)
(SBP/DBP); rs1173771 (NPR3-C5orf23) (SBP); rs11953630 (EBF1) (SBP/DBP); rs805303 (BAT2-BAT5)
(DBP); rs7129220 (ADM) (SBP/DBP); rs633185 (FLJ32810/TMEM133) (SBP); rs2521501 (FURIN-FES)
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(SBP/DBP); rs17608766 (GOSR2) (SBP/DBP); rs1327235 (JAG1) (SBP/DBP); rs6015450 (GNAS-EDN3)
(SBP/DBP); rs17367504 (MTHFR-NPPB) (SBP/DBP); rs3774372 (ULK4) (SBP/DBP); rs1458038 (FGF5)
(SBP/DBP); rs1813353 (CACNB2) (SBP/DBP); rs11191548 (CYP17A1-NT5C2) (SBP/DBP); rs381815
(PLEKHA7) (SBP/DBP); rs3184504 (SH2B3) (SBP/DBP); rs1378942 (CYP1A1-ULK3) (SBP): rs12940887
(ZNF652) (SBP/DBP).

3. Genetic Counselling

To date, the identification of genetic variants that predispose to hypertension in African Americans
has not enabled genetic diagnosis and early identification of patients and their at-risk family members.
Thus, genetic testing is not currently routine in clinical practice. Indeed, with the exception of ARMC5
and CACNA1D (as outlined above), the other genes discussed in this review have no current clinical
implications for the management of hypertension in African Americans. When a clinician encounters
a patient with a pathogenic and damaging ARMC5 variant, screening for Cushing syndrome and
primary aldosteronism is encouraged. From our experience, ARMC5-related adrenal pathology does
not clinically present in early childhood. ARMC5-related endocrine hypertension diseases typically
develop in adulthood as either subclinical Cushing syndrome, with or without primary aldosteronism,
or overt Cushing syndrome. Carriers may not show signs of these conditions until later in adulthood,
typically over 40 years of age. Genetic testing and counselling of family members should be considered
as the conditions associated with ARMC5 follow an autosomal dominant inheritance pattern with
decreased penetrance.

4. Conclusions

Hypertension in African Americans is the leading cause of cardiovascular disease in this
population. The complex interactions between genetic and environmental determinants are yet to be
identified. Several genes implicated in RAAS activation have been studied in African American
populations and have revealed a surprising number of novel variants and pathways possibly
implicated in the pathogenesis of hypertension. Among them, variants in the ARMC5 gene appear to
be a rare but inherited cause of primary aldosteronism and consequently low-renin hypertension in
African Americans. Further studies are needed to determine the significance of the genes discussed in
this review and respective pathways, which will guide personalized precision therapy for hypertension.
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