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Malaria: a major international health 
burden

According to the WHO World Malaria Report 
of 2011, there were 216 million cases of malaria 
in 2010, with 655,000 deaths, 91% of which 
occurred in Africa, with 86% of the victims 
being children under the age of 5  years [1]. 
Despite a 25% decrease in mortality since 2000, 
one child still dies of malaria every minute. The 
disease is caused by four species of protozoan 
parasite of the genus Plasmodium that are specific 
to humans, namely Plasmodium falciparum, Plas-
modium vivax, Plasmodium malariae and Plasmo-
dium ovale. A fifth species, Plasmodium knowlesi, 
which primarily infects monkeys, has also been 
recognized as a zoonotic cause of human malaria 
in Indonesia [2]. Of these species, P. falciparum 
is the most deadly. All are transmitted by 
mosquitoes of the genus Anopheles.

Control and eradication of malaria relies on 
a multifaceted strategy. This involves preven-
tion of mosquito bites using screening meth-
ods, elimination of mosquitoes and treatment 
of infected individuals to eliminate the parasite 
from the host. Large-scale deployment of bed 
nets [3], reintroduction of DDT in some areas, 
such as Mozambique [4], and the introduction of 
artemisinin combination therapy (ACT) have all 
contributed to the significant progress made in 
the last decade in fighting malaria [5].

Drug resistance: an ominous threat
The first highly active synthetic antimalari-
als introduced after World War II were used 
either as monotherapies (e.g., chloroquine) or 
combinations targeting a single pathway (anti-
folates; e.g., sulfadoxine with pyrimethamine). 

This strategy eventually led to the emergence 
and widespread dissemination of drug-resistant 
parasites. Consequently, starting in the 1990s, 
new combination therapies in the form of ACTs 
were introduced. These consist of an artemis-
inin derivative, such as artesunate, artemether or 
dihydroartemisinin on the one hand, combined 
in a fixed dose with a 4-aminoquinoline, aryl 
methanol or a related derivative such as amodia-
quine, lumefantrine (Coartem®, Norvatis, Swit-
zerland), mefloquine, piperaquine (Euartesim®, 
MMV, Switzerland) or pyronaridine (Pyramax®, 
MMV) on the other. Currently, these ACTs are 
highly effective. However, ominous first signs of 
possible future resistance have begun to appear. 

Patients have been identified with prolonged 
parasite clearance times, resulting in artemis-
inin treatment failures in western Cambodia 
and western Thailand [6–8]. This appears to have 
occurred as a result of the use of artemisinin 
monotherapy [6]. At the same time, resistance 
to mefloquine is widespread [9], while some 
strains of chloroquine-resistant parasite are also 
cross-resistant to amodiaquine [10]. In addition, 
evidence suggestive of the possible development 
of lumefantrine tolerance, which is the first step 
towards resistance, has begun to emerge in east 
Africa, where Coartem is widely used [11]. While 
resistance to ACT may still be some time away, 
it is prudent that new antimalarials be devel-
oped against this possibility. Thus, consider-
able work continues to find new and improved 
antimalarials.

Quinolines & related antimalarials
Chloroquine, the archetypal synthetic quino-
line antimalarial, was also historically the most 
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important. Prior to the emergence of resistance, 
it was highly effective, generally well tolerated 
at appropriate doses, safe for use in pregnancy 
and inexpensive. Unfortunately, chloroquine-
resistant P. falciparum is now very widespread. 
Nonetheless, this has not led to the complete 
loss of this class of compound, because resistance 
is not coupled to the drug target itself. Indeed, 
the 4-aminoquinoline piperaquine has recently 
entered the clinic (in combination with dihydro-
artemisinin) [12], while another 4-aminoquino-
line, ferroquine, is in Phase IIb clinical trials 
[13]. In addition, the 4-aminoquinoline, amodia-
quine, and the quinoline methanol, mefloquine, 
as well as the aryl methanol, lumefantrine, are all 
currently crucial components of ACT.

These antimalarials are widely believed to act 
by inhibiting heme detoxification in the malaria 
parasite, a hypothesis that is best established in 
the case of chloroquine. The process of hemo-
globin digestion and heme detoxification is 
summarized in Figure  1. Hemozoin formation 

is the dominant fate of heme released into the 
digestive vacuole (DV), with at least 95% of the 
iron present in late trophozoites (32 h into the 
48‑h blood cycle) present as hemozoin [14]. The 
parasite also possesses an endogenous cytosolic 
Fe-superoxide dismutase and imports a host per-
oxiredoxin from the red blood cell into the para-
site cytosol [15,16]. These enzymes remove O

2
- and 

H
2
O

2
, both of which are probably produced in 

part during the oxidation of Fe(II)heme.
While it has long been known that anti

malarials such as chloroquine and quinine 
interact directly with Fe(III)heme [17,18], the 
first crystal structure of a drug–Fe(III)heme 
complex (that of halofantrine–Fe[III]heme), 
was only reported in 2008 (Figure 2A) [19]. It was 
demonstrated that this drug can directly bind 
to the Fe(III) center of Fe(III)heme via a depro-
tonated hydroxyl group. Based on this structure 
as a model, molecular mechanics were used to 
support a hypothesis that the relative biological 
activities of the four isomers of quinine against 
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Figure 1. A schematic representation of the process of hemoglobin degradation and 
hemozoin formation in Plasmodium falciparum. RBC cytoplasm is taken up into the malaria 
parasite via transport vesicles in an endocytotic process and delivered to the acidic digestive vacuole 
(~pH5) [86]. Hemoglobin is digested by a series of proteases: plasmepsins, HAP, falcipains and 
falcilysin [87–89]. The resulting peptides are ultimately hydrolyzed to amino acids. Currently, 
agreement about the details of this step has not been reached [90–92]. The toxic heme released 
during hemoglobin digestion is oxidized to the Fe(III) state and then incorporated in less-toxic 
hemozoin in a process associated with neutral lipids [93,94], represented in the figure by the elliptical 
structure enclosing the hemozoin crystals. 
HAP: Histoaspartic protease; RBC: Red blood cell.
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P. falciparum could be accounted for on the 
basis of an additional interaction: a charge-
assisted hydrogen bond between a protonated 
amine nitrogen atom in the side chain of the 
drug and one of the heme propionate groups. 
This interaction has recently been confirmed in 
crystal structures of quinine–Fe(III)heme and 
quinidine–Fe(III)heme (Figure 2B & 2C) [20].

By contrast, the structures of 4-aminoquino-
line–Fe(III)heme complexes remain less well 
understood, despite various efforts to use nuclear 
magnetic resonance techniques to elucidate 
them [21–29]. In addition, the precise relationship 
between heme binding and hemozoin inhibition 
remains unclear. Early postulates involved stoi-
chiometric solution complexes of antimalarials 
with Fe(III)heme [30] and included suggestions 
that drugs act by increasing Fe(III)heme solu-
bility, thus preventing aggregation [30,31]. More 
recently, however, an alternative suggestion by 
Buller et al. has enjoyed considerable attention 
[32]. These authors, among others, have sug-
gested that this class of drug can dock into the 
fastest-growing face of the hemozoin crystal, 
as well as inhibit growth of some of the other 
faces [32–35]. This hypothesis has been able to 
mathematically account for the effects of chloro-
quine and quinidine on the kinetics of synthetic 
hemozoin (b-hematin) formation [36]. In addi-
tion, it can also explain how substoichiometric 
quantities of a drug can inhibit hemozoin forma-
tion and provides a well-defined binding site for 
these compounds. To date, however, this model 
does not appear to have been directly used to 
try to design new inhibitors using a rational 
approach, probably because conventional 

drug-docking programs are not able to handle 
crystal surfaces well.

Despite ample evidence that quinoline and 
related antimalarials inhibit b-hematin for-
mation under abiotic and biomimetic condi-
tions, direct evidence of inhibition of hemozoin 
formation in the parasite itself is much more 
sparse. Chloroquine and, more recently, ruthe-
noquine, an analog of the 4-aminoquinoline 
ferroquine in which the ferrocene moiety is 
replaced by ruthenocene, have been shown to 
accumulate in the parasite DV in close prox-
imity to hemozoin [37,38]. Smaller hemozoin 
crystals and a premature halt in their growth 
within the parasite DV has been observed in the 
presence of chloroquine [39]. Finally, at 120 nM 
and 12‑h incubation times, chloroquine causes 
a build-up of transport vesicles in the parasite, 
which contain undigested Hb [40], indicating 
that the endocytotic feeding process is inhib-
ited. Recently, a fractionation strategy has been 
applied together with electron spectroscopic 
imaging to chloroquine-treated P.  falciparum 
[41]. This has clearly shown a dose-dependent 
increase in free Fe(III)heme occurring together 
with the decrease in hemozoin. Undigested Hb 
only seems to appear at higher doses of chlo-
roquine, and the levels of free Fe(III)heme are 
closely correlated with the parasite survival 
curve (Figure 3). Electron spectroscopic imaging 
using electron energy loss spectroscopy clearly 
showed a translocation of iron to the parasite 
cytoplasm (Figure 4A & 4B). Since virtually all of 
the iron present is heme iron and there is little 
undigested Hb at the dose used, this is likely to 
be the location of the free Fe(III)heme. There 

Figure 2. Crystal structures of heme–antimalarial drug complexes. (A) Fe(III)heme–
halofantrine, (B) Fe(III)heme–quinine and (C) Fe(III)heme–quinidine. All three drugs possess benzylic 
alcohol groups that coordinate to the iron center of the heme molecule as deprotonated alkoxides. 
The aromatic ring lies parallel to the porphyrin ring in a p-stacking arrangement. In the cases of the 
quinidine and quinine complexes, a charge-assisted hydrogen bond (salt bridge) occurs between one 
of the heme propionate groups and the protonated quinuclidine tertiary amino group. 
The structural models shown here were created using data taken from [19,20].
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is also evidence that chloroquine causes a dis-
ruption in the growth of the hemozoin crystals, 
which show evidence of a mosaic structure with 
grain boundaries (Figure 4C). Thus, in combina-
tion with earlier work, this study provided strong 
evidence that chloroquine does indeed act by 
inhibiting hemozoin formation in the parasite. 
Preliminary evidence also showed an increase in 
free Fe(III)heme and a decrease in hemozoin at 
2.5× IC

50
 for a number of other drugs, including 

amodiaquine, mefloquine and lumefantrine, as 

well as artesunate. However, it must be empha-
sized that further work would be required to 
substantiate whether the observations made 
with these other drugs are causal or the effect 
of inhibiting other targets.

Despite ongoing efforts to understand the 
mechanism of action of 4-aminoquinolines 
and the structures of their complexes with 
Fe(III)heme, the existence of structure–activ-
ity relationship data has substantially aided 
the task of designing new compounds in this 
class. Four studies in the late 1990s and early 
2000s provided a detailed structure–activity 
model for the 4-aminoquinolines [42–45]. This 
is summarized in Figure 5. Further studies have 
revealed that alterations to the alkyl side chain 
of the quinoline can abolish cross-resistance with 
chloroquine [46]. Indeed, the structure of the side 
chain appears to be the primary determinant of 
resistance, with the quinoline ring itself having, 
at most, a minor role in cross-resistance [47–49]. 
This has encouraged the design of new quino-
line antimalarials with the aim of overcoming 
resistance.

Chloroquine resistance & PfCRT
As mentioned above, P. falciparum that are resis-
tant to chloroquine or other quinolines exhibit 
no known changes in the process of heme detoxi-
fication. Rather, resistance arises from mutations 
and changes in expression levels of membrane 
proteins located in the DV membrane. The 
principal determinants of chloroquine resistance 
are mutant forms of a protein known as PfCRT 
[50,51]. A second protein, PfMDR1, has also been 
implicated in resistance to quinoline antimalari-
als [52,53]. Mutations in this protein are associated 
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Figure 3. Relationship between detergent-soluble (free) Fe(III)heme and 
parasite survival in chloroquine-treated Plasmodium falciparum. In 
untreated CQ-sensitive D10 strain parasites, the basal level of free Fe(III)heme is 
approximately 4% of the total parasite heme. This increases with CQ dose, reaching 
a maximum of approximately 16% (closed circles). The free Fe(III)heme curve is a 
mirror image of the parasite survival curve (open circles), crossing close to the 
IC50 value.  
CQ: Chloroquine. 
Reproduced with permission from [41] © American Chemical Society (2013).

Figure 4. Effects of chloroquine on iron distribution in Plasmodium falciparum and on hemozoin crystals. (A) Distribution of 
iron in a control parasite determined by electron energy loss spectroscopy. Left image: transmission electron micrograph. Right image: 
iron electron spectroscopic image. Since the total iron content of the cell is indistinguishable from the total heme content, the iron 
distribution coincides with heme distribution. Scale bars = 2 µm. (B) Parasite treated with 30 nM chloroquine for 32 h. Note the 
redistribution of iron into the parasite cytoplasm (star). Scale bars = 2 µm. (C) Visible grain boundaries in hemozoin crystals from 
parasites treated with chloroquine. In these images, the long dashed lines represent the red blood cell membrane, the short dashed lines 
represent the parasite plasma membrane and the dotted lines represent the digestive vacuole membrane. 
er: Possible endoplasmic reticulum; F: Digestive vacuole; H: Hemozoin; m: Mitochondrion; N: Nucleus; P: Parasite; R: Red blood cell. 
Reproduced with permission from [41] © American Chemical Society (2013).
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with mefloquine resistance in field isolates, and 
an increased copy number has previously been 
associated with decreased sensitivity to quinine. 
PfMDR1 is not thought to be directly responsi-
ble for chloroquine resistance, but mutant forms 
of this protein can affect chloroquine sensitivity 
in the presence of mutant forms of PfCRT [54], 
and there is evidence of a complex interaction 
between PfCRT and PfMDR1 [55]. In addition, 
PfMDR1 has recently been implicated in the 
transport of chloroquine and other quinolines 
into the parasite DV [56] and has subsequently 
also been shown to bind to a selection of these 
drugs [57]. Furthermore, evidence from a cross 
of two different drug-resistant strains (GB4 
and 7G8) has indicated that quinolines actu-
ally inhibit transport of the natural substrates 
of PfCRT and PGH-1 (the protein encoded 
by PfMDR1) [58]. A third protein, PfMRP1, 
located in the parasite plasma membrane, has 
also been suggested to play a role in chloroquine 
resistance, but in this case, the evidence remains 
uncertain [59,60]. Notwithstanding the role of 
these other membrane proteins, a PfCRT muta-
tion is accepted to be the major factor involved 
in chloroquine resistance.

PfCRT is predicted to be an integral mem-
brane protein localized to the DV membrane. It 
is believed to be a member of the drug metabolite 
transporter family of proteins [61]. Chloroquine-
resistant strains of the parasite exhibit several 
mutations in this protein (Figure 6) [62], but all nat-
urally occurring chloroquine-resistant mutants 
exhibit one crucial mutation, that of Lys-76 to 
Thr-76 (K76T). The additional mutations to 
K76T are thought to counteract the loss of func-
tion that would occur in the case of the K76T 
mutation alone [63]. Studies conducted using 
Xenopus  laevis oocytes injected with mRNA 
encoding PfCRT have convincingly shown that 
this protein transports chloroquine. These find-
ings support the hypothesis that decreased activ-
ity of chloroquine stems from its extrusion by 
PfCRT from the DV. This effectively lowers the 
concentration of chloroquine in this organelle, 
thus permitting hemozoin formation to resume 
unhindered [64]. Chloroquine is also thought to 
bind to PfCRT, and a possible site of interac-
tion has been proposed based on photoaffinity 
labeling [65]. Several recent and comprehensive 
reviews covering PfCRT and chloroquine resis-
tance are available, and readers are encouraged 
to consult them for in-depth discussion [62,66–68].

It has been known for two and a half decades 
that verapamil, a calcium channel blocker, 
can restore the activity of chloroquine in 

several resistant laboratory strains of P. falci-
parum [69,70]. Subsequent to this initial discov-
ery, many other compounds have been found 
to have similar chemosensitizing properties. 
These include other calcium channel blockers, 
including analogs of verapamil and nifedipine; 
dibenzazepines and their analogs, which include 
imipramine; phenothiazines; dihydroanthra-
cenes; dibenzylmethylamines (dibemethins); 
plant-derived alkaloids; and others, including 
primaquine [71]. A common feature of nearly 
all of these compounds is a basic amino group 
that is expected to be protonated at the pH of 
the parasite DV. These compounds are believed 
to act by inhibiting chloroquine transport by 
PfCRT, and this has been directly demonstrated 
in the case of verapamil, primaquine and several 
dibemethins in the Xenopus oocyte system [64,72]. 
It is not known whether these compounds act 
as competitive or noncompetitive inhibitors of 
chloroquine transport.

Two significant quantitative structure–activ-
ity relationship studies have been carried out on 
chloroquine chemosensitizers. One exclusively 
investigated a series of dihydroanthracene deriv-
atives with rigid bicyclic structures [73]. Based on 
this study, the authors suggested that these mol-
ecules interact with a serine (or threonine) and 
an aspartate (or glutamate) side chain in PfCRT, 
which are separated by 9.2 Å. In a second study, 
which has turned out to be more influential, a 
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Figure 5. Structure–activity relationships in chloroquine. 
The 4-aminoquinoline group is the smallest Fe(III)heme-binding fragment [43]. 
Replacement of the quinoline ring N atom with a CH group abolishes interaction 
with Fe(III)heme, as well as hemozoin inhibitory activity and biological activity [45]. 
Replacement of the 4-amino NH group with a CH2 group weakens Fe(III)heme 
binding and also abolishes hemozoin inhibition and biological activity [45]. The 
Cl atom is necessary for the inhibition of hemozoin formation. It can be replaced 
with other electron-withdrawing hydrophobic groups [44]. The tertiary N atom in 
the side chain is important for accumulation in the parasite digestive vacuole 
through pH trapping, and it usually improves activity [43]. Analogs are known in 
which this N atom is replaced with a CH, retaining biological activity [42].
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series of imipramine analogs were investigated, 
leading to a pharmacophore model consisting 
of two suitably positioned aromatic groups and 
a weak base amino group (Figure 7) [74]. The lat-
ter study has underpinned the design of a new 
type of antimalarial that incorporates the fea-
tures required for both an active antimalarial 
and a resistance-reversing chemosensitizer. 

These dual-function compounds, consisting 
of so-called ‘reversed chloroquines’ and related 
compounds, are the subject of the remainder of 
this review.

Reversed chloroquines & related 
compounds

Dual-function antimalarials with both chloro-
quine-like activity (hemozoin inhibition) and 
resistance-reversing activity form a relatively 
new class of compounds. The first example, 
a so-called reversed chloroquine (Compound  1), 
was reported in 2006 [75]. This consisted of a 
4-amino-7-chloroquinoline moiety linked to the 
N atom of imipramine via a three-carbon alkyl 
linker group (Figure 8A). Compound 1 was shown to be 
active in vitro against both the chloroquine-sen-
sitive D6 and chloroquine-resistant Dd2 strains 
of P. falciparum. It was also shown to associate 
with Fe(III)heme, both at pH 5.7 and 7, with 
log association constant (logK ) values of 5.48 
(comparable to chloroquine, with values of 5.48 
and 6.00, respectively, at these two pH values). 
However, Compound  1 itself was not considered 
suitable for further drug development owing to 
its high lipophilicity (log distribution constant 
[clogP] = 8.9). In a follow-up study, Peyton and 
coworkers investigated the effects of the linker 
and head groups in the activity of a range of 
reversed chloroquines [76]. In one study, the head 
group was altered to a diphenylamine or diben-
zylamine, while the aliphatic portion of the side 
chain and linker chain were varied in length in 
an effort to reduce lipophilicity [76]. All of these 
compounds demonstrated strong activity against 
parasites cultured in vitro (IC

50
 <120 nM), with 

only minor differences between chloroquine-
sensitive and -resistant D6 and Dd2 strains. 
Larger differences were seen in cytotoxicity, with 
molecules possessing amide or piperazine link-
ers exhibiting the lowest toxicity. Nonetheless, 
all of the compounds tested exhibited well over 
100-fold selectivity against malaria parasites. 
Closer scrutiny of the IC

50
 values showed that a 

dibenzylamine head group usually gave rise to a 
more active compound than the corresponding 
compound with a diphenylamine head group, and 
that replacement of the linear diamine linker with 
a piperazine group also generally decreased activ-
ity. On the other hand, introduction of an amide 
head group was tolerated and permitted a decrease 
in clogP to values comparable to chloroquine.

In a subsequent and more comprehensive 
study, this group made further variations to this 
chemotype, replacing the diphenyl- or dibenzyl-
amine head group with others such as benzhydryl, 

N

N

Figure 7. Structure–activity relationships 
illustrated in the chloroquine 
chemosensitizer imipramine. The crucial 
features are two suitably positioned aromatic 
rings and a hydrogen bond acceptor (or donor 
in the protonated species). 
Data taken from [49,74].

Figure 6. Sites of mutations in PfCRT 
associated with chloroquine resistance. 
Sites of known mutations in PfCRT are shown 
on a structural model of the protein. The model 
is based on weak homology with Escherichia 
coli multidrug resistance transporter (EmrE). 
The reliability of this structural model remains 
untested. Side chains of residues at sites of 
mutations implicated in chloroquine resistance 
are shown as space-filling spheres, and K76 is 
marked by an arrow. 
The structural model of the protein shown here 
was created using data taken from [95].
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adamantyl, triphenylmethyl and pyridine-2-yl 
methyl groups [77]. Benzhydryl head groups with 
substituents were also investigated. Interestingly, 
the variations in head group had a relatively 
small influence on activity against either the 
D6 chloroquine-sensitive or Dd2 chloroquine-
resistant strains of the parasite, but considerably 
more variation was observed in activity against 
the 7G8 chloroquine-resistant strain. Indeed, in 
many of the derivatives, activity against the 7G8 
strain was four- to five-fold weaker than against 
the D6 or Dd2 strains. This is notable in view 
of the fact that the 7G8 strain, which originates 
from South America, differs from the Old World 
D6 and Dd2 strains in as much as verapamil has 
only weak chemosensitizing activity on it. This 
perhaps supports the proposal that the activities 
of these compounds relates to the presence of a 
resistance-reversing pharmacophore. Of particu-
lar note, however, is a derivative, Compound 2, in 
which the phenyl rings in the head group were 
replaced with ortho-pyridyl groups (Figure 8B) [77]. 
This compound was equipotent against all three 
of the tested strains and is substantially less lipo-
philic (clogP = 3.6) than the other compounds, 
a factor that is important in improving solubility 
and potentially lowering systemic toxicity. This 
compound represents a potential lead compound 
for further development. Indeed, it was found 
to possess good oral activity in the Plasmodium 
berghei mouse model of malaria, with four doses 
at 30 mg/kg reducing parasitemia by more than 
99% and curing two out of three treated mice.

A selection of these reversed chloroquines were 
investigated for their Fe(III)heme binding and 
b-hematin inhibiting activities. They were found 
to exhibit dissociation constant values (K

d
) rang-

ing from 8.6 to 1.0 µM (logK = 5.1–6.0), simi-
lar to that of chloroquine with a K

d
 of 4.0 µM 

(logK  =  5.4). The IC
50

 values for b-hematin 
inhibition (1.6–14 µM) were lower than that 

of chloroquine (24  µM), and a significant 
(R2  =  0.66) correlation between b-hematin 
inhibitory IC

50
 and in vitro antimalarial activ-

ity against P. falciparum was observed. Finally, 
it has also been demonstrated that these com-
pounds could inhibit b-hematin formation and 
decrease hemozoin formation within the parasite 
cell. The most active compound was also a more 
potent hemozoin inhibitor than Compound 1 [77].

Consideration of the structures of these 
reversed chloroquines in light of known struc-
ture–activity relationships for active hemozoin-
inhibiting quinolines, as well as resistance-revers-
ing chemosensitizers, permits rationalization of 
their structure–activity relationships (Figure 9). 
This approach was subsequently used in the 
design of other resistance-reversing antimalarials. 

Dihydropyrimidinone-containing 
reversed chloroquines & dual-function 
acridones
Other studies have built on the concept of 
reversed chloroquines. Dihydropyrimidinones 
are a well-known class of calcium channel 
blockers. Similar to verapamil, they are capable 
of chemosensitizing multidrug-resistant can-
cer cells. These molecules have been attached 
to the 4-amino-7-chloroquinoline structure to 
produce a series of compounds (e.g., Compound 3 
in Figure 10A) with strong activity against chlo-
roquine-resistant and -sensitive parasites [78]. 
Interestingly, these compounds do not have 
basic N atoms in the side chain and therefore do 
not conform to the more commonly observed 
structure–activity relationship model.

Tricyclic heteroaromatics, especially pheno-
thiazines such as chlorpromazine (Compound 4), 
are well-known chloroquine chemosensitizers. 
Furthermore, it has been demonstrated that chlor-
promazine (Figure 10B) can be modified to produce 
an analog (Compound 5) with antimalarial activity 
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Figure 8. Examples of reversed chloroquines. (A) The prototype compound reported by Peyton and coworkers consisting of a 
4-amino-7-chloroquinoline group attached to an imipramine molecule (Compound 1) [75]. (B) A subsequently designed analog (Compound 2) 
with improved water solubility and improved oral bioavailability from the same group [76].
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by the introduction of an additional basic amino 
group (Figure 10C) [49]. Kelly et al. later showed 
that the related tricyclic aromatic acridones (e.g., 
Compound 6) also exhibit chloroquine chemosen-
sitizing activity (Figure  10D) [79]. Subsequently, 
these authors went on to introduce a further weak 
base-containing side chain onto this scaffold to 
produce a dual-function compound (Compound 7) 

that exhibited antimalarial activity (Figure 10E) [80]. 
This compound was shown to accumulate in the 
parasite DV by confocal fluorescence microscopy 
and to inhibit hemozoin formation. Isobolograms 
were used to demonstrate that it exhibited an addi-
tive relationship when mixed with chloroquine in 
a chloroquine-sensitive P. falciparum strain (D6), 
but was synergistic in the chloroquine-resistant 
Dd2 strain. This observation is consistent with 
that expected if the compound acts as a chemo-
sensitizer in chloroquine-resistant parasites and 
also acts as an antimalarial in a manner similar 
to chloroquine. This compound exhibited excel-
lent activity against chloroquine-sensitive and 
-resistant parasites and was active in vivo.

Dibemequines
A recent addition to the class of dual-function 
quinolines that have resistance-reversing activ-
ity is the dibemequines [81], consisting of a 
4-amino-7-chloroquinoline with a dibemethin 
(dibenzylmethylamine) side chain. These were 
designed to fulfill the structure–activity relation-
ship criteria of both an active hemozoin-inhib-
iting quinoline antimalarial and a chloroquine 
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Figure 9. Rationalization of the structure–activity relationships in the 
reversed chloroquines. The parts of the molecule highlighted are the 
4-aminoquinoline moiety required for Fe(III)heme binding, the Cl atom required for 
hemozoin inhibition, the basic tertiary N atom that aids accumulation in the 
digestive vacuole (see Figure 5) and the two aromatic rings and hydrogen bond 
acceptor required for a chloroquine chemosensitizer (see Figure 7).
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Figure 10. Other reversed chloroquines and related compounds. (A) An example of a reversed chloroquine with a 
dihydropyrimidinone side chain (Compound 3) [78]. Dihydropyrimidinones are known calcium channel blockers that reverse drug resistance 
in cancer cells. Unlike the other reversed chloroquines described here, these molecules lack a basic N atom in the side chain. (B) The 
phenothiazine chlorpromazine (Compound 4) is a chloroquine chemosensitizer in chloroquine-resistant parasites and (C) can be modified to 
produce an active antimalarial by the introduction of an additional basic N atom (Compound 5) [49]. (D) A chloroquine-chemosensitizing 
molecule (Compound 6) built from a related acridone ring [79]. (E) A dual-function acridone (Compound 7) that both reverses chloroquine 
resistance and is an active antimalarial [80].
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chemosensitizer (Figure 11). The dibemethin side 
chains themselves were found to reverse chloro
quine resistance and to inhibit chloroquine 

transport by PfCRT [72]. The crystal structure of 
the prototype dibemequine (Compound 8) demon-
strated the structural requirements for a resistance 
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Figure 11. Dibemequines, a new class of antimalarial that inhibits chloroquine transport by PfCRT. (A) The crystal structure of 
the prototype dibemequine compound (Compound 8). (B) Inhibition of 3H-CQ transport into Xenopus oocytes via PfCRT brought about by 
Compound 8. The open circles represent baseline uptake in the presence of PfCRTCQS and the closed circles represent uptake in the presence 
of the PfCRTCQR. (C) Analogs of the prototype compound with meta- (Compound 9) and para- (Compound 10) substituents on the central 
phenyl ring. The antimalarial and resistance-reversing structural elements are highlighted in the case of Compound 9. (D) Observed versus 
predicted activity of the dibemequine series according to the quantitative structure–activity relationship multiple linear correlation 
equation log(IC50) = 0.95log(BHIA50) – 0.35 pos – 3.87log(VAR) + 10.24, where ‘BHIA50‘ is the IC50 for b-hematin formation, ‘pos’ is a 
structural constant describing the arrangement around the central phenyl ring (2, 3 and 4 for ortho-, meta- and para-substituents as in 
Compounds 8, 9 & 10, respectively) and ‘VAR’ is the predicted vacuolar accumulation ratio, based on pKa values of the compounds. The 
equation indicates that activity increases with increasing accumulation in the parasite digestive vacuole, with increasing strength of 
b-hematin inhibition and with the para-substituted compounds being most active and the ortho-substituted compounds being least 
active.  
CQ: Chloroquine; PfCRTCQR: Chloroquine-resistant mutant PfCRT; PfCRTCQS: Wild-type PfCRT. 
Reproduced with permission from [81] © American Chemical Society (2011).
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reverser, with the quinoline group folded around 
to establish an approximately triangular relation-
ship between the quinoline N atom and the two 
phenyl groups of the dibemethin side chain.

This compound was shown to directly 
inhibit chloroquine transport by PfCRT in the 
Xenopus oocyte model (Figure 11B). Two analogs 
(Compounds 9 & 10) were also shown to exhibit such 
activity (Figure  11C). These represent the first 
blood-stage antimalarially active compounds for 
which direct evidence of the inhibition of chlo-
roquine transport by PfCRT has been provided. 
Isobologram analysis of Compound 10 revealed an 
additive relationship with chloroquine in the 
chloroquine-sensitive D10 strain of parasite, 
but a synergistic relationship in the chloroquine-
resistant Dd2 strain. This strongly supported the 
hypothesis that this class of compound inhibits 
PfCRT in the parasite under conditions in which 
it inhibits parasite growth. These compounds 
were also shown to inhibit b-hematin forma-
tion, thus also supporting the hypothesis that 
their activity against malaria parasites is linked 
to inhibition of hemozoin formation. Indeed, 
their biological activity against P. falciparum cul-
tured in vitro was found to be correlated with 
b-hematin inhibitory activity, albeit in combina-
tion with the predicted DV accumulation ratio 
and substitution pattern in the dibemethin side 
chain, with F = 9.70 > F0.95 = 8.45 (Figure 11D). 

The dibemequines tested for cytotoxicity, 
which included the three most active deriva-
tives, were found to have low cytotoxicity, with 
selectivity indices well above 1000. The whole 
series was found to show little cross-resistance 
with chloroquine in the K1 strain of chloro-
quine-resistant parasite. Compound 10 was also 
highly active against the K1, Dd2, W2 and 
RSA11 strains of chloroquine-resistant para-
sites, with resistance indices below 2. The three 
prototype compounds (Compounds 8, 9 & 10) also 
had good in vivo antimalarial activity in the 
P. berghei mouse malaria model. Two of the 
compounds were curative when using three or 
four oral doses at 100 mg/kg, with parasites 
being undetectable 30 days after treatment and 
with 100% of the mice surviving. This series 
of compounds again illustrates the potential 
of the dual-function approach to chloroquine 
resistance-reversing antimalarially active 
compounds. In comparison with the initially 
reported reversed chloroquine compounds, 
the clogP values of this series were consider-
ably lower (5.42–6.19) and were comparable 
to chloroquine (clogP  =  5.1). However, less 
hydrophobic compounds would still be more 

desirable and represent a priority for any further 
development of this series.

Future perspective & challenges
Several dual-function quinolines designed 
to exhibit both antimalarial and chloroquine 
resistance-reversal properties have been made 
that exhibit good in vivo activity, have low cyto-
toxicity and have been shown by isobologram 
analysis to work synergistically with chloro-
quine, supporting the hypothesis that they do 
indeed inhibit chloroquine transport by PfCRT. 
In addition, in at least one group, the dibe-
mequines, inhibition of the transport of chlo-
roquine by PfCRT in the Xenopus oocyte has 
been directly demonstrated. In a review, Peyton 
has also reported that similar activity has been 
observed, but not yet published in the case of the 
reversed chloroquines [82]. These compounds 
have been shown to exhibit strong in vitro anti-
malarial activity against a substantial number 
of chloroquine-sensitive and -resistant parasite 
strains, with no significant cross-resistance with 
chloroquine. Thus, in many respects, these com-
pounds have excellent properties for further 
development. However, there are some serious 
obstacles that will need to be overcome.

Weak base compounds, particularly hydro-
phobic weak bases, frequently exhibit inhibitory 
activity against hERG, a potassium channel 
found in cardiac muscle. This can lead to pro-
longed QT intervals and potentially fatal heart 
arrhythmias [83]. Indeed, in the case of at least 
one antimalarial drug, halofantrine, this prob-
lem has actually been encountered clinically 
[84]. Unfortunately, hERG toxicity is difficult 
to predict with certainty. Nonetheless, Gleeson 
has carried out a principal components analysis 
of approximately 30,000 compounds for which 
absorption, distribution, metabolism, excretion 
and toxicity data had been collected at Glaxo
SmithKline and found that while there is a 
greater potential for hERG liability in basic mol-
ecules than in acidic or neutral ones, the liability 
is generally much reduced if the compound has 
a molecular weight below 400 and a calculated 
cLogP below 4 [85]. Indeed, this also improves 
druggability in a number of other ways. For 
example, it improves solubility, permeability and 
volume of distribution, decreases protein bind-
ing and lowers the potential of the compound 
to inhibit cytochrome P450. As noted above, 
Peyton and coworkers have already produced 
reversed chloroquines with much improved 
cLogP values [77]. A dibemequine analog has 
also been produced with a cLogP well below 4 
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and a molecular weight below 400 [Egan TJ et al., 

Unpublished Data]. While it has not yet been dem-
onstrated that any of these compounds actually 
have reduced hERG liability, it does at least sug-
gest that improvement is possible with this class 
of compound.

A second challenge relates to the mechanism 
of inhibition in the mutant PfCRT. It is not cur-
rently known whether these compounds inhibit 
chloroquine transport competitively or noncom-
petitively. They could bring about inhibition 
either by themselves being transported in pref-
erence to chloroquine or by binding to PfCRT 
and blocking chloroquine transport. The lat-
ter seems more likely, since one would expect 

resistant parasites to be resistant to the dual-
function molecule if it were transported out of 
the DV more efficiently than chloroquine. If 
used as monotherapies, these compounds might 
have an increased risk of rapid development of 
resistance because of their ability to bind to 
chloroquine-resistant mutants of PfCRT. It is 
possible that point mutations may then lead 
from binding to transport. This potential prob-
lem would likely be lessened by use of combina-
tion therapy. In addition, with the exception of 
one group of reversed chloroquines, the activi-
ties of these compounds against South Ameri-
can strains such as 7G8, with reduced sensitivity 
to verapamil resistance reversal, have not been 

Executive summary

Malaria & resistance to antimalarials
�� Malaria is responsible for the deaths of over 600,000 people a year, approximately 90% of them in Africa.
�� Resistance to existing drugs and evidence of delayed parasite clearance with artemisinins, which is currently the most important class of 

antimalarial, is a major cause for concern.
�� Continued discovery of new antimalarials is an important strategy.

Quinoline antimalarials & their mechanism of action
�� Historically, the quinolines have been one of the most important classes of antimalarial drug.
�� They are known to interact with Fe(III)heme. Recently, crystal structures of the Fe(III)heme complexes of the quinoline methanols, 

quinine and quinidine and the related aryl methanol, halofantrine, have been reported.
�� Chloroquine is believed to act by inhibiting the incorporation of Fe(III)heme, released when the parasite digests host hemoglobin, into 

hemozoin, an insoluble crystalline form of Fe(III)heme.
�� Recent work has shown that chloroquine causes a dose-dependent increase in free Fe(III)heme and a decrease in hemozoin in treated 

parasites that is correlated with parasite survival. In addition, chloroquine treatment has been shown to redistribute heme into the 
parasite cytoplasm and disrupt the hemozoin crystal lattice.

Chloroquine resistance, PfCRT & chloroquine chemosensitizers
�� Chloroquine resistance is now widespread.
�� Such resistance is largely attributable to mutations in a protein, PfCRT, found in the membrane of the digestive vacuole where 

hemoglobin digestion takes place.
�� A mutant form of PfCRT from chloroquine-resistant parasites has been shown to directly transport chloroquine in Xenopus laevis 

oocytes.
�� A variety of compounds have been discovered that chemosensitize chloroquine-resistant parasites to chloroquine. These are often 

referred to as resistance reversers.

Reversed chloroquines & dual-function compounds that inhibit parasite growth & chloroquine transport by PfCRT
�� Combination of a 4-amino-7-chloroquinoline with an imipramine-like group led to the first example of a putative dual-function 

‘reversed chloroquine’.
�� Subsequent work has led to improvements in water solubility and oral bioavailability of this class of compound.
�� Reversed chloroquines have been shown to interact with Fe(III)heme and inhibit parasite hemozoin formation.
�� New reversed chloroquine-like molecules have been discovered, including dual-function acridones, reversed chloroquines containing a 

dihydropyrimidinone group and dibemequines.
�� Dibemequines inhibit b-hematin formation and have been shown to directly inhibit chloroquine transport by PfCRT.
�� The dibemequines have been shown to maintain activity against a range of chloroquine-resistant parasite strains, to exhibit little 

cytotoxicity and to be curative for mouse malaria.

Future perspective
�� Dual-function antimalarials that inhibit chloroquine transport by PfCRT are innovative compounds that have been shown to have good 

activity, including oral activity in mice.
�� Obstacles to future development do, however, exist. These include potential for hERG toxicity, the possibility of increased potential for 

the development of resistance resulting from interaction with PfCRT and the need to compete with numerous other quinoline 
antimalarials.
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explored. Lack of activity against such strains 
is potentially a risk factor for these compounds.

The final and probably most difficult hurdle 
is not a technical one. Currently, as noted ear-
lier, a number of new quinolines and related 
compounds are in development. In addition, 
there are several such compounds in current 
use. Obtaining the necessary support to develop 
yet another set of quinoline compounds under 
these circumstances is likely to be a major chal-
lenge and probably represents the single biggest 
hurdle to further development of this class of 
compound.

Despite the challenges noted above, the dual-
function antimalarials that act against both hemo-
zoin formation in the parasite and chloroquine-
resistant mutants of PfCRT represent a unique 
series of molecules with considerable potential 
as antimalarials. Combinations with existing 
quinolines and related compounds, including 

chloroquine, amodiaquine and quinine, which 
are all thought to be transported by PfCRT, are 
likely to result in considerably enhanced activi-
ties in drug-resistant strains. In common with 
the other quinolines, they are readily amenable 
to synthesis and are potentially cheap to produce. 
In this regard, further investigation of this class 
of compound is well justified.
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