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ABSTRACT: Understanding the interfacial molecular structure of acidic
aqueous solutions is important in the context of, e.g., atmospheric chemistry,
biophysics, and electrochemistry. The hydration of the interfacial proton is
necessarily different from that in the bulk, given the lower effective density of
water at the interface, but has not yet been elucidated. Here, using surface-
specific vibrational spectroscopy, we probe the response of interfacial protons
at the water−air interface and reveal the interfacial proton continuum.
Combined with spectral calculations based on ab initio molecular dynamics
simulations, the proton at the water−air interface is shown to be well-
hydrated, despite the limited availability of hydration water, with both Eigen
and Zundel structures coexisting at the interface. Notwithstanding the
interfacial hydrated proton exhibiting bulk-like structures, a substantial
interfacial stabilization by −1.3 ± 0.2 kcal/mol is observed experimentally, in
good agreement with our free energy calculations. The surface propensity of the proton can be attributed to the interaction
between the hydrated proton and its counterion.

■ INTRODUCTION

The proton in water is as ubiquitous as water itself, given that
the proton is a product of the autoionization of water (2H2O
⇌ H3O

+ + OH−). This autoionization controls many
important properties of water, e.g., allowing for charge
transport in biology and electrochemistry. Through the studies
of protons in bulk water, it has become evident that, much like
the hydrogen-bonded network of water, the proton and its
hydration shell are highly dynamic. For hydrated protons in
bulk, two limiting structures, namely Zundel and Eigen, have
been proposed.1 An Eigen moiety is a proton as a part of a
hydronium (H3O

+) ion, which is solvated by three additional
water molecules to produce H9O4

+. An ideal Zundel structure
constitutes of a proton equally shared between two water
molecules to produce the moiety H5O2

+. Static2 and time-
resolved3−6 vibrational spectroscopy has shown that both of
these moieties are present inside the bulk in their ideal and
significantly distorted conformations, producing a proton
continuum absorption spanning a wide vibrational frequency
range, between the bend (1650 cm−1) and stretch vibrations
(3400 cm−1) of water.
While hydrated protons in bulk have been intensely studied,

less is known about protons at interfaces. Protons at interfaces
are important for several systems, including atmospheric
aerosols,7 biological membranes,8 fuel cells,9 and electro-
chemical systems.10 At the interface of acidic solutions with air,
the concentration of protons at the surface is elevated
compared to that in bulk.11,12 Although the presence of the
hydrated proton at the surface has been proposed from

surface-specific spectroscopies, such as second harmonic
generation13 and sum-frequency generation (SFG)14−16 as
well as theoretical studies,17−21 it is challenging to identify the
SFG signatures for the Eigen and Zundel structures and the
corresponding thermodynamic stability of the interfacial
hydrated proton. Indeed, the energetics of interfacial proton
adsorption is controversial: Voth and co-workers found, using
reactive molecular dynamics simulations, that the proton is
weakly attracted to the water−air interface with a free energy
of 0.55 kcal/mol22 and 1.8 kcal/mol23 for different proton
models (multistate empirical valence bond models 3.2 and 3.0,
respectively). Buch and co-workers have concluded the proton
to be strongly adsorbed at the surface with a free energy of ∼3
kcal/mol with a mixed quantum/classical approach.24

Furthermore, the continuum model calculation predicts the
free energy barrier of 1.3 kcal/mol.25 Thus, both experiments
and theory consistently predict a clear affinity for the hydrated
proton to the surface, but the degree of reported surface
affinity is rather scattered. Clearly, the free energy of
adsorption is intricately connected to the structure of the
interfacial hydrated proton, and an experimental verification of
both structure and free energy of adsorption is therefore very
desirable.
The surface activity of the hydrated proton has been

considered as the limiting case of the hydronium ion. The
hydronium ion has been predicted to sit on the surface with its
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three OH groups pointing down toward the bulk, with the lone
pair pointing toward the vapor phase,17−19,22 which would
point to the interfacial hydrated proton being present at the
interface purely as an Eigen state. The excess proton is
presumably expelled to the surface as it behaves as a defect of
the hydrogen bond network.21,26,27

In order to address the structure of the interfacial hydrated
proton, we use surface-specific vibrational spectroscopy, i.e.,
conventional and phase-sensitive (PS-) sum-frequency gen-
eration (SFG) spectroscopy, at the water−air interface in the
presence of HCl. From our experiments, we find that the
protons indeed adsorb at the surface and produce a “proton
continuum” response reminiscent of that observed in bulk
infrared spectroscopy. By comparing the observed experimen-
tal response with calculations, we find that the spectral
response can be accounted for by the coexistence of the Eigen
and the Zundel forms of interfacial solvated protons. We
quantify the adsorption free energy of the proton at the surface
to be ∼1.3 kcal/mol, substantially higher than kBT of ∼0.6
kcal/mol.

■ RESULTS AND DISCUSSION
Figure 1a shows the SFG intensity spectra for pure H2O, and
H2O containing 1 M HCl in the subphase. Each spectrum has

a sharp response centered at ∼3700 cm−1 (shaded in blue), a
broad response with a dual peak feature extending from ∼3000
cm−1 to ∼3600 cm−1 (shaded red), a broad featureless
response spanning the range from ∼2000 to ∼3000 cm−1

(shaded green) and a peak at ∼1650 cm−1. The sharp response
at ∼3700 cm−1 (blue region) originates from the vibration of
non-hydrogen-bonded OH groups from water pointing into

the air. The broad response with a dual peak feature (red
region) is the vibrational signature of hydrogen-bonded H2O
molecules at the H2O−air interface. Vibrational coupling
between hydrogen-bonded O−H groups causes the dual-peak
line shape.28 The flat featureless response in the green region
for pure water is generally considered to be a nonresonant
response of the interfacial water molecules (see also
Supporting Information (SI), Figure S1).29 The peak at
∼1650 cm−1 is the bend vibrational response of the water
molecules.30−32 In the presence of 1 M HCl, the intensity rises
throughout the ∼1600−3600 cm−1 region and decreases
around 3700 cm−1. Both observations evidence interfacial
proton propensity: hydronium ionsin whatever hydrated
format the interface displace the free OH groups, enhancing
the SFG signal in the hydrogen-bonded region and reducing
the free OH peak intensity. The presence of 1 M NaCl does
not significantly affect the surface water spectrum (Figure S2)
so that it is apparent that the signal changes are primarily due
to the proton. The SFG intensity changes observed both on-
and off-resonance of the O−H stretch for 1 M HCl solution is
notor only very weaklyobserved for NaOH,16 NaI and
NaCl33 solutions of comparable molarity.
Figure 1b shows the SFG intensity in the ∼1600−3000 cm−1

region, illustrating the enhancement of intensity in this region
as a result of the presence of protons. This observation is
reminiscent of the so-called proton continuum absorption in
bulk acid solution, exemplified in Figure 1c. This figure shows
the proton-related IR absorption in HCl solution, obtained
using a multivariate curve resolution (MCR) analysis.2 The
Raman MCR signal has been shown to have a similar shape.2

The proton-induced increase in the 1600−3000 cm−1 SFG
intensity clearly shows that the proton is surface active, yet the
signal increase can be due to (i) OH groups of a surface-
adsorbed hydrated proton (i.e., an interfacial proton
continuum response); (ii) an enhanced orientation of water;
or (iii) a result of the presence of charge at the surface, giving
rise to a bulk contribution.34 To address these, one needs to
examine the contributions to the SFG spectra quantitatively,
beyond the qualitative discussion. It is challenging to
distinguish these different possible contributions from the
SFG intensity spectra, because SFG intensity spectra, being
proportional to the absolute square of the response function
(χ(2)), are not quantitative: ISFG ∝ |χ(2)|2. This means that the
real (Re) and an imaginary (Im) components of χ(2) cannot be
disentangled. In particular, Im[χ(2)] directly reflects the
response and orientation of interfacial molecules. PS-SFG
measurement allows for direct access to the real and imaginary
parts of χ(2).14,35,36

To shed more light on the origin of the proton signal, we
have performed PS-SFG measurements. Figure 2a shows
Im[χ(2)] responses as a function of frequency at the water−air
interface of pure H2O and H2O containing 1 M NaCl. The
presence of NaCl has little effect on the response. For H2O
containing 1 M HCl, the response is enhanced and frequency-
shifted. To check for a possible bulk (χ(3)-) contribution34 to
the enhanced response, we added 1 M NaCl to the 1 M HCl
solution. The resulting doubling of the ionic strength of the
solution will result in a stronger screening of the charge of the
interfacial protons, reducing the Debye screening length from
∼3 to ∼2 Å. Yet, the addition of NaCl does not affect the
Im[χ(2)] response (red dotted line), indicating that the χ(3)

effect does not dominate the proton-induced response of the
acidic water surface.

Figure 1. (a) SFG intensity at the water−air interface for pure H2O,
and H2O containing 1 M HCl in the subphase. The black lines are fits
(see SI). (b) Zoom-in of the 1600−3000 cm−1 region of the SFG
response from pure H2O and 1 M HCl solution. (c) Contribution to
the bulk IR absorption spectrum from the hydronium ion obtained
from multivariate curve resolution (MCR) analysis. The IR-MCR data
are reproduced from ref 2.
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A clear difference exists between the shapes of the interfacial
proton continuum in the intensity vs the imaginary spectrum.
In the imaginary spectrum, the interfacial proton continuum
appears largely above ∼2800 cm−1, whereas in the intensity
spectrum there is also enhanced intensity below 2800 cm−1,
which must originate from the real part of the susceptibility, as
indeed apparent from Figure S3. This low-frequency intensity
increase is the direct result of the very broad interfacial proton
resonance in the 2800−3500 cm−1 region. The observation
that, at lower frequencies, the intensity is largely due to the real
part of the response can be traced to the real part decaying
with ∼1/(ν − νres), away from the resonance frequency νres,
whereas the imaginary part decays more quickly as ∼1/(ν −
νres)

2. Thus, the response of the hydrated proton at the
interface is spectrally more narrow compared to the proton
continuum in the bulk. We attribute this difference to the
reduced hydration of the proton at the surface (see below).
We cannot experimentally distinguish between the con-

tributions to the signal from (i) the hydronium O−H groups
and (ii) the increased orientation of water molecules with their
H atoms pointing toward the bulk due to the accumulation of
protons at the surface. Since overall contributions to the
Im[χ(2)] spectra are additive, we consider the difference
spectrum of 1 M HCl and pure H2O as the “effective” χ(2)

response of the adsorbed protons at the surface. We note that
this is a rather crude approximation: it assumesin line with
the unchanged signal upon addition of 1 M NaCl(i) a
vanishingly small χ(3)-bulk contributions to the signal and (ii)
that the increase in downward water orientation due to the
presence of protons is exactly counteracted by the displace-
ment of interfacial water by hydronium ions. The difference
spectrum (black line in Figure 2a) is broad (width ∼450 cm−1)
and asymmetric, with intensity ranging from 2800 to 3600
cm−1, i.e. well beyond the water response that peaked at 3500
cm−1 (width 200 cm−1, blue lines), suggesting the appearance
of new vibrational modes. We assign this broad proton-induced
spectrum primarily to the proton at the interface. While this
general shape is reminiscent of the proton continuum
previously reported in bulk,2,3 the interfacial proton continuum
approaches zero at a higher frequency than that in the bulk.
To further investigate the nature of the proton at the surface,

we compare the experimentally obtained spectrum with that
simulated from the ab initio molecular dynamics (AIMD)
trajectories for the air−aqueous HCl solution interface. The
reactive nature of the proton transfer process is automatically
captured with AIMD simulation methods, where the electronic
degrees of freedom are treated explicitly.37,38 Figure 2b and 2c
show the simulated contributions of the Eigen and Zundel
moieties to the Im[χ(2)] SFG response, and the corresponding
interfacial structures, respectively. The Eigen and Zundel
contributions to the spectra differ significantly. The Eigen
structure shows two negative peaks: the O−H stretch peaks
centered at 2950 and 3300 cm−1 arising from the H3O

+ ion
itself and the surrounding 3 H2O molecules, respectively. For
the Eigen conformation, the excess covalent O−H bonds of
the H3O

+ ion weaken the intramolecular O−H bonds,
lowering its O−H stretch frequency. For the Zundel structure,
an excess proton also weakens slightly an O−H covalent bond
compared to the case of a water molecule, while the effect of
the excess proton on the weakening of the O−H covalent bond
is limited because an excess proton is shared by the two water
molecules. As such, the O−H covalent bonds are stronger than
those in H3O

+. Interestingly, the relatively large width of the
proton responses reported here contrasts the proton response
reported at a lower frequency at the surface of a negative
surfactant.39

The sum of these contributions generate one apparent peak
around 3300 cm−1 with a very broad shoulder in the frequency
range 2900−3200 cm−1. The shape of the simulated overall
Im[χ(2)] response comprising the sum of the Eigen and Zundel
moieties (black spectrum in Figure 2b) agrees well with the
differential Im[χ(2)] response of the H2O−air interface and
HCl solution−air interface determined experimentally (the
black line spectrum in Figure 2a). This indicates that both
Eigen and Zundel moieties are present at the surface, and our
results indicate their presence in similar quantities (see
Supporting Information). A precise quantification of the
relative occurrence of Zundel and Eigen structures at the
interface would require the inclusion of nuclear quantum
effects.40,41

Having established reasonable agreement between theory
and experiment, we can proceed to investigate how strongly
the proton binds to the surface. In other words, what is the free
energy of adsorption for protons to the surface? Previous
theoretical reports have predicted both weak binding21,22

(binding strength, ΔEbind ≤ 0.6 kcal/mol) and strong
binding20,24,25,42,43 (ΔEbind > 0.6 kcal/mol).

Figure 2. (a) Experimentally determined imaginary part of χ(2)

spectra at the H2O−air interface for pure H2O and in the presence
of 1 M NaCl, 1 M HCl, and a solution containing both 1 M NaCl and
1 M HCl in the subphase. The black line shows the difference
spectrum between the presence and absence of 1 M HCl. (b)
Simulated contributions from Eigen (green) and Zundel (purple)
moieties to the total (black) imaginary χ(2) response of 1 M HCl. The
thick lines are spline fits to the data points. Panel (c) shows the
interfacial Eigen and Zundel structures. The reasonable agreement
between the experimental and simulated black lines indicates the
presence of both Eigen and Zundel moieties at the surface.
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To determine the value experimentally, we have monitored
the SFG intensity from a D2O−air interface as a function of the
D3O

+ to Na+ concentration ratio at a total bulk concentration
of 1 M, i.e. at constant ionic strength. We used D2O instead of
H2O to avoid any uncertainty due to the absorbance of IR
intensity by the water vapor in the air at the free OH region
(∼3700 cm−1). We focus on the free OD intensity to quantify
the surface propensity of protons at the D2O−air interface
since the free OD intensity does not suffer from potential
complications due to vibrational coupling and bulk contribu-
tions to the signal and thereby provides the most direct
measure for the proton density in the topmost layer of water.
Figure 3a represents the SFG intensity at the D2O−air

interface containing NaCl and DCl in different concentration
ratios in the subphase. The SFG intensity in the presence of 1
M NaCl (dark blue) does not significantly differ from that of
pure D2O (red). The intensity of the hydrogen-bonded region
(∼2200−2650 cm−1) increases with increasing acid fraction in
the subphase, consistent with the results for H2O. The
intensity of the free OD groups decreases with increasing
concentration of acid indicating a displacement of free ODs by
the adsorbed hydrated protons, again in line with the H2O
results.
In order to gain the information on the amplitude of the free

OD response, we describe the data obtained in the individual
experiments separately with a Lorentzian line shape model,
using a global description of each data set. Figure 3b represents
the amplitude of the free OD peak as a function of the fraction
of D3O

+ to the total cation concentration in the solution. Since
the total ionic strength of the solution is 1 M, the fraction of
D3O

+ in Figure 3b equals its absolute bulk concentration. The
fit results show that the number of free OD groups decreases
by up to ∼15% in the presence of 1 M acid in the subphase.
We verified, using polarization-resolved SFG experi-

ments,44−46 that this reduction arises solely from the decrease
in the number of free OD groups through displacement by the

hydronium moieties, and not because of the change in the
angular distribution of free OD groups with respect to the
surface normal (see Supporting Information).46 This is
consistent with our AIMD data (see Supporting Information).
Therefore, the reduction of the amplitude of the free OD band
(ΔAfreeOD) can be directly related to the interfacial proton
concentration +ND O

Surf
3

:

∝ Δ+N AD O
Surf

freeOD3 (1)

In order to determine the proton adsorption free energy, we
relate the adsorption free energy of interfacial proton
adsorption ΔGads to +ND O

Surf
3

, through ΔAfreeOD. In line with ref
47, the surface concentration of hydronium is obtained by
describing ΔAfreeOD as a function of D3O

+ concentration
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with the Langmuir isotherm:
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where T is the temperature of the system. Here, A freeOD
D O2 is the

amplitude of the free OD band in absence of protons, +CD O3

and Cwater are the bulk concentrations of hydronium and water
respectively, and ΔGads is the Gibbs free energy of adsorption
of hydronium to the surface. In this equation, we assume that
all free OD intensity is gone when the surface is fully covered
with hydrated protons. The model describes the data well
assuming an adsorption free energy of −1.3 ± 0.2 kcal/mol
(red line in Figure 3b) indicating strong adsorption of the
hydrated proton.
Using the simulated density profiles (see Supporting

Information) we calculated the potential of mean force,
reflecting the free energy of adsorbed hydrated protons. To
identify the surface, we used both the instantaneous and the
average liquid interface description.48,49 The resulting free
energy profiles of the hydrated proton are shown in Figure 4a
and b. The simulation results reveal a large difference in the
free energy profiles; for the averaged interface description, an
adsorption free energy of ∼0.5 kcal/mol is found, consistent
with the value of 0.55 ± 0.25 kcal/mol obtained from a
previous reactive MD simulation.22 Yet, the instantaneous
interface gives a value of 1.0 ± 0.2 kcal/mol at the revPBE-D3
level of theory. The difference of the PMF with different
interface descriptions has previously been reported.21,22,50

To unveil the difference of the free energy values for
different descriptions, we computed the depth profile of the
water molecules with a free O−D group which was focused on
the SFG measurement by using the instantaneous and
averaged interface descriptions. This free O−D group is
defined using the geometrical relation of water molecules.51

Figure 4c shows that the depth profile within the instantaneous
interface description shows a very sharp distribution of water
molecules with the free O−D group, while the average
interface description shows an excessive broadening due to the
surface nanoroughnes.52 As such, the topmost layer of water
where a water molecule with a free O−D group is located can
be properly captured within the instantaneous liquid interface
description.
Here, a question is how such a hydrated proton can be stable

at the water−air interface. The role of the counterion for
stabilizing the H3O

+ ion has been argued.53−55 To examine the
correlation effect of these ions, we computed the radial

Figure 3. (a) SFG response at D2O−air interface for pure D2O and
D2O containing NaCl and DCl at different concentration ratios
averaged over three separate experiments. (b) Amplitude associated
with the “free” OD vibrations (a direct measure of the surface
density) as a function of the relative concentration of D3O

+ to Na+ in
the subphase. The data are normalized to the free OD response of
pure D2O (left data point). The red line is the fit obtained with eq 2.
Error bars denote variation among three different measurement sets.
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distribution functions for the H3O
+ ion and Cl−. The data are

displayed in Figure 4d. This shows that Cl− tends to be located
next to the H3O

+ ion, further stabilizing the H3O
+ species at

the surface compared with in bulk. This clearly indicates that
the counterions Cl− and H3O

+ are highly correlated at the
water−air interface. This is consistent with the previous
studies.53

■ CONCLUSION
We have characterized the nature of the hydrated proton
adsorbed at the water−air interface. Our experimental data,
together with theoretical calculations, are consistent with the
coexistence of the Eigen and Zundel moieties of the interfacial
proton. We experimentally find that the adsorption free energy
of the proton of ∼1.3 kcal/mol at the water−air interface is
substantially larger than 0.6 kcal/mol (kBT) at room
temperature, implying strong surface adsorption.

■ EXPERIMENTAL METHODS
SFG Measurements. In conventional SFG spectroscopy, an

infrared (IR) laser pulse was spatiotemporally overlapped with an 800
nm pulse at the sample surface and the reflected sum-frequency
response was detected. We used a mode-locked Ti:sapphire laser (Mai
Tai SP, Spectra-Physics) and a regenerative amplifier (Spitfire Ace,
Spectra-Physics) pumped with a Nd:YLF laser (Empower 45, Spectra-
Physics). The amplifier produces 800 nm pulses with 4.5 mJ power
and an ∼45 fs pulse width, at a 1 kHz repetition rate. From its output,
∼1.7 mJ are used to pump a commercial OPA (TOPAS-C, Light
Conversion) that mixes signal and idler in a AgGaAs2 to crystal and
produces tunable broad-band IR pulses. The IR pulses have a full

width at half-maximum (fwhm) of 450 cm−1 and an ∼5 μJ pulse
energy. The remainder of the amplifier output is spectrally narrowed
to 15 cm−1 fwhm using a Fabry−Perot etalon (SLS Optics Ltd.). The
output energy is ∼20 μJ. The diameter of the beams focused onto the
samples is 0.1−0.2 mm. The incident angles for the IR and visible
(800 nm) beams are 36° and 34°, respectively. The signal is collected
by a spectrograph (Acton, Princeton instruments) and detected with
an electron-multiplying charge-coupled device (EM-CCD) camera
(Newton, Andor instruments). The acquisition time is typically 5 to
10 min depending on the signal strength. All spectra in the presented
work are collected in SSP polarization (S: SFG, S: visible, P: IR),
unless otherwise noted. The data are normalized by the nonresonant
signal from z-cut quartz.

In the PS-SFG setup the IR and VIS beams are first focused onto y-
cut quartz to create the local oscillator. Subsequently, the transmitted
beams are refocused onto the sample surface using a concave mirror.
The LO is passed through a delay plate to introduce a time delay
relative to that of sample SFG. The angles of incidence of the IR and
visible beams are 47° and 62°, respectively. See more details in ref 56.

Simulation Protocols. AIMD simulations were carried out by
using the CP2K software package.57 We used a triple-ζ quality TZV2P
basis set and a charge density cutoff of 320 Ry for the plane wave. We
employed the revised PBE functional (revPBE58) combined with
Grimme’s empirical dispersion D3(0) correction.59 The choice of
these calculation methods arises from the recent evaluation of the
description of the interfacial water where we concluded that the
revBPE-D3(0) nicely reproduces the properties of bulk and surface
water among the generalized gradient approximation level of theory.60

The simulation cell of 16.3 Å × 16.3 Å × 44.1 Å contained 10 H+ and
Cl− ion pairs together with 160 water molecules. We obtained a total
of 10 × 50 ps trajectories, which were used for analyzing the structure
of the interface and compute the SFG signal. For classifying the

Figure 4. Simulated free energy profiles computed by using (a) averaged interface description and (b) instantaneous liquid interface description.
The error bars represent the standard deviation. A total of 20 colored data sets show the profiles obtained from individual trajectories. The solid
and dotted lines represent two types of water−air interface in the slab model. The average of the free energy in the range of 6 Å < |rz − rG| < 9 Å
was set to zero. (c) Simulated density profiles for instantaneous and average interface descriptions of the oxygen atoms associated with the free OD
groups. (d) Radial distribution functions between the oxygen atom of H3O

+ and Cl− ion at the surface and in bulk. Only oxygen atoms which are in
the range of |rz − rG| < 3.11 Å are considered for surface, whereas oxygen atoms in the range of |rz| < 3.11 Å are used for bulk.
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Zundel and Eigne structures, we used the definition of δ > 0.3 for
Eigen and δ < 0.1 for Zundel.1

For the SFG spectra calculation, we used the formula61
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∂
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i
denote the z-component of the transition

dipole moment and the xx-element of the transition polarizability of
the system with respect to the normal mode Qi, respectively. The
normal mode calculations were performed by using the revPBE-D3/
aug-cc-pVDZ level theory with the ORCA quantum chemistry
package.62 The free energy landscape (potential of mean force,
PMF) was computed from the density profile ρ(r) via
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= −r kT
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where ρ0 is the simulated bulk water density. The simulation details
are given in the Supporting Information.
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