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Cognitive impairments are considered to largely affect functional outcome in patients with
schizophrenia, other psychotic illnesses, or mood disorders. Specifically, there is much
attention to the role of psychotropic compounds acting on serotonin (5-HT) receptors in
ameliorating cognitive deficits of schizophrenia. It is noteworthy that atypical antipsychotic
drugs (AAPDs), e.g., clozapine, melperone, risperidone, olanzapine, quetiapine, aripipra-
zole, perospirone, blonanserin, and lurasidone, have variable affinities for these receptors.
Among the 5-HT receptor subtypes, the 5-HT1A receptor is attracting particular interests as
a potential target for enhancing cognition, based on preclinical and clinical evidence. The
neural network underlying the ability of 5-HT1A agonists to treat cognitive impairments of
schizophrenia likely includes dopamine, glutamate, and gamma-aminobutyric acid neurons.
A novel strategy for cognitive enhancement in psychosis may be benefited by focusing
on energy metabolism in the brain. In this context, lactate plays a major role, and has
been shown to protect neurons against oxidative and other stressors. In particular, our
data indicate chronic treatment with tandospirone, a partial 5-HT1A agonist, recover stress-
induced lactate production in the prefrontal cortex of a rat model of schizophrenia. Recent
advances of electrophysiological measures, e.g., event-related potentials, and their imaging
have provided insights into facilitative effects on cognition of some AAPDs acting directly
or indirectly on 5-HT1A receptors. These findings are expected to promote the develop-
ment of novel therapeutics for the improvement of functional outcome in people with
schizophrenia.

Keywords: atypical antipsychotics, second generation, cognitive function, 5-HT receptors, lactate, energy metabo-
lism, neuropsychology, electrophysiology

INTRODUCTION
Atypical antipsychotic drugs (AAPDs), sometimes called “second
generation” antipsychotics, represent those exerting an antipsy-
chotic efficacy at doses that do not cause extrapyramidal side
effects (Meltzer, 1991, 2002; Sumiyoshi, 2008, 2013). With cloza-
pine as the prototype, this class of agents includes risperidone,
olanzapine, quetiapine, ziprasidone, aripiprazole, perospirone,
blonanserin, paliperidone, iloperidone, asenapine, and lurasidone
(Sumiyoshi, 2013). AAPDs share certain pharmacologic profiles
in common, i.e., a relatively greater affinity for serotonin-5-HT2A

receptors relative to dopamine-D2 receptors (Meltzer et al., 1989;
Stockmeier et al., 1993; Sumiyoshi et al., 1995). In contract,
haloperidol, a typical antipsychotic drug (TAPD), shows a pre-
dominantly higher affinity for D2 receptors compared to other
receptors (Meltzer et al., 1989; Stockmeier et al., 1993; Sumiyoshi
et al., 1995). In addition to the higher 5-HT2A/D2 binding affinity
ratio, there are some minor differences among the AAPDs. For
example, perospirone and aripiprazole show a relatively greater
affinity for 5-HT1A receptors, while lurasidone demonstrates a
relatively high affinity for 5-HT7 receptors (Sumiyoshi, 2013).

This paper provides a hypothesis regarding the neural basis for
the ability of AAPDs to improve cognition. This theoretical issue is
important from the perspective of the development of therapeutics
for enhancing long-term outcome in patients with schizophrenia.

DO AAPDs ENHANCE COGNITION IN SCHIZOPHRENIA?
Typical antipsychotic drugs, such as perphenazine, have been
reported to show some cognitive benefits in schizophrenia with
a small effect size, as reported in the CATIE trial (Keefe et al.,
2007). Importantly, Woodward et al. (2005) report an advantage
of AAPDs over TAPDs in terms of enhancing cognition with a
moderate effect size both in controlled and uncontrolled trials.
However, there have been challenges to the pro-cognitive efficacy
of AAPDs. For example, improvement of verbal memory by treat-
ment with risperidone or olanzapine has been suggested to be no
better than that of practice effect (or more precisely, test-retest
effect) in normal controls (Goldberg et al., 2007). However, it may
be premature to conclude that way, since no data were presented
in that study (Goldberg et al., 2007) as to whether schizophrenia
patients not receiving these AAPDs would have elicited the same
degree of improvement as that in treated patients (Sumiyoshi,
2013).

One of the suggestions for this debate comes from the ability
of lurasidone to dose-dependently improve cognitive functions, as
measured by a computer-based test battery (Maruff et al., 2009),
in a placebo-controlled double-blind study (Harvey et al., 2013;
Sumiyoshi, 2013). This result provides a support for the ability of
some AAPDs to enhance cognition in patients with schizophrenia,
which is independent of a practice effect.
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Another issue is what percentage of patients can be treated
with a clinically meaningful degree. It is reported that a larger
than 0.5 SD improvement in cognition substantially improves
quality of life for patients (Norman et al., 2003). Accordingly,
treatment with clozapine produced a significantly larger propor-
tion of patients showing a larger than 0.5 SD improvement in
letter fluency that predicts work outcome (Sumiyoshi and Meltzer,
in preparation). Again, these findings provide a support for the
proposition that AAPDs are superior over TAPDs for enhancing
cognition.

In spite of these lines of evidence, cognitive benefits of AAPDs
have been questioned, as noted above. One of the main reasons
may be that the neural mechanisms for it have not been fully elu-
cidated. Therefore, the following sections address this issue from
the perspective of electrophysiological imaging, neural network,
and energy metabolism.

ELECTROPHYSIOLOGICAL IMAGING
Figure 1 illustrates a rationale for electrophysiological approach
toward cognitive assessment. The combination of neuropsy-
chological and electrophysiological methods, e.g., event-related
potentials (ERPs), may be beneficial for the understanding of
mechanisms of cognitive enhancement, rational choice of psy-
chotropic drugs, and prediction of functional outcome.

Specifically, we reported the effect of olanzapine on cognition
and QOL, as well as P300, a component of ERPs, in patients
with schizophrenia (Higuchi et al., 2008). P300 has been used
as a marker of attentive cognitive processes. Figure 2 (right)
demonstrates P300 waveforms. At baseline, P300 amplitudes of
patients were diminished compared to those of control subjects.
After 6 month treatment with olanzapine, P300 amplitudes were
increased, as were scores of verbal memory and quality of life
(Figure 2, left).

We subsequently evaluated the effect of olanzapine on P300
current source density in discrete brain areas (Higuchi et al.,

2008) (Figure 3). At baseline, P300 current density in the left
superior temporal gyrus (STG) was decreased in patients. Olan-
zapine increased P300 current density in the left STG, but not
other regions, such as the prefrontal cortex (PFC). In fact, this
left-dominant pattern of P300 current density is similar to that
for control subjects. These observations provide the first evidence
that AAPDs ameliorate neurocognitive disturbances by correct-
ing three-dimensional distribution of electrophysiological activity
(Sumiyoshi et al., 2006, 2009; Higuchi et al., 2008).

An important aspect of this study was the correlation between
the change in P300 current density and cognition or functional
outcome. In fact, there was a significant positive correlation
between improvement of verbal memory and enhancement of
P300 current density in the left STG (Figure 4, right). Also, the
change in the Quality of Life score (Heinrichs et al., 1984) was
significantly correlated with enhancement of P300 current den-
sity in the left PFC (Figure 4, left). These results indicate that
the change of regional electrophysiological activities in response
to treatment can predict enhancement of cognitive and func-
tional outcomes (Higuchi et al., 2008; Sumiyoshi et al., 2009,
2011).

We also investigated the effect of perospirone on P300 cur-
rent density (Sumiyoshi et al., 2009). Perospirone is one of the
AAPDs marketed in Japan, and has high affinity for 5-HT1A

receptors (Araki et al., 2006; Sumiyoshi et al., 2009; Higuchi et al.,
2013). Unlike the case for olanzapine, perospirone enhanced P300
current density in the left PFC in patients with schizophrenia
(Figure 5). This change was correlated with improvement of cog-
nitive function relevant to daily living skills (Sumiyoshi et al.,
2009).

These observations are consistent with our previous report
that 5-HT1A receptor density is increased in the left PFC from
subjects with schizophrenia (Sumiyoshi et al., 1996). The up-
regulation of 5-HT1A receptors is hypothesized to reflect a com-
pensatory reaction to diminished neurotransmission through

FIGURE 1 | Electrophysiological approach toward cognitive assessment in schizophrenia. This strategy is expected to facilitate (1) elucidation of
mechanisms of cognitive enhancement, (2) rational choice of psychotropic drugs, and (3) prediction of functional outcome.
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these receptors (Sumiyoshi et al., 1996). The electrophysiological
findings, mentioned here, may be consistent with this hypoth-
esis, and explain distinct cognition-enhancing profiles of some
AAPDs with high affinity for 5-HT1A receptors, e.g., ziprasidone,

perospirone, aripiprazole, and lurasidone (Sumiyoshi, 2012, 2013,
in press; Sumiyoshi and Higuchi, 2013). This concept may explain
why perospirone, but not olanzapine enhanced P300 current
density in the PFC.

FIGURE 2 | P300 waveforms in response to olanzapine treatment
(right). P300 waveforms were averaged for 16 subjects per group. Black
lines represent P300 activity for control subjects. Blue lines show P300 for
patients at baseline, whose amplitudes are diminished compared to control

subjects. After 6 month treatment with olanzapine, P300 amplitudes
were increased, as indicated by redlines. Scores of verbal memory and
quality of life were also increased by olanzapine (inset). Bars represent
mean + SE.

FIGURE 3 | Effect of olanzapine on P300 current density, evaluated by
the LORETA methods, in patients with schizophrenia. At baseline, P300
current density in the left superior temporal gyrus was decreased.

Olanzapine increased P300 current density in this brain region (circled), and
this pattern of three-dimensional configuration was similar to that in control
subjects.
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FIGURE 4 | P300 current density change vs. cognition/QOL changes in
patients treated with olanzapine. There was a significant positive
correlation between improvement of verbal memory and enhancement of

P300 current density in the left superior temporal gyrus (STG) (left ). Also, the
improvement of the Quality of Life score was correlated with enhancement of
P300 current density in the left prefrontal cortex (PFC) (right ).

P300

5 μV

0 200 400 (ms)

Fz

Cz

Pz
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FIGURE 5 | Enhancement of P300 current density by perospirone in
schizophrenia. Left, grand average of ERP waveforms before (black lines)
and after (red lines) treatment with perospirone in patients with
schizophrenia. Right, 6 months treatment with perospirone enhanced

P300 current density, evaluated by the sLORETA method, in the left
superior frontal gyrus. Perospirone also improved social cognition, the
degree of which was correlated with P300 activity in the frontal brain
regions (see text).

NEURAL NETWORK MEDIATING COGNITIVE ENHANCEMENT
OF AAPDs
As discussed, 5-HT1A receptor agonism has been suggested to
enhance cognition [see also Sumiyoshi et al. (2008)]. In fact,
the addition of tandospirone, a 5-HT1A partial agonist, improved
executive function and verbal memory in patients treated with
TAPDs (Sumiyoshi et al., 2001a,b) (Figure 6). Data from these
clinical trials suggest 5-HT1A agonists enhance some of the key
cognitive domains, including those associated with frontal cortical
function.

Figure 7 illustrates a neural network providing a possible
basis for the ability of tandospirone and AAPDs acting on 5-
HT1A receptors to enhance cognition. Systemic administration of

5-HT1A agonists has been shown to selectively stimulate 5-HT1A

receptors located on gamma-aminobutyric acid (GABA) interneu-
rons in the PFC (Llado-Pelfort et al., 2011; Sumiyoshi and Higuchi,
2013). This diminishes the activity of GABA neurons, leading
to disinhibition of Glu neurons. This may explain the ability of
AAPDs to augment DA release in the PFC (Sumiyoshi and Higuchi,
2013), a putative mechanism for the ability of AAPDs to enhance
cognition, in a 5-HT1A receptor-dependent manner (Diaz-Mataix
et al., 2005; Bortolozzi et al., 2010). These neural events may
explain the ability of augmentation therapy with tandospirone
to restore mismatch negativity amplitudes (Higuchi et al., 2010),
an electrophysiological measure of glutamatergic activity that is
diminished in schizophrenia (Javitt et al., 2008). Other possible
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FIGURE 6 | Effect of tandospirone, a 5-HT1A partial agonist, on cognition in schizophrenia. Six-week treatment with tandospirone, but not placebo
enhanced executive function (effect size = 0.63) and verbal memory (0.70), two cognitive domains relevant to functional outcome, in patients receiving
haloperidol.

FIGURE 7 | Neural network in the prefrontal cortex involving
glutamate (Glu), gamma-aminobutyric acid (GABA), serotonin
(5-HT), and dopamine (DA) neurons. Systemic administration of 5-HT1A

agonists, such as 8-OH-DPAT, inhibits action potentials of GABA neurons,
leading to disinhibition of glutamate neurons (Llado-Pelfort et al., 2011;
Sumiyoshi and Higuchi, 2013). This also leads to activation of
meso-cortical dopamine neurons. For example, administration of

clozapine, a 5-HT1A agonist, increases extracellular DA concentrations in
the prefrontal cortex in mice, but it does not occur in mutant mice lacking
5-HT1A receptors (Bortolozzi et al., 2010). These neural events may explain
the ability of augmentation therapy with tandospirone to restore
mismatch negativity amplitudes (Higuchi et al., 2010), an
electrophysiological measure of glutamatergic activity that is diminished
in schizophrenia. VTA, ventral tegmental area.
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mechanisms may involve GABAB receptor-mediated transmis-
sions (Gronier, 2008) or other neurotransmitters (e.g., acetyl-
choline).

ROLE FOR ENERGY METABOLISM
Traditionally, energy supply into the brain has been considered
to depend on glucose. However, recent research suggests lactate
plays a significant role in energy production both in the aerobic
and anaerobic conditions, irrespective of the presence of glucose
(Wyss et al., 2011; Uehara and Sumiyoshi, 2013).

The lactate-dependent energy metabolism has been associated
with glutamatergic activity (Uehara et al., 2008). Specifically, glu-
tamatergic transmissions enhance lactate production, which is
mediated by N -methyl-d-aspartate (NMDA) receptors and gluta-
mate transporters, as well as astrocytes (Uehara et al., 2008; Uehara
and Sumiyoshi, 2013). Recently, lactate has been shown to exert
neuroprotective effects (Wyss et al., 2011). These lines of evidence
prompted us to use lactate metabolism as a biological basis for the
effect of pro-cognitive drugs.

Measurement of lactate in the extracellular space can provide
real-time information on its production (Uehara et al., 2008). Lac-
tate metabolism was hypothesized to reflect energy supply in the
brain areas crucial for cognitive functions, e.g., PFC. Figure 8
describes the effect of tandospirone on extracellular lactate con-
centrations in a rat model of schizophrenia (Uehara et al., 2012).
At the neonatal stage (postnatal days 7–10), rats were transiently
administered MK-801, an antagonist at the NMDA receptor. In
this experiment, these model rats showed suppression of the stress-
induced increment of lactate levels in the PFC, suggesting impaired
energy metabolism. This suppression in the model rats was inhib-
ited by chronic treatment with tandospirone (once daily for 14 days

before the measurement of lactate levels) (Uehara et al., 2012).
These results are consistent with clinical observations that 5-HT1A

agonists, such as tandospirone and buspirone, ameliorate cogni-
tive impairment related to PFC function (Sumiyoshi et al., 2001a,b,
2007).

PERSPECTIVES
A main topic of this article has been the role for 5-HT1A recep-
tors in cognitive improvement. On the other hand, other 5-HT
receptor subtypes have been suggested to be a potential candidate
for cognitive enhancers. These include 5-HT3 (e.g., mirtazap-
ine, ondansetron), 5-HT6 (Ro04-06790, Lu AE58054), and 5-
HT7 (SB25874, amisulpride, lurasidone) receptors [reviewed in
Sumiyoshi and Higuchi (2013)].

Another issue to be considered in the development of
promising agents is the assessment of functional outcome, in
addition to neurocognition (neuropsychological performance,
or “primary measures”). In this context, intermediate func-
tional measures, or “co-primary measures,” have attracted inter-
est as a target for therapeutic intervention (Sumiyoshi and
Sumiyoshi, in press). For example, a greater sensitivity to treat-
ment has been reported for co-primary measures compared to
primary measures in a clinical trial of lurasidone and ziprasi-
done (Harvey et al., 2011). Therefore, intermediate functional
measures (co-primary measures) deserve more attention in the
development of novel pharmacotherapy for schizophrenia and
related illnesses.

In conclusion, AAPDs have been shown to enhance cogni-
tion in a clinically meaningful manner. The mechanisms for it
may include several modes of action and neural networks, which
requires further explorations.

FIGURE 8 | Effect of tandospirone on lactate production in the
prefrontal cortex of a rat model of schizophrenia, as measured by
in vivo microdialysis. At the neonatal stage, rats were transiently
injected with MK-801, an antagonist at the N -methyl-D-aspartate
receptor, on postnatal days 7–10. These model animals showed

suppression of the stress-induced increment of lactate levels, as
represented by extracellular concentrations, in the adult stage. This
suppression in model rats was inhibited by chronic treatment with
tandospirone (once daily for 14 days before the measurement of lactate
levels).
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