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Abstract

Introduction
To combat and mitigate the transmission of the SARS-CoV-2 virus, reducing the number of
social contacts within a population is highly effective. Non-pharmaceutical policy interventions,
e.g. stay-at-home orders, closing schools, universities, and (non-essential) businesses, are expected
to decrease pedestrian flows in public areas, leading to reduced social contacts. The extent to
which such interventions show the targeted effect is often measured retrospectively by surveying
behavioural changes. Approaches that use data generated through mobile phones are hindered by
data confidentiality and privacy regulations and complicated by selection effects. Furthermore, access
to such sensitive data is limited. However, a complex pandemic situation requires a fast evaluation
of the effectiveness of the introduced interventions aiming to reduce social contacts. Location-based
sensor systems installed in cities, providing objective measurements of spatial mobility in the form
of pedestrian flows, are suited for such a purpose. These devices record changes in a population’s
behaviour in real-time, do not have privacy problems as they do not identify persons, and have no
selection problems due to ownership of a device.

Objective
This work aimed to analyse location-based sensor measurements of pedestrian flows in 49
metropolitan areas at 100 locations in Germany to study whether such technology is suitable for the
real-time assessment of behavioural changes during a phase of several different pandemic-related
policy interventions.

Methods
Spatial mobility data of pedestrian flows was linked with policy interventions using the date as a
unique linkage key. Data was visualised to observe potential changes in pedestrian flows before or
after interventions. Furthermore, differences in time series of pedestrian counts between the pandemic
and the pre-pandemic year were analysed.

Results
The sensors detected changes in mobility patterns even before policy interventions were enacted.
Compared to the pre-pandemic year, pedestrian counts were 85% lower.

Conclusions
The study illustrated the practical value of sensor-based real-time measurements when linked
with non-pharmaceutical policy intervention data. This study’s core contribution is that the
sensors detected behavioural changes before enacting or loosening non-pharmaceutical policy
interventions. Therefore, such technologies should be considered in the future by policymakers for
crisis management and policy evaluation.
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Introduction

Using sensor data to develop real-time indicators for official
statistics is currently an active field of research within
National Statistical Offices (NSIs) and in disciplines such
as the social sciences [1–5]. Several pilots and applications
to integrate big data, including sensor data, in statistical
production have been developed and conducted within the last
years. These included job vacancies, enterprise characteristics,
smart energy, tracking ships, financial transactions, earth
observation, mobile networks, and tourism statistics [6, 7].
Compared to survey or administrative data, the added value
of sensor data is the accuracy of the measurements and its
potential timeliness [8, 9]. The COVID-19 pandemic has shown
that NSIs and social scientists have a central role in providing
accurate and timely information required by policymakers
during the pandemic [10, 11]. Such required information can
consist of monitoring and assessing the impact of policy
interventions, which are recurrent challenges for policymakers
and governmental bodies [12–14]. During the COVID-19
pandemic, governments introduced several policy interventions
with varying strictness (based upon the development of the
pandemic) to contain the spread of the SARS-CoV-2 virus. In
this pandemic, a wide range of technologies was available to
monitor human behaviour [15, 16]. These circumstances offer
the unique opportunity to monitor and assess the effectiveness
of policy interventions during a crisis using sensor technologies.
Therefore, it is particularly relevant for NSIs to analyse this
information to further develop the research field of real-time
indicators in official statistics. This paper analyses a novel
spatial mobility dataset containing pedestrian flows measured
by location-based sensors in 49 metropolitan areas at 100
locations in Germany during the introduction and relaxation
of several pandemic-related policy interventions. As we will
explain, such systems have advantages over using data from
population surveys or mobile phones and thus serve as a
valuable additional data source. It will be demonstrated that
such a system has the potential to be used as a real-
time measurement system for assessing the impact of non-
pharmaceutical policy interventions. In addition, we will reflect
on how using sensor data can be of further relevance for
policymaking to better understand the link between policy
measures and human behaviour in a crisis, and we will discuss
potential data-linkage applications using this specific sensor
data.

Background

With the spread of the COVID-19 pandemic, countries
worldwide began to implement non-pharmaceutical and
pharmaceutical policy interventions to mitigate the transmission
of the virus SARS-CoV-2. Our study focuses on non-
pharmaceutical policy interventions. About one and a half
years after COVID-19 was declared a global pandemic,
several studies on non-pharmaceutical policy interventions
and their effectiveness in reducing key pandemic indicators,
such as growth rate, incidence, or the R-indicator, have been
published. Here, we summarize some of the key findings
of several recent studies. Although the studies differed in
data and methods used, it was overall shown that lockdown
periods, school/university closures, closing workspaces,

physical distancing, and closing (non-essential) businesses
were highly effective non-pharmaceutical policy interventions
reducing the virus transmission. Some inconsistent findings are
reported for public transport closure, testing, contact tracing,
and (international) travel restrictions. The effectiveness of,
e.g. public information campaigns, restrictions on internal
movement, or restrictions on public transportation was not
conclusively clarified [17–25]. Currently, the most appropriate
tool to quantify the severity of non-pharmaceutical policy
interventions seems to be the Oxford Covid-19-Government
Response Tracker [26, 27], which we will use in our study
(for details, see section Policy intervention data). To study
how populations have reacted to these interventions during
the pandemic, population surveys or data generated through
mobile phones have often been used. In the following, the
challenges and limitations of these data sources will be outlined
and compared to the sensor-based real-time measurements
presented in this paper.

Population surveys were used worldwide to collect data
on adopting pandemic-preventing policy interventions [28–
33]. Because person-to-person transmission causes the spread
of SARS-CoV-2, face-to-face surveys were ineligible [34, 35].
Therefore, web surveys were used because no interviewers
are required. Furthermore, web surveys represent low costs,
short fieldwork periods, and timeliness of the data [36].
However, the use of (web) surveys has several problems
in evaluating policy interventions for pandemic-preventing
behaviour. First, reported and actual behaviour might differ
due to social desirability [37]. Second, memory errors can lead
to a bias in the responses [38]. Third, the time gap between
interviews and publication hinders a quick assessment of
policy interventions. Fourth, the data collection for continuous
monitoring is costly [39]. Fifth, web surveys yield biased
results for behavioural variables regarding health [40–43].
Finally, most web surveys are based upon non-probability
samples and thus have severe restrictions regarding population
inference [44, 45]. This aspect of web surveys can be
considered as their main issue.

Data generated through mobile phones allows the real-
time assessment of actual behaviour and does not rely on
people’s memory. Several studies based upon GPS, mobile
phone position data, and specific smartphone applications
have been conducted during the COVID-19 pandemic. For
example, a number of studies used real-time mobile phone
position data to study changes in human mobility behaviour
in the USA, China, and Europe [28, 46, 47]. A further study
based upon volunteered geographic information (app data),
assessed worldwide mobility [48]. Data from companies such
as Google or Baidu was used to study human mobility and
the effects of policy measures [49, 50]. However, the data
used in such studies suffers from self-selection procedures.
The required device has to be owned, the application needs
to be known by the owner, no privacy concerns should exist,
the willingness to participate is a requirement, owners have to
activate the required service of the device/application, and
the device needs to be carried continuously. It is unlikely
that these consecutive steps will yield a random selection
of the population [51]. Hence, using data generated through
mobile phones (either location-based or app-generated) to
describe changes in mobility or evaluate the effects of
policy interventions, will exclude specific subgroups of the
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population. Additional problems using GPS-generated data are
the accuracy and completeness of the data. GPS devices cause
problems due to intended or unintended switch-off, delays
due to standby mode, battery issues, or the device not being
carried [52–54]. Accordingly, the usefulness of smartphone-
based technologies to mitigate and monitor the pandemic is
still debated [51, 55, 56].

The spatial mobility data measured by the sensors used in
this study include location-based measurements of pedestrian
flows in different cities and has received little attention in the
scientific literature during the COVID-19 pandemic (e.g. [57]).
The recorded data of such systems has several advantages
compared to those previously described. First, in contrast
to population surveys, these sensors provide objective in
situ measurements of the population’s behaviour, overcoming
problems due to survey respondents’ social desirability and
memory errors. Furthermore, the delay between recording
and reporting results and costs for continuous monitoring
are negligible when analysis can be done promptly. Second,
in contrast to data generated through mobile phones, an
important difference is that these sensors measure only
whether public places or locations are still visited, i.e. they
do not measure who has visited them. As such, data privacy
and protection, which were not always adequately addressed
during the pandemic [58], are no issue when using such data.
Coverage and selectivity issues in smartphone usage among
the population or the required use of specific smartphone
applications can also be neglected. Finally, data obtained
through such objective in situ measurement systems offers the
potential for official statistics output. More specifically, given
the number of advantages mentioned and the results provided
by this paper, this type of technology and the data collected
could be more widely used by NSIs and policymakers, for
example, future crisis management or policy evaluation. Until
now, only a few applications of such data in official statistics
can be found, such as the recording of traffic with traffic loop
data [8, 59] or the use of real-time indicators based upon
publicly available streamed traffic camera images to monitor
busyness during a lockdown [60].

Methods

First, we will describe the sensor and policy datasets used in
the study. Second, we will explain the applied methodologies
and analysis.

Sensor data

The data of sensors measuring pedestrian flows in
metropolitan areas is provided by the company hystreet.com
GmbH. The data collection started on 01.05.2018 at
27 locations in Germany. The sensor network has been
continuously expanded, and currently, sensors are installed
in 74 cities at 152 locations in four European countries
(Germany, Austria, Switzerland, and the Netherlands). Sensors
were installed strategically at these locations from a real
estate perspective. A real estate perspective is to determine
the possible turnover potential of a location, assess the
location quality of the real estate object, and evaluate the
attractiveness of cities. As a result, the sensors are located

at centres of metropolitan areas on economically relevant
and highly frequented streets and places. According to the
definition of the German Federal Office for Construction
and Regional Planning, 45 out of 49 analysed cities can be
considered metropolitan areas (≥100,000 inhabitants). The
remaining four cities are medium-sized cities (≥20,000 up to
100,000) [61]. The different sizes of the cities are not taken
into account in the analysis, given the majority belong to the
same category (metropolitan area), and given that Brocker
and Klingwort showed that the developments in pedestrian
flows were comparable across cities [62].

The sensors are attached to facades and generate an
invisible and eye-safe quadruple light curtain to measure the
pedestrian flows constantly. Hence, pedestrians are not aware
of being recorded and cannot consciously avoid the recording.
When pedestrians cross the light curtain, a record is made.
An accuracy of 99% can be achieved up to a flow rate of
approximately 500 persons per minute. Persons crossing the
light curtain multiple times are recorded repeatedly. Hence, the
total count per day might not be a count of unique persons. For
example, persons on their route to, e.g. essential shopping and
back, might cross the light curtain twice if they take the same
route. However, it is reasonable to assume that such scenarios
do not systematically upward bias the pedestrian counts. Only
if persons cross the light curtain, in the most extreme case, in
the form of a curved line, a form of systematic measurement
error will occur. This scenario seems unlikely as people are not
aware of the light curtain. Measurement errors can occur if
the laser is blocked (e.g. by scaffolding, cranes, or treetops),
and in case of energy failure, no measurements are made [63].
When these types of measurement errors occurred, data was
excluded from the analysis, as we will explain in the following
paragraph.

Data from 01.01.2019 to 18.04.2021 of German sensor
locations will be used for the analysis. Sensors with either
considerable down-times (about one year) or down-times of
at least about three weeks in the periods of interest were
excluded from the analysis. The resulting dataset consists of
49 cities with 100 sensor locations. The cities have a minimum
of about 25,000 inhabitants, on average about 400,000, and
a maximum of 3.7 million (Berlin, capital city of Germany).
Figure 1 shows the considered cities and indicates the number
of sensors per city. On average, there are two sensor locations
and a maximum of nine per city. 14 out of 16 federal states
have at least one sensor location because one has no sensors
installed and the second is omitted due to the selection criteria.

Policy intervention data

On 11th March 2020, the World Health Organization (WHO)
declared COVID-19 a pandemic [64]. After that, policy
interventions were enacted, extended, relaxed, or reintroduced
in Germany at 15 points in time (in the period considered
in this paper). Since the interventions aimed to reduce
the number of social contacts, it is reasonable to assume
that closing schools, universities, (non-essential) businesses
and restricting public gatherings affect pedestrian flows at
public places. To quantify the stringency of the measures,
we used the ‘stringency index’ from the Oxford Covid-19-
Government Response Tracker (OxCGRT) project [26, 27].
This project systematically records policy measures in over
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Figure 1: Sensor locations in Germany

Black dots indicate city centres. Red circles surrounding black dots indicate the number of sensor locations within the 49 cities.
Grey-coloured federal states do not contain sensor locations.

180 countries that governments have implemented since 1st

January 2020, to address the pandemic. The stringency index
has been calculated since 21st January 2020, and consists of
9 indicators recording the severity of lockdown style policies
(school closures, workplace closing, cancel public events,
restrictions on gatherings, public transportation, stay at home
order, restrictions on internal movement, international travel
controls, public information campaigns) that primarily restrict
people’s behavior [27]. Most of these policies were considered
highly effective in mitigating the transmission of the virus
SARS-CoV-2 (see section “Background”). The stringency index
is calculated using all ordinal containment and closure policy
indicators, plus an indicator recording public information
campaigns. The index ranges from 0-100 (100= strictest).
Table 1 shows the dates when policy interventions were

enacted, describes the interventions, and shows the stringency
index on that specific day.

Policy interventions and pedestrian counts

First, we focus on the period from 01.01.2020 to 18.04.2021,
which contains 15 points in time with policy interventions (see
Table 1). For this period, policy interventions were linked to
the pedestrian flow data using the date as a unique identifier.
This allows observing potential changes in pedestrian flows
before or after interventions. Within this period, 0.1% of
the observed data contained zero counts. The sensors store
a zero-count in case of a measurement error and for the
actual absence of individuals. However, zero-counts on a given
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Table 1: Timeline of non-pharmaceutical policy interventions in Germany between 13th March 2020, and 22nd March 2021

No. Date Policy intervention and description Stringency index

1 13.03.2020 Closing schools until May 2020 [65, 66] and universities
until summer 2021 [67, 68]

33

2 22.03.2020 Closing of non-essential businesses; restricting public gatherings [69] 77
3 15.04.2020 Extending interventions until May 2020 [70] 77
4 04.05.2020 Stepwise re-opening of schools [71] 72
5 06.05.2020 Opening of a majority of non-essential businesses;

allowing limited public gatherings [72]
66

6 02.11.2020 Closing of non-essential businesses (wholesale/retail businesses remained
open); restricting public gatherings [73]

62

7 01.12.2020 Extending interventions; increasing restrictions of public gatherings [74] 68
8 14.12.2020 School closings until January 4, 2021 [75] 68
9 16.12.2020 Closing of non-essential businesses (wholesale/retail

businesses as well); restricting public gatherings [76]
82

10 04.01.2021 Stepwise re-opening of schools [77] 82
11 05.01.2021 Extending interventions from 16.12.2020 [78] 85
12 19.01.2021 Extending interventions from 16.12.2020 [79] 83
13 10.02.2021 Extending interventions from 16.12.2020 [80] 83
14 03.03.2021 Stepwise re-opening non-essential businesses

(incidence-dependent) [81]
78

15 22.03.2021 Extending interventions from 03.03.2021 until 18.04.2021 [82] 75

day are implausible, even in the case of a strict lockdown
or an evening/night curfew. Therefore, a conditional median
imputation was applied to correct the zero counts.

Pandemic and pre-pandemic pedestrian counts

Second, the period from 01.01.2019 to 31.12.2020 is
considered to quantify differences in pedestrian counts
between the pandemic (01.01.2020 to 31.12.2020) and the
pre-pandemic year (01.01.2019 to 31.12.2019). A complete
time series of sensor data is required to calculate the relative
difference between 2020 and 2019. As the sensors were
installed consecutively over time, the complete time series
for 2020 and 2019 were only available for 20 cities and
40 locations. Within this period (01.01.2019 to 31.12.2020),
0.6% of the observed data contained zero counts. These were
corrected using the method explained above. Due to the
weekday shifts of the same date between years, leap year,
public holidays on different weekdays, the pedestrian counts
of each location were summed per corresponding city and
week. No decomposition of the time series into its systematic
and unsystematic components was done. Therefore, we cannot
tell whether the pedestrian counts might depend on seasonal
influences. The relative difference between 2020 and 2019 is
calculated using the 2019 data as the benchmark. Accordingly,
a positive relative difference indicates the counts in 2020
being larger than in 2019, and vice versa, a negative relative
difference indicates a lower count in 2020 than in 2019.

Results

Policy interventions and pedestrian counts

Figure 2 shows the pedestrian counts of all considered cities
and locations and the average daily count in the period

from 01.01.2020 to 18.04.2021. In general, the counts from
Mondays to Thursdays are comparable, rise on Fridays, peak
on Saturdays, and reach the lowest level on Sundays. In
Germany, there are peculiarities regarding the opening of stores
on weekends. On Sundays, the drop in pedestrian counts is
due to almost exclusively to all shops, including essential
businesses, being closed. Exceptions include train stations,
gas stations, bakeries, restaurants, cafes, and pubs. However,
the latter three would have been closed in the pandemic year
during a lockdown anyway.

Until early March 2020, a similar and repeating pattern
in the pedestrian counts is observed. Shortly after the WHO
declaration on March 11th, 2020, pedestrian counts started to
decrease. Here, at the same time, the stringency index started
to increase. On March 13th, 2020, the first national policy
interventions (school closings) were enacted.

The pedestrian counts decreased further before the
second policy intervention on 22nd March 2020, when non-
essential businesses closed. During the following period,
pedestrian counts remained low, although some days show
high pedestrian counts at a few locations. Throughout
this period, the stringency index increased further. The
pedestrian counts started to increase slightly before the
interventions were lifted on 4th and 6th May 2020. This
finding suggests that behaviour already changed before the
policy interventions were lifted. Thereafter, pedestrian counts
increased and remained stable during the summer months.
Here, the stringency index indicates lower severity of policy
measures. After the introduced interventions on 2nd November
2020, almost no decrease in pedestrian counts was observed.
A reasonable explanation might be that wholesale/retail
businesses remained open, which are likely to be located
in the areas around the sensor locations and still attracted
customers. With the introduced interventions on 14th and 16th

December 2020, a substantial decrease in pedestrian counts
was observed. This development is accompanied by a steep
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Figure 2: Pedestrian counts in 49 German cities at 100 locations between 01.01.2020 and 18.04.2021

Grey lines show recordings of each sensor. The gradient-colour line shows a) the average daily count, and b) indicates the stringency
index (green = low index score, red = high index score).The vertical black dashed line indicates the WHO declaration. The
enumerated vertical black dotted lines indicate a point in time with a policy intervention (enumeration corresponds to Table 1).

increase in the stringency index. During these interventions
and their threefold extension, the pedestrian counts remained
at a low level and the stringency at a high level. An increase
after the stepwise re-opening of schools on 4th January 2021,
could not be observed. From 1st March 2021, with gradual
openings and relaxations, slight increases in pedestrian counts
were recorded.

Pandemic and pre-pandemic pedestrian counts

Figure 3 shows the weekly relative difference in the pedestrian
counts between the pandemic (2020) and pre-pandemic (2019)
year. On average, the pedestrian counts were lower in the first
week of 2020 compared to 2019 (−1%). Between the second
week up to the sixth week (beginning of February), the average
pedestrian counts were larger in 2020 than in 2019 (from
2% up to 13%). From the sixth week, the average pedestrian
counts fall below the level of 2019. The pedestrian counts are
beginning to decrease in 2020 before the WHO declaration and
first policy interventions in week 11 compared to the previous
year.

The most considerable difference was observed in week
13 (−85%), the second week after the first restricting policy
interventions. The difference remained stable between weeks
13 to 15 and steadily decreased from week 16 (second half
of April). Hence, pedestrian counts developed towards the
previous year’s count about three weeks before the policy
interventions were relaxed in week 19. In the following weeks,
the average difference converged further to the level of 2019
but remained lower. The difference was positive at some
specific locations, i.e. the pedestrian counts were larger at
these locations in 2020. In week 30 (end of July), the average
difference was about zero. Until week 43, there was some
variation in the relative difference (from −14% up to −23%).

Starting in week 43 (second half of October), the average
difference started to increase again. Hence, before the policy
interventions in November and December 2020, the pedestrian
counts started to decline again compared to 2019. By the
end of 2020 (weeks 51 to 53), the relative difference was
comparable to weeks 13 to 16 (−74% to −83%). A reasonable
explanation for this observation might be the same type of
policy interventions (see Table 1).

Discussion

This paper analysed sensor-based spatial mobility data of
pedestrian counts in 49 metropolitan areas at 100 locations
in Germany during a phase of non-pharmaceutical policy
interventions due to the COVID-19 pandemic. Furthermore,
differences in pedestrian counts between pandemic and pre-
pandemic periods were studied, and several observations were
made. First, we observed behavioural change and a reduction
in counts detected by the sensors that pre-empted restricting
policy interventions. Inversely, sensors detected an increase in
pedestrian counts before the loosening of policy restrictions.
Second, with less strict policy interventions, no considerable
reduction of pedestrian counts compared to strict interventions
could be observed; a finding consistent with the stringency
index. Hence, a decrease in pedestrian counts was always
connected with an increase in the stringency index (more
severe non-pharmaceutical policy interventions). Third, after
the interventions in 2020, on average, up to 85% lower
pedestrian counts were found compared to 2019. The findings
in this study show the potential and practical importance of
sensor systems and corresponding data for measuring real-time
behaviour.
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Figure 3: The weekly relative difference between pandemic (2020) and pre-pandemic (2019) pedestrian counts in 20 German cities

Grey lines show weekly relative difference per city, the red line shows the weekly average overall cities, and the black solid horizontal
line indicates a zero difference.

We consider this research of high importance because,
until now, such objective in situ real-time measurement
systems recording spatial mobility have been rarely used
in the pandemic to evaluate or improve policy decisions.
Thus, it highlights the potential of such systems for
policymaking. If NSIs would administer such sensor systems
themselves and allocate them randomly over a country, ensure
quality and usability, such systems could be considered an
additional data source for various official statistics [83].
These objective measurement systems are not reliant on
adoption by citizens [84], and therefore, do not introduce
selection bias due to usage or ownership as mobile phones do.
Additionally, such systems do not collect individual data, and
accordingly, data confidentiality and privacy regulations are
no major concerns. We see great potential and need for such
objective measurement systems at NSIs for several applications
(e.g. real-time monitoring of the de facto population) and
statistical output. For applications during a pandemic or crisis,

such spatial mobility data can be integrated into real-time
dashboards [85, 86], along with (non)-pharmaceutical policy
interventions, pandemic-related information, and could allow
data visualisation on the national or federal-state level to
identify regional differences [87]. Targeted policy interventions
could be enacted based upon this information bearing in
mind that contact tracing is not possible due to the non-
identification of individuals.

Furthermore, such spatial mobility data has the potential
to be used within data-linkage applications. However, the
linkage on the micro-level (individuals) is impossible. Instead,
the timestamp or a combination of the timestamp and regional
identifier (e.g. city or federal state) can be used to link
the pedestrian count data to survey or administrative data.
When linked to survey or administrative data, it can be
used as auxiliary information to improve existing estimation
processes (e.g. using aggregated weekly/monthly counts
as auxiliary information when estimating weekly/monthly
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economic activity) to help local authorities understand human
behaviour as a driving force for societal change [11].
When linked to survey data, it can be used to compare
external sensor measures and reported pandemic-prevention
behaviour [62]. Additional examples can be safety monitoring
in cities, the commercial viability of businesses, or tourism and
mobility statistics. When data from different sensor systems is
combined, e.g. traffic and air pollution in busy high streets,
awareness of health risks can be addressed [88]. The concept
of linking data sources, also on the individual level, for more
insights and quality improvements of official statistics or in the
health sector is currently an active field of research and has
already been successfully demonstrated [89–95].

Besides several advantages, there are limitations to this
study. The sensors are not distributed randomly over Germany.
The stations are located only in metropolitan areas at
economically relevant and highly frequented locations and data
is not available for all federal states. As a result, no valid
design-based inferences could be drawn using this data which
is a central demand in statistical production at NSIs. The
analysis conducted did not acknowledge the non-random and
unequal distribution of the sensors. Therefore, an inference
framework would have to be developed, which is considered a
research project in itself (see for example [96]). Furthermore,
the sensors only provide information about the number of
movements (which may not correspond with the number of
persons) at the position at which they are installed. The trade-
off for this privacy-ensuring measurement limits the number
of addressable research questions. For example, relevant
questions for policymakers on the demographic composition
(e.g. age, gender, occupation) of pedestrians during the
pandemic cannot be answered with such data. Using such data
for general population studies will be complicated because the
sensors miss certain parts of the population. For example,
those who are not mobile or have certain demographic
characteristics are more or less likely to visit these locations.
In addition, the small number of sensors cannot measure the
avoidance of public places and the evasion by citizens to
other parts of the cities. Moreover, without comprehensive
areal coverage, malfunctions of individual sensors have a large
impact on the data quality. Furthermore, we did not deduce
from the data whether the behavioural change was due to
expected policy interventions or perceived risks. However,
the data seems to suggest that behaviour preceded policy
interventions. Finally, we did not control for external factors
(e.g. weather) and did not apply seasonal adjustments (e.g.
public holidays or holiday seasons), to control for differences
in pedestrian counts. Accordingly, future research will be
dedicated to studies on causal inference for policy evaluation
and on the control of external factors.

Conclusion

The COVID-19 pandemic has shown that measuring human
behaviour during a health crisis in real-time is of high
importance. Real-time data for crisis management will
continue to be important for policymakers, not only at
the national level but also to react in an internationally
coordinated manner. Differences in policy measures between
countries pose a risk to effective policy interventions across

borders. However, the pandemic has not only been a health
crisis but also highlighted sociological challenges. Behavioural
and social changes are essential to tackle such a crisis and are,
at the same time, the most challenging to change, control,
and measure. Hence, tackling such global crises is primarily a
social and not a technical problem and cannot be managed
solely with technical solutions. The pandemic has revealed
challenges, opportunities, and potential for improvement in
crisis management in the future, for example, climate change
and energy provision. To allow and evaluate crisis management
and related policy interventions, the future relevance of
measurement systems that records societal changes in real-
time will only increase.
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