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Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, India

Histone deacetylases (HDACs) regulate epigenetic gene expression programs by
modulating chromatin architecture and are required for neuronal development.
Dysregulation of HDACs and aberrant chromatin acetylation homeostasis have been
implicated in various diseases ranging from cancer to neurodegenerative disorders.
Histone deacetylase inhibitors (HDACi), the small molecules interfering HDACs have
shown enhanced acetylation of the genome and are gaining great attention as
potent drugs for treating cancer and neurodegeneration. HDAC2 overexpression has
implications in decreasing dendrite spine density, synaptic plasticity and in triggering
neurodegenerative signaling. Pharmacological intervention against HDAC2 though
promising also targets neuroprotective HDAC1 due to high sequence identity (94%)
with former in catalytic domain, culminating in debilitating off-target effects and
creating hindrance in the defined intervention. This emphasizes the need of designing
HDAC2-selective inhibitors to overcome these vicious effects and for escalating the
therapeutic efficacy. Here we report a top-down combinatorial in silico approach for
identifying the structural variants that are substantial for interactions against HDAC1
and HDAC2 enzymes. We used extra-precision (XP)-molecular docking, Molecular
Mechanics Generalized Born Surface Area (MMGBSA) for predicting affinity of inhibitors
against the HDAC1 and HDAC2 enzymes. Importantly, we employed a novel in silico

strategy of coupling the state-of-the-art molecular dynamics simulation (MDS) to
energetically-optimized structure based pharmacophores (e-Pharmacophores) method
via MDS trajectory clustering for hypothesizing the e-Pharmacophore models. Further,
we performed e-Pharmacophores based virtual screening against phase database
containing millions of compounds. We validated the data by performing the molecular
docking and MM-GBSA studies for the selected hits among the retrieved ones. Our
studies attributed inhibitor potency to the ability of forming multiple interactions and
infirm potency to least interactions. Moreover, our studies delineated that a single HDAC
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inhibitor portrays differential features against HDAC1 and HDAC2 enzymes. The high
affinity and selective HDAC2 inhibitors retrieved through e-Pharmacophores based virtual
screening will play a critical role in ameliorating neurodegenerative signaling without
hampering the neuroprotective isoform (HDAC1).

Keywords: HDAC2, HDACi, molecular docking, MM-GBSA, MDS, e-Pharmacophores, neurodegenerative

disorders, e-Pharmacophores based virtual screening

INTRODUCTION

Chromatin architecture plays a decisive role in transcriptional
regulation which in turn is potentially modulated by the
antagonistic activity of HATs and Histone deacetylases (HDACs)
(Eberharter and Becker, 2002; Qi et al., 2011). While HATs favor
the transcriptional activation via chromatin decondensation,
HDACs promote chromatin condensation and subsequent gene
silencing (Yang and Seto, 2007). The opposing activities of HATs
and HDACs regulate acetylation homeostasis that plays a crucial
role in governing various gene expression programs (Ropero and
Esteller, 2007; Ganai, 2016a). HDACs are conjugated enzymes
modulating both histone and non-histone substrates and act
as corepressors in transcriptional events (Yang and Seto, 2008;
Mottamal et al., 2015; Ganai, 2016b). The 18 HDACs identified in
human beings till date, have been divided into four classes based
on structural resemblance to yeast HDACs (Mottamal et al.,
2015). Class I HDACsmainly lack shuttling ability, are ubiquitous
in distribution and includes HDAC1, HDAC2, HDAC3 and
HDAC8. Unlike Class I HDACs, Class II HDACs are tissue
specific in distribution and possess shuttling ability (Fischle et al.,
2001). This Class is further subdivided into Class IIa and Class
IIb HDACs. While Class IIa covers HDAC4, 5, 7, and 9, Class
IIb encompasses HDAC6 and HDAC10 (Ganai, 2017a). Class
III includes mechanistically distinct HDACs termed as Sirtuins
(SIRT1-SIRT7) (Albani et al., 2010; Morris et al., 2010). Class
IV includes HDAC11 as the only member and in comparison to
other HDACs is least studied (Seto and Yoshida, 2014). Class I,
II and Class IV HDACs are Zinc (Zn2+) dependent and are also
known as classical HDACs. Sirtuins are NAD+ dependent and
are associated with cellular senescence and aging (Ganai, 2016c;
Watroba and Szukiewicz, 2016). Among Class I HDACs, HDAC1
and HDAC2 show the highest structural identity with each other.

Histone deacetylase inhibitors (HDACi), the small molecules
interfering HDACs are emerging as potent chemotherapeutic
agents. Based on structural distinction these inhibitors may
be hydroxamates like suberoylanilide hydroxamic acid
(SAHA), Trichostatin A (TSA); benzamide derivatives like
pyridin-3-ylmethyl N-[[4-[(2-aminophenyl) carbamoyl]
phenyl]methyl]carbamate (MS-275 or entinostat), 4-acetamido-
N-(2-aminophenyl)benzamide (CI-994); cyclic peptides like
romidepsin and (3S,6R,9S,12R)-6,9-dimethyl-3-[6-(oxiran-2-
yl)-6-oxohexyl]-1,4,7,10-tetrazabicyclo[10.3.0]pentadecane-
2,5,8,11-tetrone (HC-toxin); short chain fatty acids
encompassing sodium butyrate, phenylbutyrate and valproic
acid. These inhibitors have shown promising activity against
cancer and neurodegeneration. Four HDACi are approved by
US-FDA for treating distinct malignancies. SAHA has been

approved for treating cutaneous T-cell lymphoma (CTCL).
Romidepsin followed SAHA in gaining approval and is
currently used against CTCL and peripheral T-cell lymphoma
(PTCL) (Ververis et al., 2013). Belinostat, the third HDAC
inhibitor has been approved for relapsed/refractory PTCL
(Ververis et al., 2013; Ganai, 2016a). The fourth approved
inhibitor panobinostat is currently active against multiple
myeloma (Ganai, 2016c). Most of the HDACi including
vorinostat are pan-inhibitors targetting HDACs of different
classes (Dasmahapatra et al., 2010), few like entinostat are
class selective targetting isoforms of a given class (Duque-
Afonso et al., 2011) and very few like tubacin are isoform
selective (Lee et al., 2015; Ganai, 2016d) targetting a single
HDAC.

Histone deacetylase inhibitors (HDACi) including LAQ824
(dacinostat), pyroxamide, HC-toxin are composed of three
distinct components; Zinc binding group (ZBG) which chelates
Zinc (Zn) ion situated deep in the active site; Linker
region connecting ZBG with cap region and interacting with
active site tunnel residues; Cap region which closes the
active site gate and interacts with active site rim residues.
This three component concept has proved spectacular in
developing potent inhibitors against HDACs. For designing
isoform-selective inhibitors specific modifications in these
components have been exploited (Witt et al., 2009; Ganai, 2016d,
2017a).

Implications of HDAC2 in
Neurodegenerative Events
The cellular imbalance between HAT and HDAC activity alters
acetylation homeostasis causing transcriptional dysregulation
which in turn provides impetus to neurodegenerative signaling
(Saha and Pahan, 2006). Aberrant expression of HDACs has been
implicated in neurologic pathologies (Ganai et al., 2016). For
instance, HDAC6 overexpression has been reported to inhibit
nerve growth by deacetylating tubulin protein (Rivieccio et al.,
2009). Knockout studies in mouse models have revealed HDAC2
as a key regulator of associative and spatial memory (Guan
et al., 2009). While HDAC2 overexpression has been reported
to impair memory performance, HDAC2 knockout mice showed
improved memory performance (Guan et al., 2009; Volmar and
Wahlestedt, 2015). Robust improvement in associative learning
has been demonstrated on selective knockout of HDAC2 (Morris
et al., 2013). Upregulated HDAC2 levels have been implicated
in restraining the expression of neuroplasticity genes during
neurodegeneration (Gräff et al., 2012). Mounting evidences
suggest that HDAC2 plays a central role in mediating cognitive
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impairment (Welberg, 2012). Further, the impact of elevated
levels of HDAC2 on basic excitatory neurotransmission has
been well demonstrated in mature neurons indicating its role
in synaptic plasticity (Akhtar et al., 2009). HIV-Tat protein
induced upregulation of HDAC2 culminates in down-regulation
of genes meant for synaptic plasticity and neuronal function
thereby triggering HIV-associated neurocognitive disorders
(HAND) (Saiyed et al., 2011). These findings establish the
critical role of HDAC2 in modulating synaptic plasticity and
enduring changes of neural circuits culminating in negative
regulation of learning and memory. Taken together, HDAC2
is a propitious and eye catching epigenetic target for tackling
neurodegenerative maladies (d’Ydewalle et al., 2012; Ganai,
2017b).

Current Impediment in Targetting HDAC2
for Neurological Disorders
Pharmacological intervention with HDACi reversed the
reduced synapse number and learning impairment of HDAC2-
overexpressing mice (Guan et al., 2009). Glutamate excitotoxicity
has been implicated in many neurodegenerative disorders
and studies have shown that inhibitors active against HDAC2
and HDAC3 offer neuroprotection against such toxicity in rat
models (Durham, 2012). Unlike HDAC2, HDAC1 interacts with
HDRP and facilitates neuronal survival (Bardai et al., 2012).
Moreover, the catalytic domains of HDAC1 and HDAC2 share
high percentage identity (94%) (Figure 1) and thus therapeutic
intervention against the latter also targets HDAC1 (Corpet, 1988;
Ganai, 2014). This often causes debilitating off-target effects,
emphasizing the desperate need of designing on-target (isoform-
selective) inhibitors for HDAC2. Recently two inhibitors
BRD4884 and BRD6688 demonstrating kinetic selectivity for
HDAC2 vs. HDAC1 have been synthesized (Wagner et al., 2015).
Another group has used a novel de novo reaction-mechanism-
based inhibitor design approach toward the discovery of
selective inhibitor β-hydroxymethyl chalcone against HDAC2
(Zhou et al., 2015). Taking these facts into consideration the
current study used a combinatorial in silico approach including
extra-precision molecular docking, molecular mechanics
generalized born surface area, molecular dynamics simulation
(MDS), trajectory clustering and energetically optimized
structure based pharmacophore mapping for highlighting the
hotspots of inhibitors in the HDAC1 and HDAC2 binding
pocket. Five inhibitors belonging to three different structural
groups of HDAC inhibitors were docked against HDAC1 and
HDAC2 active site. These docked complexes were subjected
to MMGBSA for predicting the binding affinities of docked
inhibitors. The docked complexes of top scoring inhibitors
LAQ824 and HC-toxin were subject to the cutting edge MDS
for 5 ns. The MDS output file of docked complexes was used
as input for Desmond trajectory clustering. Seven clusters
were generated for each protein-ligand complex and the
cluster with maximum number of frames (more stability) was
considered for creating hypothesis to highlight the critical
features of inhibitor inside the active site of HDAC1 and HDAC2
enzymes.

MATERIALS AND METHODS

Protein Preparation and Grid Generation
Accurate starting structures are prerequisite for successful
structure based modeling. The crystal structures of HDAC1
and HDAC2 (PDB ID: 4BKX and 4LY1 respectively) retrieved
from Protein Data Bank (http://www.rcsb.org) (Lauffer et al.,
2013; Millard et al., 2013) were prepared using the Protein
Preparation Wizard of Schrödinger package (Maestro v11.0) to
ensure structural correctness (Sastry et al., 2013; Ganai et al.,
2015a,b). In the first step the missing hydrogen atoms were
added to crystal structures and proper bond orders were assigned.
Moreover, missing side chains and missing loops were filled
using the Prime. All the water molecules beyond 5 Å were
deleted. In the next step, the redundant protein chains and
heteroatoms were deleted. As HDACs require Zinc for their
catalytic function so this heteroatom was kept intact (Ganai
et al., 2015b; Sinha et al., 2016; Steinbrecher et al., 2017).
Moreover, the native ligand in crystal structure of HDAC2 was
kept as such and was used for grid generation in the later stage.
The third stage involves the refining of protein structures to
make them suitable for subsequent steps. During this process,
the structures are optimized and the water molecules with <3
hydrogen bonds to non-waters are deleted. This was followed
by minimization in which heavy atoms were converged to Root
mean square deviation (RMSD) of 0.30 Å. Grid generation was
performed using the cocrystallized ligand as centroid in case of
HDAC2 (Glide v7.3). However, in case of HDAC1 lacking the
cocrystallized ligand, grid generation was done by specifying the
residues interacting with active site Zinc (Sastry et al., 2013; Ganai
et al., 2015a).

Ligand Preparation
Computational methods like molecular docking require correct
3D molecular models as initiating point. However, many
compounds available in compound databases exist as 2D
molecular structures and thus accurate 2D−3D conversion
is a critical progenitor to computational analysis. LigPrep
incorporated in Schrodinger package generates a single, factual,
energy minimized 3Dmolecular structure with correct chiralities
from the given input. Besides, it eradicates mistakes in ligands in
order to enhance the accuracy of downstream events including
molecular docking (Ganai et al., 2015a; Van Den Driessche
and Fourches, 2017). LigPrep can optionally produce many
structures from single input structure with various ionization
states, stereochemistries, tautomers, and ring conformations.
The structure files of 5 ligands used in the study were
retrieved from PubChem with PubChem CID’s provided in
Supplementary Figure 1. These ligands were prepared for
molecular docking using the predefined LigPrep (Maestro
v11.0) (Kalyaanamoorthy and Chen, 2013; Ganai et al., 2015b).
Ligands were desalted; metal binding states were generated
as their receptors are Zinc dependent enzymes. Protonation
states of ligands and the associated energy penalties were
predicted using the Epik (Epik v3.8), a computer program
based on Hammett and Taft methodology (Shivakumar et al.,
2010). The preparation parameters were kept identical for all
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FIGURE 1 | HDAC1 and HDAC2 share high sequence identity (94%) at the active site. The active site residues were taken from UniProt and alignment was performed
by using MultAlin and cross checked by using Clustal Omega. Percent identity was calculated by Clustal Omega.

ligands to avoid any bias arising due to differential ligand
preparation.

Pose Validation by Self-Docking
Among the various methods used for validating the docking
programs, the pose validation method is globally used. Crystal
structure of HDAC2 with its cocrystallized ligand was prepared
using the protein preparation wizard followed by separation of
ligand. The ligand was then redocked against the host target using
extra-precision (XP) flexible docking protocol and the RMSD
was calculated between crystal and redocked pose (Sandor et al.,
2010).

Molecular Docking
The molecular docking was performed using the Glide (Grid-
based Ligand Docking with Energetics) of Schrödinger package.
The ability of Glide to identify hits for lead optimization
and guide understanding of critical interactions apart from
desolvation effects influencing receptor-ligand binding, has
contributed markedly to its epidemic acceptance. The prepared
ligands were docked against grid generated receptors HDAC1

and HDAC2 in an extra precision (XP) flexible mode (Glide
v7.3) (Friesner et al., 2006). Identical docking conditions were
set for both HDACs to avoid any discrepancy due to differential
parameters. The GlideScore (GSore) representing affinity of
ligands against receptors was obtained from pose viewer file of
docked complexes (Kalyaanamoorthy and Chen, 2013; Ganai
et al., 2015b).

Molecular Mechanics Generalized Born
Surface Area (MMGBSA)
The Prime/MMGBSA tool is widely used for estimating the
relative binding affinity of various ligands. The binding energy
of ligands calculated by MMGBSA is expected to align well
with the experimental binding affinity, especially of a congeneric
series. Binding free energy calculations of docked complexes
was performed using the Prime module of Schrodinger package.
The pose viewer files generated in Glide XP docking were
used as input for MMGBSA. The binding free energy was
calculated in the frozen state and default dielectric constants,
solvation model (VSGB) and OPLS3 force field was used (Lyne
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et al., 2006; Ganai et al., 2015b). Prime MMGBSA performs
five fundamental energy calculations; optimized free receptor
(Receptor), optimized free ligand (Ligand), Optimized complex
(complex) in addition to receptor from optimized complex and
ligand from optimized complex. From these energies, the binding
free energy is calculated as:

Prime MMGBSA 1G (Bind)= Complex− Receptor− Ligand
More negative the value of 1G (Bind), stronger is the binding.

Generating Ligand-Protein Interaction
Profile
Ligand protein interaction profile was generated from the pose
of ligand showing the highest GlideScore. All the necessary
interactions like hydrogen bonding, pi-pi stacking, pi-cation
interactions; salt bridges of the HDAC-HDAC inhibitor docked
complexes were generated using the default cutoff (4 Å).

Molecular Dynamics Simulation
Molecular dynamics simulation (MDS) is a golden
computational technique that helps in monitoring ligand
receptor stability and compatibility in an elegant manner. MDS
was performed by using Desmond software (Bowers et al.,
2006), a relatively novel molecular dynamics (MD) engine by
D.E. Shaw Research that can run various molecular simulations
including standard MD and simulated annealing (Desmond
v4.8) (Shivakumar et al., 2010). The setup files were generated
using the system builder option of Desmond. HDAC-HDAC
inhibitor complexes were solvated using TIP4P water model
(Grover et al., 2012). For specifying shape and size of the
repeating unit default orthorhombic boundary conditions were
set up. The initial box volume for HDAC2-LAQ824 complex
was 463,768 Å3 and on minimizing, the volume became 416,755
Å3. Same parameters for HDAC2-HC-toxin were 468,092 and
419,994 Å3 respectively. While these values for HDAC1-LAQ824
were 463,596 and 450,033 Å3, HC- toxin-HDAC1 displayed
these volumes as 463,612 and 450,144 Å3. Individual systems
were neutralized by adding proper number of counter ions.
While HDAC2-LAQ824 and HDAC1-LAQ824 systems were
neutralized by adding 2 chloride (Cl−) ions and no ions
respectively, HDAC2-HC-toxin and HDAC1-HC-toxin were
neutralized by adding 2 chloride ions (Cl−) and 1 sodium ion
(Na+). Thus, prior to actual MDS a solvated system including
enzyme-ligand complexes as solute and water molecules with
oppositely charged ions as solvent was generated. Simulation
was carried out under NPT (constant number of atoms,
constant pressure and constant temperature) ensemble for
100 ns using the molecular dynamics option of Desmond.
Constant temperature (300K) and pressure (1.01325 bar) was
maintained throughout the simulation utilizing Nosé-Hoover
thermostat (Hoover, 1985) and Martina-Tobias-Klein method
(Martyna et al., 1994; Guo et al., 2010). Moreover, all the solvated
systems were relaxed prior to simulation. Detailed information
like protein and ligand RMSD, root mean square fluctuation
(RMSF) and ligand interaction profile was generated from
the simulation trajectory of ligand-receptor complexes using

simulation interaction diagram option of Desmond (Pravin et al.,
2015).

Creating Hypothesis Using
e-Pharmacophores Method
Both structure-based protein-ligand docking and ligand-
based pharmacophore modeling are essential parts of drug
discovery. While ligand-based technologies are time saving,
the structure-based approaches are relatively time consuming
but can yield more diverse actives and provide essential
target insights. The e-Pharmacophores method incorporates
the beneficial aspects of both ligand and structure based
approaches by generating structure based pharmacophores
which are energetically optimized (Kalyaanamoorthy and Chen,
2013). These pharmacophores can serve as representatives
in rapid screening of huge databases. The e-pharmacophores
were generated using the auto e-Pharmacophores tool of
Phase module of Schrödinger package (Phase v4.9). These
pharmacophores were generated by coupling MDS to e-
Pharmacophores method via Desmond trajectory clustering. The
trajectory from MDS for each HDAC-HDAC inhibitor complex
was separated into seven different clusters using the predefined
approach. E-pharmacophores were generated from cluster with
maximum number of frames which is directly related to ligand
stability in active site.

e-Pharmacophores Based Virtual
Screening
For validating the e-pharmacophore models, LAQ824
was selected as representative. The e-Pharmacophores
of HDAC1-LAQ824 and HDAC2-LAQ824 were used as
queries separately and screening was performed against
phase database possessing millions of small molecules (Phase
v4.9) (Dixon et al., 2006; Natarajan et al., 2016). During
virtual screening 50 conformers were generated for each
molecule and based on fitness and logic top five hits were
selected for each e-Pharmacophores. The hits were docked
in extra precision flexible mode (Zhou et al., 2007) against
the respective receptors and docking scores were calculated.
The docked complexes were subjected to Prime MMGBSA for
calculating binding free energy values (Singh and Muthusamy,
2013).

RESULTS AND DISCUSSION

RMSD Calculation for Pose Validation
For testing algorithm and selecting docking method pose
validation was performed. Self-docking involving the docking of
ligands into their native binding site provides a reasonable setup
for evaluating docking programs and scoring functions (Sandor
et al., 2010). The flexible docking protocol in extra precision
mode reproduced a pose very close to crystal pose of ligand. The
RMSD value of crystal and redocked pose was found to be 0.39
(Figure 2), authenticating the algorithm for reproducing correct
pose (Figure 2). Thus, all the docking studies were performed
using extra-precision flexible docking protocol (Jain, 2008).
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FIGURE 2 | Pose validation for testing docking algorithm. Protein was
minimized along with native ligand. Ligand was separated and protein was
subjected to grid generation. The separated native ligand was redocked with
the host protein using extra precision flexible docking method and root mean
square deviation (RMSD) was calculated between native pose (yellow) and
redocked pose (dark brown). The native and redocked pose showed RMSD
value of 0.39 Å thereby validating the ability of algorithm to determine active
site and pose of ligand correctly. Cherry red sphere represents Zinc present at
the active site.

Molecular Docking and Evaluation of
GScore
Molecular docking, the central tool in drug discovery, provides
details regarding the interaction profile of small molecules and a
protein at atomic level. Studying such interactions sheds light on
the behavior of small molecules in the binding pocket of target
proteins. Moreover, these interactions play a considerable role
in unraveling the principal biochemical processes (Meng et al.,
2011). Accurate structural modeling and correct prediction of
activity are regarded as the two chief aims of molecular docking
(Ganai, 2016d). In order to gain insights on substantial ligand
characteristics arising during the interaction between HDACs
and their inhibitors, 5 HDACi from distinct structural groups
were chosen (Supplementary Figure 1). These inhibitors with
previously determined in vitro IC50 values under a similar
experimental setup (Bradner et al., 2010) were docked against
HDAC1 and HDAC2 isoforms. The GScore obtained from 10
docked complexes are shown in Figure 3 and Supplementary
Table 1. More negative the GScore more is the affinity of ligand
toward receptor and vice versa. Among the chosen HDACi,
LAQ-824 and other hydroxamates showed most favorable (more
negative) GScore. These results are in consistent with the
previous reports where hydroxamates and benzamide derivatives
showed highest GScore against Class II HDACs and short chain
fatty acids like sodium butyrate showed least negative GScore
(Ganai et al., 2015b). Similar results were reported by another

FIGURE 3 | GScores of structurally distinct HDACi against HDAC1 and
HDAC2 enzymes. More negative the GScore, more is the affinity of ligand
toward receptor and vice versa.

group against class I HDACs. LAQ824 proved to be the first
highest scoring among hydroxamates showing a GScore of
−10.74 against HDAC2. While HC-toxin, the cyclic peptide
group inhibitor showed GScore of−6.64, valproic acid, the short
chain fatty acid group inhibitor showed GScore of −3.61 against
HDAC2.

However, unlike HDAC2 the first most favorable inhibitor
in terms of GScore proved to be LBH-589 (−9.51). This was
followed by LAQ824 as evident from a GScore of −9.4. While
HC-toxin displayed a GScore of −6.65, valproic acid proved to
be feeble inhibitor against HDAC1 as evidenced by least negative
GScore (−2.48) respectively. These finding correlate well with the
previous findings reporting short chain fatty acids like butyrate
and valproic acid as feeble inhibitors of HDACs (Dokmanovic
et al., 2007; Rasheed et al., 2007).

Our docking studies revealed that among hydroxamates
LAQ824 has strong binding potential especially against the
HDAC2 and valproic acid has feeble affinity toward both HDACs.
Moreover, HC-toxin, a cyclic peptides showed considerable
affinity score against HDAC1 and HDAC2 enzymes. Thus, in the
future experiments we tried to explore the reason of differential
affinity of hydroxamates, cyclic peptides and short chain fatty
acid valproic acid against these Class I isoforms.

Ability to Form Multiple Interactions
Markedly Enhances Affinity Score
In order to gain insights about the mechanistic details resulting
in the strong affinity score of hydroxamates and the weakest
affinity of short chain fatty acid group HDACi, ligand interaction
profile of 10 docked complexes were generated. This profile
highlights the different interactions possible between ligand and
receptor. Hydroxamates like LAQ-824 and LBH589 displayed
various interactions with the receptors HDAC2 and HDAC1.
These inhibitors only showed highest negative GScore (strong
affinity score) during molecular docking studies. Short chain
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FIGURE 4 | (A) Ligand interaction diagrams of structurally different HDACi against HDAC2. Diagrams were generated from poses having highest negative GScore
using default parameters (upto 4 Å distance from ligand). LAQ824 forms more interactions with the receptor compared to valproic acid and thus shows more negative
GScore. Kindly refer lid for more explanation. (B) Ligand interaction profile of different HDACi against HDAC1.
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FIGURE 5 | BFE values of structurally different HDACi against HDAC1 and
HDAC enzymes in frozen state where no flexibility was given to receptor. The
binding free energy values reflect the affinity of ligand toward receptor. More
negative the value, more is the affinity and vice versa.

fatty acids, such as phenylbutyrate and valproic acid form only
a few interactions with the defined receptors. These inhibitors
showed least negative GScore (weak affinity) especially in case of
HDAC1. LAQ824, the highest scoring hydroxamate showed three
hydrogen bond interactions, one Pi-Pi stacking with HDAC2.
While the hydrogen bonding residues with the aforementioned
inhibitor were Glu 208, Asp 104 and Gly 154, His 183 was found
to be involved in Pi-Pi stacking. On the other hand valproic
acid, the short chain fatty acid formed one hydrogen bond with
Tyr 308, one salt bridge and metal coordination with active
site Zinc ion of HDAC2 (Figure 4A). Similarly hydroxamates
LAQ-824 interact with HDAC1 through various bondings in
contrast to short chain fatty acid valproate. LAQ-824 interacts
via three hydrogen bonds (Gly149, Asp199, and Glu98), four Pi-
Pi stacking (Phe205, Phe150, His178, His28) and one Pi-cation
interaction (Phe205) with the active site of HDAC1 (Figure 4B).
While hydroxamate CRA024781 form salt bridges (Arg39 and
Glu103 respectively) with the binding pocket of HDAC2, no
such interactions were seen in case of HDAC1 except in case of
valproic acid which forms salt bridge with Zinc cation. The only
cyclic peptide inhibitor HC-toxin forms two and one hydrogen
bonds with the active site residues of HDAC2 (His183 and
Tyr308) and HDAC1 (His178) respectively.

Speaking in general, the high affinity of hydroxamate HDACi
may be attributed to higher number of aromatic rings present
in these inhibitors. The presence of aromatic rings in these
inhibitors results in Pi-Pi stacking and Pi-cation interactions,
making their GScore more negative. Moreover, the hydroxamate
group in these inhibitors forms hydrogen bonds with HDAC1
and HDAC2 active site besides forming metal coordination
with Zinc. Short chain fatty acid valproic acid devoid of any
aromatic ring lacks the ability to form Pi-Pi stacking and Pi-
cation interactions, which reduces its negative GScore drastically.
Taken together, molecular docking studies and ligand interaction
profile analysis shows hydroxamates as potent inhibitors against

HDAC1 and HDAC2. Moreover, HC-toxin, a cyclic peptide
showed better interaction profile against HDAC1 and HDAC2
enzymes. Thus, in nutshell, hydroxamates and cyclic peptide
HC-toxin show better interaction profile with these enzymes. In
order to confirm these findings we used molecular mechanics
generalized born surface area (MMGBSA), an implicit solvation
model to calculate the binding free energy of ligand-receptor
complexes.

Binding Free Energy Values Aligned Well
with in Vitro IC50 Values
The binding free energy of 10 docked complexes was calculated
by using MM-GBSA under default conditions (Singh and
Muthusamy, 2013). The calculated values showed parallel trend
with the in vitro IC50 values of the respective inhibitors (Bradner
et al., 2010). More negative the value of binding free energy
more is the affinity between ligand and receptor and vice
versa. Similarly lower the IC50, more potent is the inhibitor
and thus IC50 is inversely proportional to potency of inhibitor
(Ganai et al., 2015b). Hydroxamate LAQ824 with an IC50 of
0.003µM against HDAC2 showed binding free energy (BFE)
value of −67.7911 kcal/mol. HC-toxin, a cyclic peptide (IC50 =

0.9µM) displayed a BFE value of −79.5371 kcal/mol while a
value of only −9.09224 kcal/mol was obtained for short chain
fatty acid valproic acid (IC50 of 75µM) against the defined
HDAC (Figure 5 and Supplementary Table 2). For HDAC1,
LAQ824, a hydroxamate (IC50 0.001µM) showed a BFE value of
−63.61 kcal/mol while valproic acid with higher value of 51µM
showed lesser negative value of binding free energy (37.09804
kcal/mol) (Bradner et al., 2010). Thus, it is quite evident that
hydroxamates having lower IC50 values against HDAC1 and
HDAC2 show more negative values of binding free energy while
short chain fatty acid valproic acid having higher IC50 value
showed very poor value expectedly. The parallel trend between
binding free energies and the in vitro IC50 values especially in
case of hydroxamates and short chain fatty acid was obtained
using the default frozen state where no flexibility was given to
receptors HDAC1 or HDAC2. These results are in consistent
with the previous findings where maximum correlation has
been seen reported for β2-adrenergic receptor agonists and
antagonists when the receptor was held frozen (Vilar et al.,
2010).

Thus calculation of binding free energy using MM-GBSA
strongly supported our molecular docking predictions. On
analyzing all the three parameters including GScore, interaction
profile and binding BFE values we confined our downstream
experiments to top scoring hydroxamate LAQ824 and the only
cyclic peptide HC-toxin and ignored short chain fatty acid
valproic acid due to its poor interaction profile and BFE. The
main aim of our study was to generate e-pharmacophores
against HDAC1 and HDAC2 enzymes for isoform selective
inhibition. Generating these pharmacophores directly from
docked complexes does not address the ligand stability and hence
the energy issue. Thus, we performed MDS prior to creation
of e-Pharmacophores for docked complexes to overcome this
impediment.
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FIGURE 6 | Molecular dynamics simulation of LAQ824-HDAC1 (A) and LAQ824-HDAC2 (B) docked complexes around 100 ns. RMSD is calculated for all frames
and for frame x is:

RMSDX =

√
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N
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(Continued)
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FIGURE 6 | Continued
Here N represents number of atoms in atom selection; tref designates reference time, first frame is selected as reference and is considered as time t = 0; r′ represents
the position of selected atoms in frame x after aligning on the reference frame, where frame x is recorded at time tx . The RMSD of proteins (blue line) is well below 3
clearly suggesting the protein is pretty stable throughout simulation. Moreover, the results show that LAQ824 is quite stable in the active site of these proteins.
(C,D) represent the Root Mean Square Fluctuation (RMSF) for LAQ824-HDAC1 and LAQ824-HDAC2. It has importance in characterizing local changes along the
protein chain. RMSF for residue i is calculated as:

RMSFi =

√

1
T

T
∑

i=1
< (r

′

i
(t))− ri (tref ))2 >

In this equation, T signifies trajectory time over which RMSF is calculated, tref denotes reference time; ri represents position of residue i; r′ designates the position of
atoms in residue i after superposition on the reference, average of square distance is taken over the selection of atoms in residue is indicated by angle brackets. Peaks
represent the areas fluctuating maximum during the simulation. The N and C terminal regions relatively fluctuate more than any other protein part. The loop regions
show more fluctuation than rigid protein regions including alpha helices and beta strands. Green colored vertical bars represent the protein residues interacting with
ligand (LAQ824). Different types of interactions between LAQ-824-HDAC1 (E,G) and LAQ824-HDAC2 (F,G) throughout the simulation. A value of 1.0 in stacked bar
charts represents that during 100% of the simulation time a particular interaction is maintained. Ligand interaction diagrams represent interactions sustaining over
30% of the simulation time. Refer lid given on side for various bonds. It is quite evident that HDACi form metal coordination with Zinc ion present at the active site of
HDACs and thus disrupt charge relay mechanism.

Molecular Dynamics Simulation Confirmed
Receptor Stability throughout Simulation
Though static structure-based approaches likemolecular docking
and virtual screening have contributed significantly to advanced
drug discovery, but they do not take into account, the dynamic
nature of proteins (Gunasekaran and Nussinov, 2007). As
our studies are related to inhibitor induced conformational
changes of active sites where this dynamic nature cannot
be breached (Gutteridge and Thornton, 2005; Samsonov
et al., 2014), we coupled MDS to these static approaches to
overcome the defined loophole. MDS provides in depth insights
about small-molecule receptor stability and compatibility and
consequently the competency of these molecules to modulate
receptor physiological function. Taking these grim facts into
consideration, we performed MDS for 100 ns for the most
potent inhibitors LAQ824 and HC-toxin in docked state with
HDAC1 and HDAC2. RMSD of protein was calculated by
aligning all protein frames on the reference frame backbone.
Monitoring the RMSD provides crucial details about the
structural conformation of protein all through the simulation.
Our MDS studies showed protein RMSD well below 3 Å
clearly suggesting that docked complexes HDAC1-LAQ824,
HDAC2-LAQ824, HDAC1-HC-toxin, and HDAC2-HC-toxin
are highly compatible with each other (Figures 6A–D). The
RMSF is beneficial for delineating local changes along the
protein chain. The secondary structure elements like alpha
helices and beta strands portrayed less fluctuation compared
to loop regions expectedly (Figures 6A–D). While in case of
HDAC1, the residues critical for interaction with LAQ824 are
Phe 150, Phe 205, Tyr 303, His 140, Gly 149, Pro 29, and
Asp 99 the residues Phe 210, His 145, His 146, Tyr 308 Gly
154, Phe 155, Glu 208, and Asp 104 are crucial in case of
HDAC2 (Figures 6E,F). HC-toxin interacts with Tyr 303, Phe
205, Asp 99 and Phe 150 residues of HDAC1 (Figures 6G,H).
Regarding HDAC2, HC-toxin portrayed interactions with Tyr
308, Phe 210, Phe 155, Gly 307, and Asp 104 (Figures 7A–H).
Previous studies have shown that classical HDACs deacetylate
histone substrates using a charge relay mechanism like serine
proteases. In this mechanism histidine and aspartate residues

participate in addition to Zinc ion (Finnin et al., 1999). Our
current findings established that HDACi chelate Zinc ion and
thus inactivate classical HDACs (Figure 5). These findings are
in consistent with the earlier findings where HDACi have
been reported to disrupt charge relay mechanism in case
of class II HDACs through Zinc chelation (Ganai et al.,
2015b).

Speaking concisely our molecular dynamics studies showed
that HDAC1 and HDAC2 are quite stable throughout simulation.
Moreover, in the protein-ligand contact diagrams it is quite
evident that HDACi target Zinc ion, one of the crucial player
in charge relay mechanism. The main aim in this study was
to develop e-Pharmacophores from the highly stable pose of
ligand which can be obtained only by serious analysis of MDS
trajectory. Thus, we performed clustering of MDS output file
using Desmond trajectory clustering prior to e-pharmacophore
approach.

Creating Pharmacophoric Features of Top
Scoring Inhibitors against HDAC1 and
HDAC2 Enzymes
Pharmacophore according to Paul Ehrlich is a molecular
framework responsible for the biological activity of the drug.
According to IUPAC, pharmacophore is an ensemble of
steric and electronic features vital for ensuring the optimal
supramolecular interactions with a particular biological target
and to activate or impede its biological response. The information
regarding the common properties among the different binding
groups is indispensable for determining the type of inhibitors
that are binding the receptor. The pharmacophoric predictions
provide such information and thus augment the guidance
for the rational design of novel molecules (Zhu et al.,
2010). Taking these facts into consideration, we explored the
pharmacophoric features of HDACi belonging to structurally
distinct groups against HDAC1 and HDAC2 isoforms. In ligand
based pharmacophore modeling receptor is not known and
the common hypothesis is generated from the active ligands
against that receptor (Vuorinen et al., 2014). The energy based
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FIGURE 7 | Diagrams obtained after performing molecular dynamics simulation of HC-toxin-HDAC1 and HC-toxin-HDAC2 docked complexes for around 100 ns.
While (A,B) indicate the RMSF of HDAC1 and HDAC2 in docked state with HC-toxin, (C,D) represent the RMSF of the defined HDACs in bound state with the
HC-toxin. Different types of interactions between HC-toxin and the two HDACs. (E,G) represent interaction profile of HC-toxin-HDAC1; (F,H) represent same profile for
HC-toxin-HDAC2. Consider interactions made by HC-toxin with receptor which includes both HDAC1 and HDAC2 and their cofactor Zn.
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FIGURE 8 | E-Pharmacophoric features of LAQ824 and HC-toxin against HDAC1 and HDAC2 enzymes. LAQ824 shows distinct features against HDAC1 and
HDAC2. For HDAC1, LAQ824 portrays five features while for HDAC2 it shows only three features. Two extra features both in linker region of LAQ824 (P8 and D4) were
seen for LAQ824 while in the binding pocket of HDAC1 as compared to HDAC2. While HC-toxin portrayed three features (hydrophobic group in linker region, HBA in
ZBG and HBD in cap region) against HDAC1, only one feature (HBA in ZBG) was seen against HDAC2. (A) HDAC1- LAQ824, (B) HDAC2- LAQ824, (C) HDAC1-
HC-toxin, and (D) HDAC2- HC-toxin.

TABLE 1 | Ligand interaction profile of HDACi against HDAC1 and HDAC2 enzymes.

HDAC inhibitor group HDAC inhibitor HDAC2 HDAC1

Hydroxamates HBR Pi-Pi stacking Salt bridge HBR Pi-Pi stacking Pi-cation Salt bridge

LAQ-824 ASP104 HIS183 GLY149 PHE205 PHE205

GLU208 ASP99 PHE150

GLY154 GLU98 HIS178

HIS28

CRA-024781 ASP104 PHE155 GLU103 GLY149 HIS141

GLY154 HIS178

LBH-589 ASP104 HIS33 GLY149 PHE150 PHE205

GLU103 HIS183 GLU98 HIS178

GLY154 PHE210 ASP99

Cyclic peptides HC-toxin HIS183 HIS178

TYR308

Short chain fatty acids Valproic acid TYR308 Zn401 Zn600

models developed in the present work involves the docking of
bioactive small-molecule into the active site of receptor. The e-
Pharmacophore approach uses the Glide XP scoring function to

precisely characterize protein-ligand interactions (Loving et al.,
2009; Salam et al., 2009; Ganai, 2016d). As this approach also
involves receptor to generate complimentary features, one active
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compound is sufficient to achieve logical conclusion (Ganai
et al., 2015b). As aforementioned, the previous studies have been
generated e-pharmacophores directly from docked complexes as
thus do not take into account the ligand stability, we used a novel
strategy of coupling molecular dynamics to e-pharmacophore
via Desmond trajectory clustering, a script which performs
hierarchical clustering using MDS output file of protein-ligand
complex as input. The MDS trajectory of each docked complex
was separated into 7 clusters and the one with maximum
number of frames was used for generating e-Pharmacophores.
We used auto e-pharmacophore of Phase for generating the
critical features of LAQ824, a hydroxamate representative and
HC-toxin, a cyclic tetrapeptide against HDAC1 and HDAC2,
class I isoforms.

LAQ824 Showed Differential Features against HDAC1

and HDAC2 Enzymes
As aforementioned the pharmacophores were generated from
cluster with highest frame frequency. LAQ824 portrayed distinct
features against HDAC1 and HDAC2. The defined inhibitor
showed five features against HDAC1 namely two hydrogen bond
donors (D5) in ZBG and D4 in linker region; two aromatic rings
one in linker (R11) and another in cap region (R10); one positive
ionizable group (P8) in linker region. Contrary to HDAC1,
LAQ824 showed three features against HDAC2 namely one
HBD’s (D5) in ZBG; two aromatic rings (R9 and R11) in cap and
linker region respectively. Thus, LAQ824 showed two features
(P8 and D4) lesser against HDAC2 in comparison to HDAC1
(Figures 8A,B).

2 HC-Toxin Showed Two Features Less for
Inhibiting HDAC2 Compared to HDAC1
HC-toxin showed three distinct features namely hydrogen bond
acceptor (HBA) in ZBG (A1); one hydrophobic group (H13)
in linker region and one hydrogen bond donor (HBD) in
cap region. For HDAC2, it portrayed only one HBA (A1) in
ZBG (Figures 8C,D). Thus, the above findings suggest that
for HDAC2 specific inhibition, LAQ824 pharmacophore should
have one HBD and one positive ionizable group (both in linker
region) less for HDAC2 as compared to HDAC1. While for
type-specific inhibition of HDAC1, HC-toxin pharmacophore
should have three features located in ZBG, linker and cap,
only single feature HBA in ZBG is required for HDAC2
isoform.

LAQ-824 and HC-Toxin Showed Differential High

Energy Features against HDAC1 and HDAC2
Energy contribution of each pharmacophoric feature was
calculated for LAQ824 and HC-toxin against HDAC1 and
HDAC2 enzymes. While positive ionizable group (P8) in linker
region (RL) was maximum scoring (−4.07 kcal/mol) against
HDAC1, aromatic ring (R11) in linker (RL) proved to be best
scoring feature (−1.26 kcal/mol) in case of HDAC2. Regarding
HC-toxin, HBA in ZBG (AZ) scoredmaximum in terms of energy
(−0.7 kcal/mol) against HDAC1, followed by hydrophobic group
in linker and HBD in cap. However, for HDAC2, HBA in
ZBG (AZ) was the sole top scoring feature (−0.7 kcal/mol).

TABLE 2 | Energy contribution of individual pharmacophoric features against
HDAC1 and HDAC2, class I isoforms.

HDAC

inhibitor

Target

HDAC

Feature

label

Component

location

Score

(Rank wise)

LAQ824 HDAC1 P8 PL −4.07

D5 DZ −1.35

R11 RL −0.89

R10 RC −0.67

D4 DL −0.34

HDAC2 R11 RL −1.26

D5 DZ −1.22

R9 RC −0.8

HC-toxin HDAC1 A1 AZ −0.7

H13 HL −0.34

D7 DC −0.17

HDAC2 A1 AZ −0.7

High scoring features of representative HDACi against HDAC1 and HDAC2 enzymes.

AL, AC, AZ designate HBA in linker, cap and ZBG. While DL, DC, and DZ signify HBD in

linker region, cap region and ZBG respectively, RL, RC, RZ represent ring in the predefined

regions. Last but no way least HL represents hydrophobic group in linker region of inhibitor.

PL designates positive ionizable group in linker region from the table it is quite evident that

maximum energy contributing feature in LAQ824 against HDAC1 is PL while it is RL in case

of HDAC2. In case of HC-toxin, AZ scores maximum against both HDAC1 and HDAC2 in

case of HC-toxin.

The details of various pharmacophoric features with rank wise
scores are summed in Table 1. Summarizing in few words PL
> DZ > RL > RC > DL in case of LAQ824-HDAC1 while
RL > DZ > RC in case of LAQ824-HDAC2 (Table 2). From
these studies it is clear that a single inhibitor exhibits differential
features against HDAC1 and HDAC2 isoforms and thus in the
downstream steps we used the e-Pharmacophores of HDAC1-
LAQ824 and HDAC2-LAQ824 as queries in e-Pharmacophore
based virtual screening and selected five hits for each of the e-
Pharmacophores and tested them against the respective receptors
for inhibition.

Hits Retrieved from e-Pharmacophores
Based Virtual Screening Portrayed
Promising Affinity toward Therapeutically
Relevant HDAC2
The hit molecules retrieved from e-Pharmacophores based
virtual screening were selected based on fitness and logic as
described in methodology section. For HDAC1, five hits having
CACPD2011aCode CACPD2011a-0000302377, CACPD2011a-0
001697283, CACPD2011a-0002233975, CACPD2011a-0001697
630, and CACPD2011a-0000523061 (Supplementary Figure 2)
were finally selected among more than 1000 hits. For HDAC2,
CACPD2011a-0001267628, CACPD2011a-0001261600, CAC
PD2011a-0001267103, CACPD2011a-0000253112, and CAC
PD2011a-0001261277 (Supplementary Figure 3) were selected
among the retrieved hits. The selected hits obtained from
HDAC1-LAQ824 and HDAC2-LAQ824 were docked against
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FIGURE 9 | Docking scores and binding free energy values of virtually screened hits against HDAC1 and HDAC2. While (A,B) shows docking scores and binding free
energy values of hits against HDAC1, (C,D) designate the defined parameters for HDAC2.

HDAC1, and HDAC2 respectively. These hits showed negative
values of docking score and negative values of binding free
energy clearly indicating that these hits do inhibit the respective
isoforms and thus validating the e-Pharmacophores hypothesis.
Among the selected hits for HDAC1, the first three compounds
showed most favorable (more negative) docking as well as BFE
values (Figures 9A,B). Regarding the therapeutically relevant
HDAC2, all the five hits in general and the hits second, third and
fourth in particular portrayed promising affinity toward HDAC2
as evidenced by the expectedly more negative values of docking
score and BFE (Figures 9C,D).

CONCLUSION

In this work we have taken the advantage of combinatorial in
silico approach including XP-molecular docking, MMGBSA,
MDS, trajectory clustering and e-Pharmacophores approach
and e-Pharmacophores based virtual screening to exploit

the significances of various structural variants in the HDAC
inhibitor-HDAC1 and HDAC inhibitor-HDAC2 complexes.
HDACi from three distinct structural groups; hydroxamates,
cyclic tetrapeptides and short chain fatty acids were docked
against HDAC1 and HDAC2 enzymes for evaluating the
interaction mechanisms and affinity scores. The predicted
BFE values aligned well with the in vitro IC50 values of
inhibitors thereby validating the simulation accuracy. Our
molecular docking studies demonstrated that hydroxamates
like LAQ824, LBH589 etc., and cyclic tetrapeptide HC-toxin
display higher affinities with structurally identical HDAC1
and HDAC2, class I isoforms. Moreover, these studies
confirmed that inhibitors with higher number of aromatic
rings like LAQ824 show enhanced potency while lacking
such rings (valproic acid) show feeble affinity toward these
enzymes.

Classical HDACs deacetylate histone substrates using charge
relay mechanism in which two histidine, two aspartate residues
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and Zinc ion play a crucial role. Our MDS studies showed
that HDACi chelate the Zinc ion by interacting with it thereby
disrupting charge relay mechanism, providing further support
to the previous findings of Finnin et al. (1999) and Ganai et al.
(2015b). We performed MDS of docked complexes followed by
MDS trajectory clustering for confirming the stability of protein
throughout simulation and for understanding the ligand stability.
Our e-Pharmacophores approach proved that HDACi LAQ824
and HC-toxin show differential features against the structurally
identical HDAC1 and HDAC2, Class I isoforms. Presence of
positive ionizable group and HBD in the linker region of LAQ-
824 has significance for inhibiting HDAC1 while absence of these
two features is meaningful in case of HDAC2. These findings
suggest that presence of positive ionizable group and HBD in
linker region of LAQ-824 favors its selectivity toward HDAC1
while absence of these features shifts the selectivity toward
HDAC2. The presence of HBD in cap region and hydrophobic
group in linker region of HC-toxin promotes its selectivity
toward HDAC1 while deficiency of these features enhances its
selectivity toward HDAC2.

Quantitative analysis of energy contribution of each
pharmacophoric feature was performed for LAQ824-HDAC1,
LAQ824-HDAC2, HC-toxin-HDAC1, and HC-toxin-HDAC2
docked complexes. Our studies identified that the positive
ionizable group in linker region (PL) of LAQ824 was the highest
scoring pharmacophoric feature against HDAC1 whereas ring in
linker (RL) scores maximum in the binding pocket of HDAC2.
Hydrogen bond acceptor (HBA) in ZBG (AZ) was maximum
scoring in case of both HDAC1 and HDAC2. Speaking concisely
our in silico screening and e-Pharmacophore models tempt
us to speculate that PL and RL of LAQ824 have a markedly
significant role in inhibiting HDAC1 and HDAC2 enzymes
respectively. From the above studies, it is quite evident that
e-Pharmacophore models of same inhibitor shows different
features against HDAC1 and HDAC2. The hits retrieved from
e-Pharmacophores based virtual screening using the HDAC1-
LAQ824 and HDAC2-LAQ824 pharmacophores as queries
against phase database showed negative values of docking score
and BFE thereby validating the accuracy of models. As the

studies are focused on HDAC2, hits CACPD2011a-0001261600,
CACPD2011a-0001267103, CACPD2011a-0000253112 proved
to be most effective in inhibiting HDAC2. These hits with
high potency and desired selectivity toward HDAC2 will play a
key role in ameliorating neurodegenerative events safely while
leaving the function of neuroprotective isoform intact.
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Supplementary Figure 2 | Structures of five hits obtained through
e-Pharmacophores based virtual screening for HDAC1. The 5th structure with
CACPD2011aCode (CACPD2011a-0000302377) is the first hit, fourth structure
(CACPD2011a-0001697283) is the second hit, third structure
(CACPD2011a-0002233975) is the hird hit, structure second is the fourth hit and
structure 1 (CACPD20111a-0000523061) is the 5th hit.

Supplementary Figure 3 | Structures of hits selected for HDAC2 after virtual
screening using LAQ824-HDAC2 e-Pharmacophores as query. Structure second
(CACPD2011a-0001267628) is the first hit, structure first is the second hit,
structure 5th is the third hit, structures third and fourth are the fourth and 5th hit
respectively.
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