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Abstract Carotenoid 1,2-hydratases (CrtC) catalyze the
selective addition of water to an isolated carbon—carbon
double bond. Although their involvement in the carot-
enoid biosynthetic pathway is well understood, little is
known about the mechanism by which these hydratases
transform carotenoids such as lycopene into the corre-
sponding hydroxyl compounds. Key residues were iden-
tified at positions His239, Trp241, Tyr266, and Asp268
in CrtC from Rubrivivax gelatinosus (and corresponding
positions in Thiocapsa roseopersicina). Alanine mutants
at these positions were found to be completely inactive,
suggesting their direct involvement in the catalytic reac-
tion. Our resulting mechanistic hypothesis is in analogy
with the recently studied class of terpenoid cyclase en-
zymes containing a highly acidic aspartic residue in
their active site. We propose that a similar aspartic acid
residue, which is conserved through all putative CrtCs,
is involved in initial protonation of the double bond in
lycopene.
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Introduction

Carotenoids, which represent one of the most abundant natural
pigments with structural and protective properties (Armstrong
and Hearst 1996), play an essential role in the photosynthetic
machinery of phototrophic organisms such as purple bacteria
(Jensen et al. 1961) and higher plants (Cazzonelli 2011). In
addition, they have been identified in fungi and some non-
photosynthetic bacteria (Armstrong 1997). Carotenoid 1,2-
hydratase (also known as CrtC) is a member of hydro-lyase
group EC 4.2.1.131 (Hiseni et al. 2015). The enzyme takes
part in the biosynthetic pathway of carotenoids (Umeno et al.
2005). CrtC introduces a tertiary hydroxyl group into an acy-
clic carotenoid molecule by addition of water to the carbon—
carbon double bond at the C-1 position. The enzyme belongs
to Pfam family PF07143 that encompasses members from
several purple photosynthetic bacteria. On the other hand,
CrtCs have been identified, which are able to hydrate mono-
cyclic carotenoid gamma-carotene. These are evolutionary
very distinct from the PF07143 members and have been given
the name CruF (Sun et al. 2009).

To date, two representatives of the PF07143 family, the
CrtCs from purple non-sulfur Betaproteobacteria Rubrivivax
gelatinosus and purple sulfur Gammaproteobacteria
Thiocapsa roseopersicina, were recombinantly expressed
and characterized (Hiseni et al. 2011). Biochemical studies
have revealed that these enzymes are able to convert
cofactor-independently lycopene into 1-HO-lycopene and
1,1'-(HO),-lycopene (Fig. 1). In addition, they showed some
activity towards the unnatural substrate geranylgeraniol, a
C20 molecule that resembles the natural substrate lycopene.

CrtCs are appealing enzymes in the biotechnology field be-
cause they are able to generate a tertiary alcohol, a highly valu-
able building block for the synthesis of several bioactive natural
products and pharmaceuticals (Hiseni et al. 2015; Kourist et al.
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Fig. 1 Reaction catalyzed by Rubrivivax gelatinosus and Thiocapsa roseopersicina carotenoid 1,2-hydratase; the conversion of lycopene into 1-HO-

lycopene and 1,1'-(HO),-lycopene

2008). Furthermore, they possess an intrinsically high stability
at a wide pH and temperature range, which constitute useful
properties for an industrial application (Hiseni et al. 2011). The
subcellular location of this enzyme in the cell membrane frac-
tion (membrane associated) allows for a straightforward isola-
tion and simplified large-scale purification.

From a chemical point of view, CrtCs are able to perform a
challenging chemical reaction, namely the selective addition
of water to an isolated carbon—carbon double bond (Jin and
Hanefeld 2011). Using the enzyme, the reaction proceeds
without assistance of electron-withdrawing groups or transi-
tion metal cations, while the chemical hydration requires harsh
acidic conditions (Evans and Kirby 1984). Furthermore, the
CrtCs from photosynthetic bacteria act on acyclic carotenoids,
whereas the CruFs from non-photosynthetic bacteria catalyze
the hydration of monocyclic carotenoids. To our knowledge,
no published data exist on the catalytic and structural features
that determine hydratase activity and specificity of these two
distinct families, nor has the 3D structure been elucidated yet.
The mechanism of lycopene hydration, which involves proton
attack at C-2 and C-2' and the introduction of the hydroxyl
group at C-1 and C-1', was established from *H,O and H,'®0
labeling studies with intact cells (Patel et al. 1983; Yeliseev
and Kaplan 1997). For a hydration reaction, it is likely to
assume that the first step in the reaction is protonation of the
alkene, leading to an intermediate carbocation. Quenching of
the carbocation by water will lead to the alcohol as product.
The protonation of hydrophobic long-chain alkenes has also
been described for the enzyme class of cyclases, of which the
full mechanism is known (Hammer et al. 2013; Wendt et al.
2000).

The objective of this study was to provide insight into
the hydration mechanism of CrtCs. This knowledge is
pivotal in order to engineer this promising enzyme class
towards, i.e., higher activities, better stability, or widening
of its substrate scope. Through multi-sequence alignment
of several CrtC homologues, highly conserved amino acids
were identified, which could be functionally or structurally
important. The corresponding alanine mutants of these
amino acids were produced to evaluate their involvement
in the hydratase activity. Following the identification of
probable catalytically active amino acid residues, the aim
was to propose a catalytic mechanism for addition of wa-
ter catalyzed by CrtC.
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Materials and methods

In silico analysis Basic Local Alignment Search Tool
(BLAST) (Altschul et al. 1990) was used to find and select
carotenoid 1,2-hydratase homologues of CrtC from
R. gelatinosus (RgCrtC) using default settings; e.g., for nucle-
otide BLAST, the tblastn option was used with the nucleo-
tide database (nt/nr), and for protein BLAST, the blastp
option was used with the non-redundant protein database
(nr). In order to look for identities/similarities between the
CrtC homologues, nucleotide and amino acid sequences
were aligned with the BioEdit Sequence Alignment Editor
v.7.1.3.0 (www.mbio.ncsu.edu/bioedit/bioedit.html) or
ClustalW (Larkin et al. 2007). In addition, protein sequences
were subjected to protein functional analysis using a search in
the Conserved Domain Database (CDD) (Marchler-Bauer
et al. 2011) and Pfam search (Finn et al. 2010), using the
standard parameters on the respective websites of these tools.
A protein phylogenetic tree was constructed with Phylogeny.
fr using the “One Click” program settings (Dereeper et al.
2010; Dereeper et al. 2008). These settings represent a default
mode which proposes a pipeline already set up to run and
connect programs recognized for their accuracy and speed to
reconstruct a robust phylogenetic tree from a set of sequences
(MUSCLE for multiple alignment, optionally Gblocks for
alignment curation, PhyML for phylogeny, and finally,
TreeDyn for tree drawing).

Cloning of carotenoid 1,2-hydratase genes Plasmids
pET15b_CrtCgr, and pET15b_CrtCr, containing CrtC from
R. gelatinosus (Rg) and T. roseopersicina (Tr), respectively,
were constructed in a previous study (Hiseni et al. 2011). Two
fosmids with crtC genes from metagenomic samples
DelRiverFos06H03 (Fos06) and DelRiverFos13D03
(Fos13), respectively, were kindly provided by Dr.
Kirchman (Waidner and Kirchman 2005). The cosmid
encoding CrtC from Bradyrhizobium (Br) was received from
Dr. Dreyfus (Giraud et al. 2004). In order to get sufficient
DNA material for further studies, the fosmid DNA and cosmid
DNA were amplified in Escherichia coli TOP10 cells. After
DNA isolation with the QIAprep Spin Miniprep Kit (Qiagen)
from the cells, sufficient DNA was obtained for further re-
search. The crtCs from Rhodospirillum rubrum (Rr) and
Rhodopseudomonas palustris (Rp) were amplified from
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genomic DNA. For that, genomic DNA of R. rubrum (Rr) was
kindly provided by Prof. Roberts (NCBI Reference Sequence:
NC _007641.1). R. palustris cells (DSM No. 123) were obtain-
ed from DSMZ (Deutsche Sammlung von Mikroorganismen
und Zellkulturen), enriched in appropriate medium according
to DSMZ instructions and gDNA isolated using the
UltraClean Soil DNA Isolation Kit (Mo Bio). Subsequently,
primers were designed for the isolation of all cr#C genes
(Table 1), which carry two restriction sites for subsequent
cloning: Ndel (forward) and X#ol (reverse). For BrertC, the
Xhol site was replaced with BamHI, because the X7ol site was
present in the gene itself. Amplification reactions were done
using standard PCR reactions. Using the appropriate enzymes,
the fragment was digested, purified, and ligated into the same
sites of the pET15b vector and transformed into E. coli TOP10
competent cells. The insertion of the c7¢C gene was verified by
restriction analysis with the corresponding restriction enzymes
(New England Biolabs) and DNA sequencing (BaseClear,
Leiden, The Netherlands).

Single point mutations Single amino acid exchange within
the crtC genes of Rg and 7 was done using the megaprimer
PCR method introduced by Kammann et al. (1989) and later
modified by Sarkar and Sommer (1990) and Landt et al.
(1990). The mismatch primers are listed in Table 2. In the first
PCR reaction, performed under standard reaction conditions,
the megaprimer was produced using the corresponding for-
ward primer containing the desired base substitution
(Table 2) in combination with the reverse primer Rg rv or
Tr_rv (Hiseni et al. 2011). Plasmids pET15b_CrtCg, and
pET15b CrtCr, (Hiseni etal. 2011) were used as the template.
The size and purity of the megaprimer was verified by agarose
gel electrophoresis. In order to produce the full-length gene, a
second PCR reaction was performed with the corresponding
megaprimer and Rg fw or 7r_fw (Hiseni et al. 2011).
Subsequent steps were performed as described in the previous
section. The presence of the desired mutation was verified by
DNA sequencing (BaseClear, Leiden, The Netherlands).

N-terminally truncated RgCrtC and 7rCrtC RgCrtC and
TrCrtC lacking the first 45 and 57 amino acids, respectively,
were constructed using primers Rg_45aa/Rg rv and Tr_57aa/
Tr_rv (Table 3; Hiseni et al. 2011) under standard PCR con-
ditions. Plasmids pET15b_CrtCg, and pET15b_CrtCr,
(Hiseni et al. 2011), respectively, were used as the template.
Subsequent steps including verification were performed as
described in the “Cloning of carotenoid 1,2-hydratase genes”
section.

Recombinant expression of CrtCs E. coli BL21 (DE3) was
the host for the pET15_CrtC plasmids. Cultures were grown at
37°C in Luria—Bertani broth with 100 ug ml™" ampicillin until
an OD600 value of 0.6-0.8 was reached. Unless otherwise
stated, protein expression was induced by addition of
isopropyl--D-thiogalactopyranoside (IPTG) to a final con-
centration of 0.1 mM, followed by cultivation at 25°C over-
night. The cells were harvested by centrifugation at 10,
000 rpm for 10 min at 4°C (Sorvall), washed once with
50 mM Na,HPO, buffer (pH 8.0), and suspended in the same
buffer. In case of subsequent purification, 10 mM imidazole
was added to the buffer. Crude extract (CE) from cultures
>100 ml was prepared by adding 1 mg ml™" lysozyme and
incubating the cells for 1 h at 4°C, followed by cell disruption
at the pressure of 1.5 kBar (Constant Systems; IUL
Instruments). For cultures <100 ml, the cells were disrupted
by sonication for 2 min while immersed in an ice-water bath
using the microtip probe of a sonicator (Branson Sonicator
Cell Disruptor) set at 50 % maximal energy. In an effort to
reduce the liquid viscosity caused by DNA molecules,
0.1 mg ml™" of DNAse was added. With the subsequent cen-
trifugation at 10,000 rpm for 20 min at 4°C, cell-free extract
(CFE) and pellet were separated. Protein content of the crude
extract was determined by BCA assay (Pierce) with bovine
serum albumin as the reference protein.

CrtC purification RgCrtC and 7rCrtC “active site” point
mutants were purified from the membrane fraction,

Table 1 Primers used for PCR

and subsequent cloning of the Name Sequence (5'—3") Restriction site

genes into the expression vector

pET15b DRF06 FW GGGAGTACCATATGAGTGATGATGGCCAAC Ndel
DRF06 RV ATCCGCTCGAGATAATCTCAAGCCCGCCTCG Xhol
DRF13 FW GGGAGTACATATGGATGGCGTGTCAGAC Ndel
DRF13 RV CCGCTCGAGTAATGCTTAGGGCCACTTGGC Xhol
Br FW CGGACATCATATGTGCCCGCCAG Ndel
Br RV ATCCAGGATCCATCGCGTGAACTTCACCACC BamHI
Rp FW CGGGACTTCCATATGTCAGGAGCTGAGTTG Ndel
Rp RV ACCGCTCGAGTAACGTTCAGCGGAACGC Xhol
Rr FW GGGAAATTCCATATGCACCGCCCGGAC Ndel
Rr RV GCTCGAGTTCAATTAGCCCTTAACCGCCGC Xhol

The respective restriction sites are underlined
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Table 2 Primers for site-directed
mutagenesis

Amino acid Sequence (5'—3')
exchange
R. gelatinosus H239A AGCGGCGGACGCGCTCGCTG
W241A CATCGCGCGGGGCCGATCG
H264A CTGGAGCGGCGCCGCCTACC
Y266A GCCACGCCGCCCTCGACT
D268A CGCCTACCTCGCCTCGAACGAAG
T roseopersicina H237A GATCCGGCGGAACGCGCAGTCTGGTGG
W239A CGCCATGTCGCGTGGCCGATC
H262A GCTGGAGCGGCGCTGGCTAT
D266A CATGGCTATCTCGCCTCAAA
S58V GCGTCCGTCGTCGCGCAGCA
S58Q GCGTCCCAGGTCGCGCAGCA

Mismatch points are underlined

while the 7r “processing” mutants (S58V, S58Q) were
purified from the CFE. The membrane fraction was ob-
tained after the centrifugation of the CFE for 4 h at 13,
200 rpm and 8°C. The membranes were homogenized
by ca. 20 passages through a 25-G needle. Ni-NTA
Sepharose HP (GE Healthcare) (previously equilibrated
in 50 mM Na,HPO, buffer, pH 8.0, 300 mM NaCl,
10 mM imidazole) was added to the CFE or membrane
sample. The mixtures were incubated for 1 h at RT,
loaded into a polypropylene tube with porous disc (GE
Healthcare), and washed three times with washing buffer
(50 mM Na,HPO, buffer, pH 8.0, 300 mM NacCl,
75 mM imidazole). The CrtC protein was eluted from
the column with elution buffer (50 mM Na,HPO, buff-
er, pH 8.0, 300 mM NaCl, 1 M imidazole). Enzyme
fractions were separated by sodium dodecyl sulfate—
polyacrylamide gel electrophoresis (SDS-PAGE) (10 %
Bis-Tris; Bio-Rad) and visualized by staining with
SimplyBlue SafeStain (Invitrogen).

Determination of enzyme activity Enzymatic activities were
determined with CE using lycopene as the substrate according
to the method described earlier (Hiseni et al. 2011), with few
modifications. The assay was carried out with 50 pul CE and
20 uM substrate, and 10 mg ml™" L-x-phosphatidylcholine, in
a reaction volume of 200 pl. Prior to the analysis, acetonitrile
was added to the reaction mixture in a ratio of 60:40 (ACN/
H,0), the mixtures were shaken vigorously for 1 min, and

Table 3  Primers used for construction of truncated CrtCs

Name Sequence (5'—3")

Rg 45aa
Tr 57aa

AGTACCATATGGGCGACGCACGGCTGG
AGTACCATATGTCCGTCGCGCAGCAAGG

The Ndel restriction sites are underlined
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solids were removed by centrifugation for 1 min at 13,
200 rpm. Separation of the reaction products was performed
with a Merck 4.6 x50 mm Chromolith® SpeedROD RP-18¢
column with ACN/H,0 (60:40, v/v) as the eluent.

Results

Comparative in silico analysis of crtC genes The Rg-crtC
nucleotide sequence was subjected to a BLAST search in or-
der to identify sequence similarity in different databases. One
hundred forty-five hits were identified, of which 119 were
representatives of Proteobacteria. BLASTing the protein se-
quence of RgCrtC resulted in 100 CrtC(-like) sequences,
which were aligned in order to investigate if there are any
conserved group clusters present (see Electronic
Supplementary Material Fig. S1). Indeed, they showed highly
conserved regions (Fig. 2, for simplification, the seven se-
quences used in this study were selected for visualization)
distributed along the sequence ranging from amino acid resi-
dues ~170 to ~405 (Rg numbering). Interestingly, the N-
terminal part of the sequence does not contain any conserved
amino acids and shows a lot of variation in length, indicating
that this region is probably not necessary for CrtC activity.
Additionally, we found some blocks of highly conserved res-
idues throughout the C-terminal part of the genes and a cluster
of'totally conserved residues in the middle of the genes (amino
acids 240-280 in Rg numbering).

Residues involved in the catalysis tend to be highly con-
served in a set of homologous proteins that exhibit the same
reaction. On the other hand, sequence insertion and sections of
low sequence similarity tend to occur in the less important
loop regions (Zvelebil et al. 1987). The conserved blocks in
CrtC homologues could indicate that these regions contain the
amino acid residues most important for the hydratase activity,
specifically those involved in catalysis and substrate binding.
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RgCriC MRAAESGADARVRPVDRVEPADAPAGDAGGLRAAVPGDGGSAVRPGDARLDVLVPPGLVDEPAAGALPGGGQRAPGAGRA
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BrCri( DGGLVGPDGRRQGDLRPRFDRAVPKDG NN GSVFSP AR-RRGPA-QJAKE ( \
RrCrtC DGGLIGTVGGPGGSGGPDFARPVAPGC AF VieERY AK-RR- - - -1 E \ IINN
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RgCrtC ISR RWN SRDH « G- RYVWIKALCRFVT SIS G(E
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BrCritC Y8R G A T DEAY ( Wi RVVISALNEVAFANRNGQQH
RrCrtC ISR EALVRDDS C S VIHGQEVRTITVPOQVIRGA(H
RpCrt( EER G S 1 DKTV C I RVHEJTAMLGQSYPHIIPAYH
Fos13CrtC RGIEEN! SRD: S / RLIGSAVIEVEAIIRIPS A
Fos06Crt( HHRH S SAQ « KLWIHQQLCAFS TR AF(H
RgCri( Al I 1 ATMAL VROQKRDGDRVIAERHLLD{S
IrCriC Al I HE ANTPY VIARHGTGASLALKHHNAS(HY
BrCrtC Al D HE AATRY ATARDHATISPLALHVYDHT(Y
RrCrt( I F I APLAT TPRQGADRLLSLKEVYDRD[S
RpCri( Al I 1 TALKE ITGREGPGPVLGLRHDPN[S
Fos13CrtC \ 1§ AHE YPRAF sIRTDGSSLOQVSIDVAANE
Fos06CrtC M E I 1 ARMRI IQAPHTQDRVLSLHEHTPK[Y
RgCriC STESFE RQP IMRTEPGVPALUVEQT PIAIVITLPNRI
TrCriC EVEEFPHHHARVR GTQCEAGHQARVVET] DIJFASPVEIQI
BrCri( RLEPIAHIVDCR SARADAGAPVRVVST DIRF QMP 1440
RrCrtC ALSAFSHHPAKAP GTRCDVGAPPTVLRI DRJL R A GWEW |
RpCriC DVEPFE RIK ETRVDHQSSARVVAT DIRF N S RWAROQ
Fos13CrtC QVTELPHHHITP GTRCDVGATPHQTM TI3F RS P VUK
Fos06Crt( KVETID AVOQR RMRSEQ- - PV(QVQE PRILV S P VRO !

'
RgCrtC AN RA RA -
TrCriC F VGG
BrCriC F W -
RrCriC I RAY RGG
RpCric Fla1 AFR - -
Fos13CrtC L3V RAKWP
Fos06Crt( A RAY RA - - -

Fig. 2 Multiple sequence alignment of CrtC protein sequences probed in this study showing conserved amino acids.

Identical amino acids are

highlighted in black. Positions with only two different amino acids are surrounded by boxes

From a catalytic point of view, specific amino acids are com-
monly involved as active residues in acid—base-type catalyzed
reactions in the active sites of enzymes (Bartlett et al. 2002).
The amino acids aspartic acid (D) or glutamic acid (E) are
usually the catalytic acid or base, while tyrosine (Y), trypto-
phan (W), and histidine (H) typically function as the other part
of the charge relay pair (Puthan Veetil et al. 2012). These
amino acids are, therefore, the most probable candidates for
the catalytic hydration. Four Trp residues, three Tyr residues,
and one of each His and Asp residues are fully conserved over
the 100 CrtCs (Supplemental Fig. S1). The totally conserved
Asp268 (Rg numbering) seems to be the most probable can-
didate for the acid catalysis since it is situated in the middle of
the highly conserved region. Furthermore, a fully conserved
Tyr residue and a His residue are within close distance, which
is important for the contact with the substrate. Fully conserved
His and Trp residues are approximately 30 amino acids away
but could be in close proximity upon folding of the protein.

Production of recombinant wild type and mutant CrtCs
and enzymatic activity Six potential CrtCs were selected for

expression and activity studies based on sequence identity
with RgCrtC and availability of the corresponding gene
constructs. They originate from all three Proteobacteria sub-
classes (Alphaproteobacteria, Betaproteobacteria, and
Gammaproteobacteria) with two additional constructs origi-
nating from metagenomic samples from the Delaware River
(USA). Figure 3 displays the phylogenetic analysis construct-
ed with protein sequences of the selected CrtC homologues.
TrCrtC shows the closest relationship to RgCrtC, followed by
BrCrtC (55 and 47 % sequence identity, respectively). The
combined results of Pfam search and Conserved Domain
Database search showed that all seven CrtCs belong to the
PF07143 family consisting of several purple photosynthetic
bacterial hydroxyneurosporene synthase (CrtC) proteins. Six
out of the seven selected CrtCs could be overexpressed from
pET15b in E. coli (Fig. 4). Bands with apparent molecular
weight of 32 kDa (Fos13CrtC), 38 kDa (RpCrtC), and
44 kDa (RrCrtC, BrCrtC, TrCrtC, and RgCrtC) were visual-
ized on SDS-PAGE and were consistent with the values cal-
culated from the deduced amino acid sequences. 7rCrtC
shows two protein bands of 44 and 38 kDa as seen before

@ Springer



1280

Appl Microbiol Biotechnol (2016) 100:1275-1284

1 Fos06CrtC
0| I RgCrtC
0.59 BrCrtC
085 RpCrtC

TrCrtC

8 Fos13CrtC

RrCrtC
0.4

Fig. 3 Rooted phylogenetic tree showing the evolutionary relationship
between the selected carotenoid 1,2-hydratases. The scale bar represents
0.4 substitutions per amino acid site. 7*CrtC Thiocapsa roseopersicina
(GI 31621263), BrCrtC Bradyrhizobium sp. BTAil (GI 146403799),
Fos06CrtC uncultured Proteobacterium DelRiverFos06HO03 (GI
61653228), Fosi3CrtC uncultured Proteobacterium DelRiverFos13D03
(GI 61653190), RpCrtC Rhodopseudomonas palustris (Gl 115515977),
RrCrtC Rhodospirillum rubrum (Gl 83574254), RgCrtC Rubrivivax
gelatinosus (GI 29893477)

(Hiseni et al. 2011). No expression band could be identified
for Fos06CrtC. Although relatively good expression was
achieved for most of the CrtCs, only two were active with
lycopene as the substrate in the standard enzymatic assay,
i.e., RgCrtC and 7rCrtC (data not shown).

The amino acid residues that might be important for catal-
ysis (vide supra) were substituted by the amino acid alanine in
both active enzymes. In addition, truncated (77CrtC and
RgCrtC) and N-terminal point mutants (7#CrtC) were con-
structed and analyzed to confirm the importance of the N-
terminal part of CrtC for the catalytic activity. The activity
of the truncated versions was fully retained. Despite the still
unknown reason for the truncation, we were able to identify
the cleavage site between S57 and S58 by MS analysis. In
order to exclude that this truncation only takes place in recom-
binant expression, the S58 position was modified by substitu-
tions with valine or glutamine (see Electronic Supplementary
Materials, including Fig. S2).

All mutants (Table 2) were successfully cloned and
expressed in E. coli BL21 (Fig. 5a). However, clear

M la 1b 2a 2b 3a 3b 4a  4b

. .
S e - -

0 ‘x-z’

37

5

25

Fig. 4 SDS-PAGE (10 %) analysis of CrtC expression in E. coli BL21.
M precision plus protein standard. The first lane (a) of each sample shows
cells before induction with 0.6 mM IPTG, and the second lane (b) shows
cells after 4 h of expression at 37 °C. I pET15b control, 2 Fos06CrtC
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differences in expression levels were observed. While the re-
moval of the N-terminus resulted in an increased expression
level, all point mutations negatively influenced the expression
of the protein. In order to ensure that CrtC was present, all
mutants were purified from the membrane fraction. As can be
seen in Fig. 5b, all mutants could be purified by chromatog-
raphy over a Ni column binding the His tag and showed a
band at 38 or 44 kDa, which was absent in the negative control
sample (pET15b). In the case of 7+-CrtC constructs, only very
weak protein bands are detected after the purification (Fig. Sb,
lanes 8 and 10-15). The purification usually has to be per-
formed as soon as it is expressed (before the cleavage of the N-
terminal part including the His tag), which was not the case
here.

Next to the analysis of the expression levels, the activities
of all constructed mutants were measured with lycopene as the
substrate (Fig. 6). As the expression and purification levels
were very low for some of the mutants and the activity of
CrtC, in general, is very low, crude extracts were used for
the activity assays. Consequently, the results cannot be quan-
titatively compared. However, in combination with the ex-
pression levels as shown in Fig. 5a, indicative conclusions
can be drawn. When looking at the results from the alanine
mutants, it appears that four key residues were identified,
which have a potentially important role in the hydration mech-
anism. By replacing each of the amino acids H239, W241,
Y266, and D268 individually by an alanine in RgCrtC, the
activity is completely destroyed. The same mutations of the
corresponding amino acids in 77CrtC, i.e., H237, W239, and
D266, also resulted in CrtC inactivation. Unfortunately, the
mutagenesis of Y264 in 7-CrtC was not successful and, there-
fore, could not be included in this study. However, based on
all the results, one could expect that the mutation of Y264 in
TrCrtC would lead to inactivation, as seen in RgCrtC. On the
other hand, the less conserved H264 in RgCrtC and the corre-
sponding histidine residue in 7+CrtC (H262) seem not to have
any functional role. The mutants fully retained activity and
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molecular weights are deduced from amino acid sequences. CrtC
expression bands are indicated by arrows
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Fig. 5 SDS-PAGE (10 %) analysis of expression (a) and IMAC
purification from membrane (b) of CrtCs from R. gelatinosus (RgCrtC)
(lanes 1-7) and T. roseopersicina (TrCrtC) (lanes 8—15) wild type and
mutants. M precision plus protein standard. C pET15b control. a The first
lane of each sample shows cells before induction with 0.1 mM IPTG, and

even showed slightly increased activity when the expression
levels were considered. For instance, the truncated 7»CrtC and
H262A mutant showed almost the same level of expression
(Fig. 5a, lanes 9 and 14) but the activity of H262A mutant was
~1.3-fold higher (Fig. 6). The same was observed for RgCrtC,
where the expression of the wild type is much higher than that

H
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Enzyme activity [nmol mg™']
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Fig. 6 Enzymatic activity of wild type (wf) and mutant CrtC from
R. gelatinosus (upper) and T. roseopersicina (lower). Extracts from
E. coli cells expressing the respective enzymes were assayed with
20 puM lycopene in 50 mM Na,HPO, sodium phosphate (pH 8.0) at
28 °C overnight. trunc variants with missing N-terminal residues 1-45
(RgCrtC) and 1-57 (IrCrtC)

the second lane shows cells after overnight expression at 25 °C. I RgCrtC
wild type, 2 RgCrtC truncated, 3 RgCrtC H239A, 4 RgCrtC W241A, 5
RgCrtC H264A, 6 RgCrtC Y266A, 7 RgCrtC D268A, 8 TrCrtC wild
type, 9 TrCrtC truncated, 70 TrCrtC S58YV, 11 TiCrtC S58Q, 12 TrCrtC
H237A, 13 TrCrtC W239A, 14 TrCrtC H262A, 15 TrCrtC D266A

of the mutant H264A, but both showed approximately the
same activity.

Discussion

The main purpose of this study was to get more insight into the
hydration mechanism of carotenoid 1,2-hydratases. First, the
distribution of these enzymes was assessed by subjecting the
Rg-crtC nucleotide sequence to a BLAST search. Although
R. gelatinosus belongs to the Betaproteobacteria, more than
69 % of the identified 119 hits were from Alphaproteobacteria
and only 11 % from Betaproteobacteria. Similarly, Igarashi
et al. (2001) observed that most of the photosynthesis gene
products from R. gelatinosus showed high sequence identities
to the gene products of R. palustris, an Alphaproteobacteria
member. They explain this occurrence as horizontal transfer of
the photosynthesis gene clusters from an ancestral species
belonging to the Alphaproteobacteria to that of the
Betaproteobacteria, which might also have happened to the
CrtC genes. The identified CrtC sequences were aligned in
order to discover conserved group clusters. In total, 33 amino
acids were found to be fully conserved. No conserved residues
were identified in the N-terminal part of the sequence (amino
acids 1-125 in Rg numbering), which is in agreement with our
earlier hypothesis that this region is probably not necessary for
CrtC activity (Hiseni et al. 2011). This was also confirmed by
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Fig. 7 Enzyme-catalyzed
cyclisation of squalene to hopene
and hopanol

the activity of the truncated variants. Furthermore, this also
accounts for the absence of this part and, thus, the shorter
DNA sequences for many CrtCs, including Fos06, Fosl13,
and partly RpCrtC, when compared to RgCrtC (Fig. 2,
Supplemental Fig. S1). This part is, hence, not involved in
the catalytic mechanism.

Six out of the seven selected CrtCs could be overexpressed
in E. coli (Fig. 4). The fact that all CrtCs share highly con-
served regions in the amino acid sequence indicates that they
are performing the same or similar biochemistry. However, no
activity whatsoever could be detected for four out of six CrtCs
in the standard lycopene hydration assay. At this point, it is
unclear whether this is due to reasons of low activity in the cell
extract and/or substrate specificity. Since CrtCs are active in
different parts of the carotenoid pathway, substrate specific-
ities can differ depending on the carotenoid produced by the
organism where the enzyme originated (Kovacs et al. 2003).

We have stated earlier that the hydration can take place
through an acid-base-type catalysis, resulting in the identifi-
cation of five possible key residues. The identified key resi-
dues H239, W241, Y266, and D268 in RgCrtC and the corre-
sponding residues in 77CrtC were probed by generating ala-
nine point mutants thereof. The absence of activity upon indi-
vidual substitution leads to the hypothesis that they are in-
volved in the hydration catalysis. Furthermore, they are all
in close distance to each other on the protein chain (Fig. 2).
The fact that there is only one other residue between H239 and
W241 or Y266 and D268 is consistent with residues in space
pointing in the same direction in a beta strand or loop (one
residue pointing upward, the next downward). In order to
investigate how these newly identified key residues could be
involved in the catalytic hydration reaction, we built a 3D
structure of 7rCrtC by homology modeling. The closest
known 3D structure, the putative AttH protein from
Nitrosomonas europaea, showed only a sequence identity of
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17 % to the CrtC (see Electronic Supplementary Material
Figs. S3, S4, and S5). This is not enough for a reliable model.
However, this model does indicate the possibility of the pres-
ence of such an active site.

These four residues, which are conserved throughout
the whole CrtC family, are also found in the active site
of squalene-hopene cyclase (SHC) (Wendt et al. 2000).
SHC catalyzes the cyclization reaction of squalene to
hopene as a major product (Fig. 7). Hopanol is also
formed to a minor extent. The proposed mechanism for
cyclases is proton-triggered polycyclization, whereby the
intermediate carbocation is stabilized by aromatic amino
acids. Next to the stabilization role of the aromatic amino
acids, they also create a hydrophobic environment in order
to prevent quenching of the cation by water. The cycliza-
tion cascade is terminated by a well-positioned enzymatic
base. The formation of the alcohol side product suggests
significant water accessibility at the termination region of
the active site. The acidic residue aspartate (D376), which
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Fig. 8 Proposed mechanism for the initial protonation during lycopene
hydration
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is located in the center of the active site in SHC, is the
likely general acid responsible for protonating the C3 atom
of the squalene substrate (Wendt et al. 2000). The acidity
of D376 is enhanced by a connection to the side chain of
Y495 through a water molecule. The tyrosine positions the
proton on aspartic acid into the anti-orientation, turning it
more acidic. Carboxylic acid protons in anti-orientation
have been estimated to be 10* times more acidic than
the biologically more relevant syn-oriented protons
(Gandour 1981).

Because of the probable similarity of the initial pro-
tonation reactions of squalene and lycopene, we assume
that the residues involved in catalysis will be alike in
SHC and CrtC. Therefore, we propose the following
mechanism for RgCrtC. D268 is the catalytic acid that
initiates the hydration of lycopene (Fig. §). Upon diffu-
sion of lycopene into the active site, the C2 atom of the
substrate needs to be positioned near the proton of
D268 that putatively will be added onto the substrate.
In order to enhance the acidity of the catalytic D268 for
olefin protonation, the amino acid is directly bonded to
H239 and to Y266 through an ordered water molecule,
similar to what has been proposed for SHC (Wendt
et al. 2000). This hypothesis is supported by the results
that mutation of one of these three amino acids leads to
inactivation of enzymatic activity. In contrast to SHC,
where premature quenching of the cationic intermediate
by water or nucleophiles is prevented by well-positioned
aromatic amino acids, a water molecule is added to
lycopene to yield the desired hydroxylated lycopene de-
rivative. This suggests that the active site of CrtC has
more water molecules present, so that the interaction
between the substrate and solvent water molecules is
more significant. The aromatic amino acid Trp266 might
be involved in the correct positioning of the hydropho-
bic substrate and the stabilization of the intermediate
carbocation.

In conclusion, overall results indicate that residues
H239, W241, Y266, and D268 in RgCrtC are probably
involved in an acid-base-type hydration. The absence of
activity upon individual substitution of these residues by
an alanine agrees with a role in the catalytic cycle. We
hypothesize that they are involved in the initial proton-
ation, which would be followed by quenching of the
carbocation by a water molecule, resulting in the hydra-
tion product. From our findings, it becomes clear that
the complete structure of a CrtC, through crystallization
studies, will be pivotal to really unravel the mechanism
for this intriguing enzyme. Nevertheless, the results of
this study produce for the first time a workable hypoth-
esis for the catalytic mechanism of carotenoid 1,2-
hydratase and open the field for the engineering of this
enzyme towards industrially relevant mutants.
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