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Loss of hypothalamic Furin affects POMC to
proACTH cleavage and feeding behavior in
high-fat diet-fed mice
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ABSTRACT

Objective: The hypothalamus regulates feeding and glucose homeostasis through the balanced action of different neuropeptides, which are
cleaved and activated by the proprotein convertases PC1/3 and PC2. However, the recent association of polymorphisms in the proprotein
convertase FURIN with type 2 diabetes, metabolic syndrome, and obesity, prompted us to investigate the role of FURIN in hypothalamic neurons
controlling glucose and feeding.
Methods: POMC-Creþ/� mice were bred with Furinfl/fl mice to generate conditional knockout mice with Furin-deletion in neurons expressing
proopiomelanocortin (POMCFurKO), and Furinfl/fl mice were used as controls. POMCFurKO and controls were periodically monitored on both
normal chow diet and high fat diet (HFD) for body weight and glucose tolerance by established in-vivo procedures. Food intake was measured in
HFD-fed FurKO and controls. Hypothalamic Pomc mRNA was measured by RT-qPCR. ELISAs quantified POMC protein and resulting peptides in
the hypothalamic extracts of POMCFurKO mice and controls. The in-vitro processing of POMC was studied by biochemical techniques in HEK293T
and CHO cell lines lacking FURIN.
Results: In control mice, FurinmRNA levels were significantly upregulated on HFD feeding, suggesting an increased demand for FURIN activity in
obesogenic conditions. Under these conditions, the POMCFurKO mice were hyperphagic and had increased body weight compared to Furinfl/fl

mice. Moreover, protein levels of POMC were elevated and ACTH concentrations markedly reduced. Also, the ratio of a-MSH/POMC was
decreased in POMCFurKO mice compared to controls. This indicates that POMC processing was significantly reduced in the hypothalami of
POMCFurKO mice, highlighting for the first time the involvement of FURIN in the cleavage of POMC. Importantly, we found that in vitro, the first
stage in processing where POMC is cleaved into proACTH was achieved by FURIN but not by PC1/3 or the other proprotein convertases in cell lines
lacking a regulated secretory pathway.
Conclusions: These results suggest that FURIN processes POMC into proACTH before sorting into the regulated secretory pathway, challenging
the dogma that PC1/3 and PC2 are the only convertases responsible for POMC cleavage. Furthermore, its deletion affects feeding behaviors under
obesogenic conditions.

� 2022 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. INTRODUCTION

The hypothalamus is a key region of the central nervous system that
regulates feeding behavior and energy expenditure in mammals. The
melanocortin system is a crucial molecular circuit controlling feeding
and metabolism within the arcuate nucleus of the hypothalamus [1].
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This circuit includes two antagonistic neuronal populations: the agouti-
related protein (AgRP)/neuropeptide Y (NPY) neurons, which stimulate
feeding behavior, and the pro-opiomelanocortin (POMC) neurons, which
stimulate satiety after a meal [2e4]. Both neural circuits are tightly
regulated by peripheral hormones (e.g. leptin and insulin) and neuro-
peptides through the binding to their neuronal surface receptors [5].
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Abbreviations

a-MSH a-melanocyte-stimulating hormone
ACTH adrenocorticotropic hormone
AgRP agouti-related protein
HEK human embryonic kidney
HFD high fat diet
IR insulin receptor
ISG immature secretory granule
PC proprotein convertase
POMC pro-opiomelanocortin
NCD normal chow diet
NPY neuropeptide Y
TGN trans-Golgi network

Brief Communication
Endocrine hormones and neuropeptides convey signals between the
hypothalamus and other metabolic organs inducing either satiety or
appetite. These ligands, as well as many of their cell surface receptors,
are synthesized as inactive precursor proteins and require the proteolytic
activity of specific endopeptidases as a first step towards activation [6].
After these cleavage steps by endopeptidases, further trimming and
amidation are often needed for full activation [7,8]. Most of the cleavages
are performed by proprotein convertases (PCs), a seven-member family
of subtilisin-like serine proteases with selectivity for basic amino acid
motifs [9]. Any alteration of this enzymeesubstrate balance can lead to
dramatic changes in feeding behaviors and energy metabolism. In
particular, both PC1/3 and PC2 are active in the regulated secretory
pathway of the neuroendocrine system and are involved in the proteolytic
cleavage of hormones and neuropeptides that modulate energy and
glucose balance. For instance, cells expressing PC1/3 cleave POMC into
adrenocorticotropic hormone (ACTH) and b-lipotropin. Cells expressing
PC2, either with or without PC1/3, cleave ACTH further into a-melano-
cyte-stimulating hormone (a-MSH) [10,11]. An example of the altered
enzymeesubstrate balance is represented by PC1/3-deficient patients
that suffer from early-onset obesity and hyperphagia, together with other
endocrinopathies [12,13]. In addition, several polymorphisms and rare
heterozygous mutations in the human PCSK1 gene (encoding for PC1/3)
have been associated with an increased risk of obesity [14e16]. So far
there are no reported PCSK2 (encoding for PC2) null patients, but several
studies have associated PCSK2 SNPs with type 2 diabetes risk [17e19].
In this regard, Pcsk2 knockout mice have chronic mild hypoglycemia and
hyperplasia of the pancreatic a-cells [20].
While PC1/3 and PC2 have been extensively studied in the context of
obesity and metabolic dysfunction, very little is known about the role of
the other PCs in these pathologies. In contrast to PC1/3 and PC2,
FURIN, PC5/6, PACE4, and PC7 are mainly active in the constitutive
secretory pathway. Within this pathway, FURIN is concentrated in the
trans-Golgi network (TGN), but it also displays significant enzymatic
activity in the endosomes, and at the cell surface. The finding that
FURIN is also present in immature secretory granules (ISGs) suggests a
possible role for FURIN in the cleavage of substrates present in the
regulated secretory pathway [21,22]. For instance, FURIN has been
demonstrated to cleave the PC1/3 inhibitor pro-SAAS and the PC2
inhibitor 7B2, but these cleavages are likely taking place early in the
secretory pathway before sorting into ISGs [23e25]. Other FURIN
substrates involved in energy and glucose homeostasis include the
integral subunit of the V-ATPase proton pump, Ac45, and the insulin
receptor (IR). In pancreatic beta cells, FURIN has been shown to be
essential for the proteolytic activation of Ac45, affecting granule and
lysosomal acidification [26,27]. Also in beta cells, FURIN activity is
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involved in IR activation, and therefore in the regulation of insulin
signaling [28]. In addition, the IR is a FURIN substrate in several cancer
cell lines and specific mouse tissues [28e30]. Importantly, IR has a
crucial role in the central nervous system in controlling systemic
glucose balance [31e33]. However, the precise mechanism by which
FURIN regulates energy and glucose homeostasis is still undefined and
might involve other substrates as well.
In this study, we have investigated the role of FURIN in POMC pro-
cessing and maturation, and we have determined the role of hypo-
thalamic FURIN in vivo by deleting Furin in POMC neurons.

2. MATERIALS AND METHODS

2.1. Cell culture and transfection
The human embryonic kidney (HEK) 293 T cell line was cultured in
DMEM/F-12 without phenol red (Thermo Fisher Scientific) supple-
mented with 10% heat-inactivated fetal bovine serum, 100 U/ml
penicillin, and 100 mg/ml streptomycin. 24 h after seeding, cells
(z60% confluency) were transfected with plasmids encoding human
c-myc-tagged-POMC plasmid (within pcDNA3 backbone) and human
FURIN, or PCSK1, mouse Pcsk5A, Pcsk5B, Pcsk6 or human PCSK7
using X-tremeGENE� 9 (Roche) according to the manufacturer’s
protocol. As negative control, cells were transfected with pcDNA3
plasmid, indicated in Figure 4AeB and Figure 1 as mock.

2.2. Western blot
Cells were lysed in 1� lysis buffer (20 mM TriseHCl (pH 7.5), 150 mM
NaCl, 1 mM Na2EDTA, 1 mM EGTA, 1% Triton, 2.5 mM sodium py-
rophosphate, 1 mM beta-glycerophosphate, 1 mM Na3VO4, 1 mg/ml
leupeptin (Cell Signaling Technology)). The conditioned media were
collected for methanol precipitation after overnight incubation of the
cells in 1 mL of serum free medium (DMEM/F-12 without phenol red).
12.5 mg of BSA were added as control of methanol precipitation. The
precipitated proteins were dissolved in 1� sample buffer (Tris base
0.0625 M, SDS 0.07 M (2%), glycerol 10%, bromophenol blue) and
prepared for western blot. Western blot was performed according to
the standard procedures using NuPAGE 10% Bis-Tris minigels and
NuPAGE MES SDS running buffer 1� (Thermo Fisher Scientific). The
primary antibodies used were mouse anti-myc (homemade), and anti-
ACTH (clone A2A3, RRID: 2905636) directed against the C-terminus of
ACTH so can recognize proACTH. Mouse anti-FURIN (MON152 [34]),
and rabbit anti-PC1/3, anti-PC5/6 A, anti-PC5/6 B, anti-PACE4, and
anti-PC7 (homemade) were used to detect each PC in either cell ly-
sates or conditioned media. The secondary antibodies were anti-
mouse or anti-rabbit labeled with horseradish peroxidase (HRP) (Dako).

2.3. Generation of POMCFurKO mice
POMC-Creþ/� (B6$FVB-Tg (Pomc-cre) 1Lowl/J, JAX stock #010714)
mice were bought from Jackson Laboratories (https://www.jax.org).
Furinfl/fl mice were described before [35]. Mice were backcrossed at
least 5 times to a C57Bl6J background. All the mice were housed in
standard cages on a 12-hour day/night cycle and fed a standard rodent
chow (10 KJ% fat, 13 KJ% protein, 77 KJ% carbohydrates) or high fat
diet (HFD) (45 KJ% fat (Lard), 20 KJ% protein, 35 KJ% carbohydrates)
in a conventional facility of the KU Leuven. Food and water were
provided ad libitum. All experiments were approved by the KU Leuven
Animal Welfare Committee, following the guidelines provided in the
Declaration of Helsinki (KU Leuven project number 034/2020). For food
intake experiments, POMC-Cre mice were individually housed in single
grid cages with 5 days of acclimatization and 3 days of food intake
measurements.
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2.4. Intraperitoneal glucose tolerance test (IPGTT)
Mice were fasted overnight or 4 h and intraperitoneally injected with
1.5e2 mg/g body weight of D-glucose in PBS. Blood glucose levels
were monitored at indicated time-points using a Contour Glucometer
(Roche).

2.5. Real time quantitative PCR (RT-qPCR)
RNA from snap frozen mouse hypothalamus was isolated using the
Nucleospin RNA II (Macherey Nagel) kit according to the manufac-
turer’s protocol. cDNA was synthetized using the iScript cDNA syn-
thesis kit (Bio-Rad). Primers were designed using the Primer 3 plus
software. RT-qPCR was performed with a CFX Connect Real-Time PCR
Detection System from Bio-Rad using SYBR Green supermix (Bio-Rad).
Data is represented as 2�DDCt. Primers for mouse genes and the Cre
recombinase gene from bacteriophage P1 are listed in Table S1.

2.6. Peptide isolation from hypothalamus
Hypothalamic extracts were generated based on the technique in [36].
Extractions were optimized for each protein/peptide using known
amounts of the protein/peptide spiked into the hypothalamus and re-
covery/interference assessed. Each frozen hypothalamus was dis-
rupted in cold 0.1 M HCl using a Qiagen TissueRuptor. The resulting
homogenates were centrifuged at 5000 g at 4 �C for 20 min and
supernatants transferred to a low-protein retention tube. A 50 mL
aliquot was removed to a separate tube for total protein measurement
using a BCA protein assay (see below), then a stabilizing buffer of
0.1 M tris/0.1% BSA was added to the extracts before freezing at�80
�C. The hypothalamic extracts were diluted 1:3 with 1� PBS/1% BSA
for measurement in the POMC, ACTH, and a-MSH ELISAs.

2.7. POMC ELISA
The total POMC in each hypothalamus was detected by using a 2-site
immunometric assay with monoclonal antibodies, as described pre-
viously [11,37,38]. Briefly, monoclonal antibody A1A12 (RRID:
Figure 1: Furin and Pomc mRNA levels are increased by a chronic high-fat-diet in Fu
fl mice fed either a NCD or a HFD for 15 weeks. The mice were in a fed state at the mo
**P < 0.01, ***P < 0.001, determined by unpaired t test with Welch’s correction. All the
NCD: normal chow diet; HFD: high fat diet.
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2756529) which binds the central ACTH region 10e18, was coated on
the ELISA plate. After the addition of standards or samples, a biotin-
labelled N1C11 monoclonal antibody (specific for the gamma MSH
region of POMC; RRID: 2756530) was added, followed by HRP-labeled
avidin as well as the enzyme substrate for the final detection. This
assay has a sensitivity of 10 pmol/L and is specific for POMC and
proACTH, and does not detect ACTH or a-MSH [39].

2.8. ACTH ELISA
The ACTH detection and quantification in mouse hypothalamic samples
was performed by using a 2-site immunometric assay as described
[11,37]. Briefly, The ACTH ELISA plates were coated with monoclonal
antibody A1A12 (RRID: 2756529). The detection antibody was
monoclonal antibody A2A3 (RRID: 2905636), directed against the C-
terminus of ACTH, and labeled directly with HRP. The standards were
prepared from human pituitary ACTH, provided by the National Institute
of Biological Standards and Control, London, UK. This assay has a
sensitivity of 1.1 pmol/L and has previously been shown to have
<0.1% cross reactivity with POMC and does not detect a-MSH, ACTH
18e39 or ACTH 1e24.

2.9. a-MSH ELISA
Detection and quantification of a-MSH was performed by using a
newly developed competitive ELISA based on a single polyclonal
antibody (RRID: 2756515) produced by Prof. Sharon Wardlaw,
Columbia University [40,41]. This antibody is specific for C-terminal
amidated a-MSH, and shows no cross reactivity with POMC, ACTH, or
the free acid form of a-MSH that has not been amidated. The antibody
(1 mg/L) was added to an ELISA plate previously coated with 10 mg/L
rabbit anti-IgG (Sigma Aldrich, UK). Biotin labelled a-MSH (created by
combining biotin and a-MSH at a 50:1 M ratio) was added to the wells
at 100 pmol/L, followed by a-MSH standards (Abcam) in the range of
15e1000 pmol/L) or samples. The unlabeled standards or samples
competed with the labelled a-MSH to bind the polyclonal anti-a-MSH
rfl/fl control mice. Relative mRNA expression in hypothalami of 23-week-old male Furfl/

ment of the euthanasia (A) Furin, (B) Pomc, (C) Agrp, (D) Npy. n ¼ 3e6 mice/group.
values were normalized to Gapdh expression and data are represented as mean � SEM.
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antibody. Then, avidin-labelled HRP and the enzyme substrate were
added to generate the signal measured at OD 450 nm. This assay has
a sensitivity of 20 pmol/L.

2.10. Bicinchoninic acid (BCA) protein assay
Hypothalamus extracts were diluted 1:9 with 1� PBS and total protein
quantified using the Pierce RapidGold BCA protein assay kit (Ther-
mofisher Scientific). The assay was performed according to the
manufacturers’ instructions.

2.11. Metabolic labeling experiment
Transfected cells were metabolically labelled as described before [42].
After 40 min pulse labelling with 1 mCi 35S-methionine the cells were
lysed and the lysates immune-precipitated with A2A3 and myc anti-
bodies bound to protein G sepharose (Pharmacia Biotech).
Figure 2: The absence of Furin in POMC-neurons leads to hyperphagia and increase
to generate the POMCFurKO mice. Female mice with the exon 2 of the Furin gene flanked
under the control of the POMC promoter (POMC-Cre). Furfl/fl are used as controls; POMC-C
male POMCFurKO and Furfl/fl mice of 10, 25, 30 weeks of age (n ¼ 5e9 mice/group)
comparisons test. (C) Body weight of 10, 12, and 18-week-old mice after 2, 4, and 10 we
one-way ANOVA with Sidak’s multiple comparisons test. (D) Daily food intake (g) of 11-we
the average over three days (n ¼ 4e8 mice/group). *P < 0.05 determined by unpaired t-te
fasting (n ¼ 5e6 mice/group). (F) The area under the curve in E was expressed as g/dL
overnight fasting (n ¼ 7 mice/group). *P < 0.05 determined by two-way ANOVA with Sidak
120 min. (G) IPGTT on 12-week-old POMCFurKO and Furfl/fl male mice on HFD for 4 wee
expressed as g/dL/120 min. No significant differences were observed by unpaired t-test.
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2.12. Statistical analysis
Results are expressed as means � SEM. Statistical analysis was
performed by unpaired Student’s t test or one-way ANOVA with Sidak’s
multiple comparisons test for grouped analysis, or repeated measure
two-way ANOVA for pairwise time-specific differences between ge-
notypes. A value of p < 0.05 was considered significant. *p < 0.05,
**p < 0.01, ***p < 0.001.

3. RESULTS

We found that hypothalamic Furin mRNA levels were increased twofold
in the group of control (Furfl/fl) mice on HFD compared to control an-
imals on a normal chow diet (NCD), suggesting that FURIN activity
might be important in regulating energy homeostasis (Figure 1A).
Pomc expression was also strongly increased (Figure 1B), while Agrp
d body weight after a short HFD period. (A) Schematic of the breeding strategy used
by two loxP sites (Furfl/fl) were bred with male mice expressing the Cre recombinase
reþ/�, Furfl/fl mice are referred to as POMCFurKO. (B) Body weight of random NCD-fed
. No significant differences were observed by one-way ANOVA with Sidak’s multiple
eks of HFD respectively (n ¼ 4e9 mice/group). *P < 0.01; *P < 0.05 determined by
ek-old male POMCFurKO and Furfl/fl mice on HFD for 3 weeks. Data are represented as
st. (E) IPGTT on 25-week-old POMCFurKO and Furfl/fl male mice on NCD after overnight
/120 min. (G) IPGTT on 30-week-old POMCFurKO and Furfl/fl male mice on NCD after
’s multiple comparisons test. (G) The area under the curve in G was expressed as g/dL/
ks after overnight fasting (n ¼ 3 mice/group). (H) The area under the curve in G was
NCD: normal chow diet; HFD: high fat diet.
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Figure 3: POMC expression and processing is altered in HFD-fed POMCFurKO mice. (A) Relative mRNA expression of Npy, Agrp, and Pomc in the hypothalami of 10-week-old
male POMCFurKO (pink bars) and Furfl/fl (blue bars) mice on HFD for 2 weeks (n ¼ 4e5 mice/group). **P < 0.01 determined by unpaired t-test. All data are represented as
mean � SEM. The total content of POMC (B), ACTH (C), aMSH (D), and the ratio ACTH/POMC (E), aMSH/POMC (F), and ACTH/aMSH (G) in the hypothalami of 11-week-old male
POMCFurKO and Furfl/fl mice fed on HFD for 3 weeks (n ¼ 4e6 mice/group). **P < 0.01; ***P < 0.001 determined by unpaired t-test. For RT-qPCR analyses, the values were
normalized to Gapdh expression levels; all data are represented as mean � SEM. (For interpretation of the references to color in this figure legend, the reader is referred to the Web
version of this article.)
and Npy were decreased (Figure 1CeD), consistent with previous
studies with HFD-diet fed mice [43e45].
To establish the possible role of hypothalamic FURIN in controlling
energy and glucose homeostasis, we generated a conditional knockout
mouse model in which Furin was deleted in POMC neurons. Pomc-
Creþ/� mice were bred with Furfl/fl mice to study the potential role of
Furin specifically in anorexigenic POMC neurons (Figure 2A). We
confirmed the Cre-mediated Furin recombination by RT-qPCR analysis
of both Furin (lacking exon 2) and Cre mRNA in the hypothalamus of
POMCFurKO and Furfl/fl mice (Fig. S1). When fed on NCD, body weight
of POMCFurKO mice was similar to Furfl/fl control mice (Figure 2B).
However, on HFD POMCFurKO mice became significantly heavier than
Furfl/fl mice from 2 weeks of HFD onwards (Figure 2C). Consistent with
the increase in body weight, food intake of POMCFurKO mice was
significantly higher than Furfl/fl mice after 3 weeks of HFD (Figure 2D).
A subset of glucose sensing POMC neurons regulate glucose ho-
meostasis, and are defective in obesity [46]. To investigate if the loss of
FURIN negatively affects these neurons, we performed glucose toler-
ance tests on POMCFurKO and control mice on both normal and high-
fat regimens (Figure 2EeJ and S2). Glucose tolerance was normal in
POMCFurKO and Furfl/fl mice on NCD (Figure 2EeF and S2A-B), with a
mild glucose intolerance only observed in 30-week-old POMCFurKO
mice (Figure 2GeH). A HFD challenge did not alter glucose tolerance in
POMCFurKO mice compared to controls (Figure 2IeJ and S2CeF).
Normal fasting blood glucose levels were observed in POMCFurKO
mice, either on NCD at 10, 25, and 30 weeks of age or after 4 and 10
weeks of HFD (Fig. S2GeH). These results suggest that the absence of
FURIN in POMC neurons did not significantly affect glucose homeo-
stasis despite the clear impact on body weight and appetite.
MOLECULAR METABOLISM 66 (2022) 101627 � 2022 The Authors. Published by Elsevier GmbH. This is an open a
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Pomc expression levels in POMCFurKO mice were significantly higher
than in the controls, while the mRNA expression levels of AgRP and
Npy were not changed (Figure 3A). At protein level, the absolute
amount of POMC was increased in hypothalamic lysates of HFD-fed
POMCFurKO mice (Figure 3B), whereas ACTH was significantly
decreased (Figure 3C), and a-MSH slightly reduced, although not
significantly (Figure 3D). The ACTH and a-MSH amounts relative to
POMC were strongly decreased, indicating defective POMC processing
(Figure 3EeF). The ACTH relative to the a-MSH content was
decreased, albeit not significantly (Figure 3G).
In order to determine whether POMC processing was directly
dependent on FURIN activity, we analyzed the in-vitro processing of
the POMC precursor in DFurHEK293T cells, lacking FURIN, co-
transfected with POMC and FURIN, PC1/3, PACE4, PC5/6 A, PC5/
6 B, or PC7. (Figure 4). PC4 was not included because it is germ-cell
specific and PC2 because it is not active in cells without a regulated
secretory pathway. The POMC detected in the cell lysates of DFur-
HEK293T cells was equally present and each PC was efficiently
expressed in each experimental condition (Figure 4AeB). The
resulting POMC cleavage products were detected in the conditioned
media and in the cell lysate of DFurHEK293T cells (Figure 4CeD).
Interestingly, FURIN was the only PC able to efficiently cleave POMC at
the cleavage site KR164Y resulting mainly in 23 KDa proACTH. A
minute amount of glycosylated and mature ACTH forms (gACTH and
mACTH, respectively) could be detected after prolonged exposure.
PC7 was able to cleave the same consensus site, albeit much less
efficiently (Figure 4C). Under these conditions, in the absence of a
regulated secretory pathway, PC1/3 was unable to cleave POMC.
These results are consistent with previous studies showing that
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Figure 4: POMC is selectively cleaved by FURIN at the C-terminal site of ACTH (KR164Y) into proACTH and b-lipotropin (LPH) in DFurHEK293T cells. Western blot
analysis of POMC and each co-transfected PCs in cell lysate (AeB) and proACTH and ACTH in medium (C) of Furin-deficient HEK293T cells co-transfected with POMC and different
PCs. The blot in A (upper panel) is labeled with an anti-myc antibody. The lower panel shows a ponceau S-staining of the cell lysates as loading reference. (B) Western blot analysis
of each transfected PC detected either in the medium or in the cell lysate. As negative control was used medium or cell lysate from DFurHEK293T transfected with a different PC.
The blot in C is labeled with the A2A3 antibody directed against the free carboxy-terminus of ACTH. One minute-exposure of the entire blot (upper panel), and 5 min-exposure of the
lower part of the blot (lower panel) to show the less abundant low MW ACTH forms. Mouse pituitary protein extract (25 mg) was used as positive control (first lane). (D) Metabolic
labeling of Furin-deficient HEK293T cells transfected with POMC alone or together with FURIN (40 min pulse). (E) New model for POMC processing in hypothalamus. The antibody
used to detect POMC-myc is depicted in blue, and in orange the antibody used to detect proACTH and ACTH (glycosylated: gACTH, and mature: mACTH). In DFurHEK293T cells
lacking the secretory pathway, FURIN preferentially cleaves the first POMC cleavage site, most likely in the TGN. The same cleavages are mediated by PC1/3 in cells with a
regulated secretory pathway probably requiring the pH conditions of the ISGs. Cleavage of proACTH to ACTH is performed by PC1/3, the enzymes providing redundancy are
probably FURIN and/or PC2. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Brief Communication

6 MOLECULAR METABOLISM 66 (2022) 101627 � 2022 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
www.molecularmetabolism.com

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.molecularmetabolism.com


prorenin cannot be cleaved by PC1/3 in cells lacking a regulated
secretory pathway but is cleaved in neuroendocrine cells [47,48]. It
was suggested that the carboxyterminal tail of PC1/3, which is
cleaved off in secretory granules, has an autoinhibitory function in the
TGN. Moreover, POMC was cleaved to proACTH by FURIN inside the
DFurHEK293T cells after a short 40 min pulse labeling, which allows
newly synthesized protein to reach the TGN, but is too short for
secretion (Figure 4D). A schematic of POMC cleavage mediated by
FURIN, together with the specific antibodies used to detect POMC,
proACTH and ACTH, is represented in Figure 4E. To corroborate these
unexpected results that challenge the dogma that only PC1/3 and PC2
are involved in the processing of POMC into ACTH/a-MSH, we
repeated these experiments in FURIN deficient CHO cells (RPE.40 cells
[49]) with similar results (Fig. S3).

4. DISCUSSION

In this study, we have demonstrated that hypothalamic Furin in mice is
essential for the regulation of energy homeostasis under obesogenic
conditions. Our results revealed that the absence of Furin in POMC
neurons caused an increase in body weight and food intake on HFD. In
addition, we demonstrated that FURIN-dependent processing of neu-
ropeptides in feeding-controlling neurons can be linked to the meta-
bolic state of the animals. This is consistent with the 2-fold increased
expression of Furin during HFD compared to the NCD in control mice.
Most remarkable is our observation that FURIN is most likely a POMC to
proACTH convertase in the hypothalamus.
The hyperphagia and increased body weight observed in POMCFurKO
mice suggest the melanocortin system as a potential source of FURIN
substrates linked to the phenotype. PC1/3 and PC2 have generally
been considered the only PC processing enzymes of POMC [8]. Our
in vitro findings put FURIN forward as a new enzymatic player of the
melanocortin system involved in the first cleavage step of POMC that
normally takes place in the TGN/immature granules [50,51]. These
results are further corroborated by both the increased amount of the
POMC protein as well as the mRNA level in POMCFurKO hypothalami
and the hyperphagia during obesogenic conditions. Remarkably, mice
lacking PC1/3 in adult POMC-expressing neurons do not become
obese, neither on NCD nor on a HFD and have a normal amount of
ACTH and a-MSH [11], suggesting that POMC can be redundantly
cleaved by other PCs, most likely FURIN and PC2, in hypothalamic
neurons. The cleavage step of ACTH into a-MSH is exclusively per-
formed by PC2 and PC2 null mice therefore have undetectable levels of
a-MSH in hypothalamus [10].
Our results provide evidence for the model presented in Figure 4D.
Furin appears to be the only PC able to cleave POMC in the TGN, while
PC1/3 can cleave it in ISGs. The subsequent PC cleavage at the
aminoterminus of proACTH necessary to generate ACTH can be per-
formed by PC1/3 but possibly also by FURIN based on the near-normal
levels of ACTH in PCSK1 null patients [13]. This newly identified role of
FURIN in the processing of POMC warrants reassessment of other
cleavages of peptide hormones and neuropeptides. For instance,
PCSK1 null patients have reduced but detectable amounts of GLP-1 in
serum [13,52].
Besides the direct effect that the impaired processing of POMC might
have on the phenotype of POMC FurKO mice, loss of FURIN might also
affect other substrates which might indirectly affect the melanocortin
pathway and therefore the observed phenotype. These substrates
include for instance the V-ATPase subunit ATP6AP1/Ac45, shown to be
cleaved by FURIN in b cells [26,27], and involved in the acidification
and hence secretion of granules [53e55]. However, the activity of PC2,
MOLECULAR METABOLISM 66 (2022) 101627 � 2022 The Authors. Published by Elsevier GmbH. This is an open a
www.molecularmetabolism.com
which has an acidic pH optimum, is not severely affected based on the
(near) normal amounts of a-MSH.
Furthermore, other molecules, such as semaphorins, crucial for
development of the melanocortin system in hypothalamic neurons
[56,57] and brain-derived neurotrophic factor (BDNF), which has a
crucial role in regulating energy homeostasis [58,59], are potential
FURIN substrates and therefore might be possible contributors to the
obese-like phenotype.
In conclusion, in this work we have unveiled the importance of FURIN
activity in the regulation of energy balance in hypothalamic neurons
during a high metabolic challenge. In particular, our results strongly
indicate that FURIN activity becomes critical in POMC neurons during a
HFD regimen, likely through the proteolytic cleavage of POMC which is
required to overcome the augmented metabolic demand.
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