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ABSTRACT Rhodobacter sphaeroides is an alphaproteobacterium found in freshwa-
ter and marine ecosystems. To better understand the metabolic diversity within this
species, we isolated and sequenced four R. sphaeroides isolates obtained from Trunk
River in Woods Hole, Massachusetts. Here, we report the draft genome sequences of
R. sphaeroides AB24, AB25, AB27, and AB29.

Rhodobacter sphaeroides is a model purple nonsulfur bacterium for studying micro-
bial metabolism and bioenergetics (1, 2). It is exceptionally metabolically versatile,

being capable of photoheterotrophy, photoautotrophy, chemoheterotrophy, chemoau-
totrophy, and fermentation. R. sphaeroides has also been investigated for its biotech-
nological (3, 4) and bioremediation (5–8) potential. To date, only 13 R. sphaeroides
genome sequences have been deposited in the GenBank database. To examine the
genetic diversity of natural isolates within this species, we isolated and sequenced the
genomes of four R. sphaeroides strains from Trunk River in Woods Hole, Massachusetts.
We determined that these isolates are 99% similar to R. sphaeroides KD131 (9) based on
16S rRNA gene sequence analysis.

Seawater was sampled from Trunk River, and 500 �l was used as an inoculum into
Pfennig bottles containing anoxic artificial seawater medium (10) supplemented with
20 mM acetate. Enrichments were cultivated with �850-nm light at 30°C and passaged
six times in anoxic artificial seawater medium, followed by streaking oxically 6 times on
Bacto agar with Difco marine broth 2216 (BD Diagnostic Systems, Sparks, MD, USA).
Genomic DNA was isolated with the DNeasy blood and tissue kit according to the
manufacturer’s recommendations (Qiagen, Dusseldorf, Germany) from single colonies
cultivated in marine broth to mid-log phase. Paired-end 250-bp Illumina sequencing
libraries were prepared using the Nextera sample prep kit (San Diego, CA) and se-
quenced on a MiSeq instrument using v2 chemistry (Illumina, Inc.) to 300� (AB24), 38�

(AB25), 36� (AB27), or 33� (AB29) coverage. Reads were trimmed with Trimmomatic
version 0.38 with the program’s default parameters for paired-end reads (11). The
trimmed reads were de novo assembled with SPAdes version 3.13.0 using the program’s
default parameters (12). Contigs were extended using the reference-guided scaffolder
MeDuSa version 1.6 with the complete genome of R. sphaeroides KD131, using the
program’s default parameters (13). Alignment of the scaffolded genomes of AB24,
AB25, AB27, and AB29 was performed with LASTZ version 1.02.00 to examine plasmid
and chromosomal synteny between the isolates and reference genomes (14). Se-
quences were submitted for annotation to the NCBI Prokaryotic Genome Annotation
Pipeline (PGAP) (15). The identity of each strain was determined by analyzing the
full-length 16S rRNA gene sequence predicted by PGAP in the genome assemblies.
NCBI BLASTN analysis was performed on these sequences to determine the identity
using the program’s default parameters (16). Phylogenetic analysis was performed with
the BLASTN alignments using the BLAST Tree View widget, with the program’s default
parameters (http://blast.ncbi.nlm.nih.gov/).
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The genomes of AB24, AB25, AB27, and AB29 have a total assembly length of
�3.2 Mb (Table 1) and a GC content of 69.1%. Genome scaffolding produced four
sequences for each strain (Table 1) that mapped to chromosomes I (3.2 Mb) and II
(1 Mb), as well as plasmids A (0.1 Mb) and B (0.2 Mb), of R. sphaeroides KD131 and R.
sphaeroides 2.4.1, as determined by synteny analysis (17). Neither contigs nor sequenc-
ing reads mapped to plasmid C, D, or E of R. sphaeroides 2.4.1, similar to R. sphaeroides
KD131. NCBI PGAP predicted 4,280 (AB24), 4,271 (AB25), 4,086 (AB27), and 4,169 (AB29)
open reading frames. The isolates contain multiple copies of genes involved in DNA
replication, amino acid metabolism, motility and chemotaxis, photosynthetic light
harvesting, and central carbon metabolism, as has been characterized in R. sphaeroides
2.4.1 (1, 17). The isolates encode proteins involved in lithotrophic metabolism (Ni-Fe
uptake hydrogenase and CO dehydrogenase), nitrogen fixation (Fe-Mo nitrogenase),
and denitrification (nitrous oxide and nitric oxide reductase) (5, 18–20). These genomes
provide opportunities for future studies into the metabolic potential of R. sphaeroides
in marine ecosystems.

Data availability. These whole-genome shotgun (WGS) projects and the raw se-
quencing reads have been deposited in GenBank and the NCBI Sequence Read Archive
(SRA), respectively, under the accession numbers listed in Table 1.
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