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The use of genetic evaluations in the Water Buffalo by means of a Best Linear Unbiased
Prediction (BLUP) animal model has been increased over the last two-decades across
several countries. However, natural mating is still a common reproductive strategy that
can increase the proportion of missing pedigree information. The inclusion of genetic
groups in variance component (VC) and breeding value (EBV) estimation is a possible
solution. The aim of this study was to evaluate two different genetic grouping strategies
and their effects on VC and EBV for composite (n = 5) and linear (n = 10) type traits in the
Italian Mediterranean Buffalo (IMB) population. Type traits data from 7,714 buffalo cows
plus a pedigree file including 18,831 individuals were provided by the Italian National
Association of Buffalo Breeders. VCs and EBVs were estimated for each trait fitting
a single-trait animal model and using the official DNA-verified pedigree. Successively,
EBVs were re-estimated using modified pedigrees with two different proportion of
missing genealogies (30 or 60% of buffalo with records), and two different grouping
strategies, year of birth (Y30/Y60) or genetic clustering (GC30, GC60). The different
set of VCs, estimated EBVs and their standard errors were compared with the results
obtained using the original pedigree. Results were also compared in terms of efficiency
of selection. Differences among VCs varied according to the trait and the scenario
considered. The largest effect was observed for two traits, udder teat and body depth
in the GC60 genetic cluster, whose heritability decreased by −0.07 and increased
by +0.04, respectively. Considering buffalo cows with record, the average correlation
across traits between official EBVs and EBVs from different scenarios was 0.91, 0.88,
0.84, and 0.79 for Y30, CG30, Y60, and CG60, respectively. In bulls the correlations
between EBVs ranged from 0.90 for fore udder attachment and udder depth to 0.96 for
stature and body length in the GC30 scenario and from 0.75 for udder depth to 0.90 for
stature in the GC60 scenario. When a variable proportion of missing pedigree is present
using the appropriate strategy to define genetic groups and including them in VC and
EBV is a worth-while and low-demanding solution.
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INTRODUCTION

The Water Buffalo (Bubalus bubalis) is a large bovid mainly
distributed in the Asian continent where the 97% of its world
population is concentrated [Food and Agriculture Organization
(FAO), 2020]. The name “water buffalo” is due to its adaptation
to flooded or swampy areas, where it partially submerges and
walks on the bottom mud without difficulty. The rest of the water
buffalo world population (3%) is raised in the Mediterranean area
historically characterized by the same optimal rearing conditions.
In the European continent only the 0.2% of its world population
is found and about 93% of these animals are located in south-
central Italy (Neglia et al., 2020). The total census in Italy has
increased considerably over the last decade, making it one of
the most important dairy species in the country. In 2019, 34,990
lactating buffaloes have been registered to the official herd book.
Moreover, 666,960 controlled lactations and 9,953 type traits
evaluations are available and officially recorded [Associazione
Nazionale Allevatori Specie Bufalina (ANASB), 2020]. Thanks to
the physical-chemical properties of its milk—high concentration
in protein and fat (FC ∼ 8%) and favorable coagulation (Costa
et al., 2020b)—the main zootechnical interest of the Italian
Mediterranean Buffalo (IMB) is the production of the iconic
traditional dairy products like the Mozzarella di Bufala Campana
(Boselli et al., 2020), which has a great economic impact on the
Italian food industry (ISMEA, 2020). Costa et al. (2020a,b) refers
to the outstanding increase of IMB population size observed in
the last 15 years, as well as the increase in terms of kilos of
cheese produced, the larger herd size, the constant expansion in
registered herds and the increment in milk price. Therefore, the
economic interest in this specie makes it necessary to develop new
innovative tools to improve the breeding process.

The implementation of genetic evaluations in the Water
Buffalo based on a BLUP animal model has been increasing
over the last decade across several countries (Agudelo-Gómez
et al., 2015; Safari et al., 2018; Abdel-Shafy et al., 2020). The
prediction of breeding values (EBVs) constitutes an integral part
of most breeding programs which are based on two fundamental
pillars: phenotypic data (e.g., milk production%, fat%, protein,
or morphological trait) and genealogical information (i.e., a
pedigree). However, if animals with unknown parents are
present in the pedigree, bias in the prediction of both variance
component (VC) and EBV is expected (Peškovičová et al.,
2004; Petrini et al., 2015). BLUP methodology allows for the
simultaneous estimation of fixed and random effects but gaps
in the relationship matrix may jeopardize its unbiasedness due
to the inability of correctly estimating and disentangling genetic
and environmental components (Postma, 2006; Gómez et al.,
2016; Wolak and Reid, 2017). Indeed, incomplete pedigree
information can lead to inaccurate prediction of animal genetic
potential, overestimating or underestimating animal breeding
value and hampering decisions based on the selection eventually
causing economic losses (Raoul et al., 2016; Carneiro et al., 2017;
Abdel-Shafy et al., 2020).

One of the reason behind incomplete pedigree information
is the use of natural mating, still common in the buffalo
herds, which makes parentage assignment more complex.

Indeed, in IMB the use of the artificial insemination (AI) is
still moderate (Parlato and Van Vleck, 2012). According to
official data [Associazione Nazionale Allevatori Specie Bufalina
(ANASB), 2020] and following a worldwide tendency (Singh
and Balhara, 2016; Purohit et al., 2019), the proportion of
natural mating in IMB decreased from around 76 to 62%
from 2010 to 2019 [Associazione Nazionale Allevatori Specie
Bufalina (ANASB), 2020]. These values, even if promising, are
still lower than what it is observed in other species such as in
dairy cattle, where the use of artificial insemination is close to
100% (Rodríguez-Martínez and Peña Vega, 2013; Ugur et al.,
2019). Among the reasons why natural mating is still the
most common reproduction technology for water buffalo there
are physiological and reproductive aspects, herd management,
breeding techniques, and organization (Neglia et al., 2020).

Despite being a routine analysis, it is almost impossible for
the farmer to bear the total cost of parentage verification and to
have his entire herd genotyped. In detail, in 2019 approximately
10,000 individuals have received a type trait evaluation in
Italy but only 4,671 were DNA tested [Associazione Nazionale
Allevatori Specie Bufalina (ANASB), 2020]. Hence, we are in a
situation where phenotypic data are available for many animals,
but a large proportion of these animals do not have complete
pedigree information. Despite this limitation, the number of
paternity tests in IMB in year 2019 showed a two-fold increase
compared to year 2018.

Moreover, parentage testing is often reserved only for the
best animals causing additional biases in the genetic evaluation
being eventually based on a selected and non-random sample of
the effective population. Furthermore, the possibility of using a
larger number of data, albeit with incomplete pedigree, allows to
observe all the variability of the trait of interest and therefore to
obtain more accurate estimates.

The problem of incomplete pedigree has existed for many
years and continues to be one of the main issues in genetic
evaluations. Several researchers have worked on possible
statistical approaches in order to correct for the presence of
gaps in the pedigree (Peškovičová et al., 2004; Carneiro et al.,
2017; Tonussi et al., 2017; Shiotsuki et al., 2018; Nwogwugwu
et al., 2020; Macedo et al., 2020). The implementation of
new technologies such as high-throughput single-nucleotide
polymorphism (SNP) genotyping will certainly solve most of
the problems linked to uncertain paternity but this is true only
for individuals who are still alive or whose biological samples
are available. Moreover, although genomics is the new standard
in breeding and genetics, there are still some problems that
need to be solved regarding how to cope with missing pedigree
information (Tonussi et al., 2017; Misztal et al., 2020).

One suggested solution when dealing with an incomplete
pedigree is the use of “Genetic Groups” approach, suggested over
30 years ago by Westell et al. (1988). This approach is based
on the concept that subjects born in a certain period or coming
from a certain area are the result of specific selective choices and
therefore “genetically different” from other subjects born in other
periods or from other areas.

The inclusion of genetic groups in VC and EBV is a method
that has been adopted and extensively validated, as an example, in
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beef and dairy cattle (Perez-Enciso and Fernando, 1992; Sullivan,
1995; Theron et al., 2002; Peškovičová et al., 2004; Phocas
and Laloë, 2004; Petrini et al., 2015; Wolak and Reid, 2017).
The assignment of genetics groups to animals with uncertain
genealogy represents a simple and effective solution to increase
the accuracy of genetic evaluations (Henderson, 1988; Cardoso
and Tempelman, 2003).

However, a crucial aspect is the strategy used to define the
genetic groups. Therefore, the aim of this study was to evaluate
the use of different genetic grouping strategies and its effects on
VC and EBV estimation for 5 composite and 10 linear traits in
the IMB population.

MATERIALS AND METHODS

Ethics Statement
Animal welfare and use committee approval was not needed for
this study as datasets were obtained from pre-existing databases
based on routine animal recording procedures.

Data Description
Data for the present study were provided by the Italian National
Association of Buffalo Breeders (ANASB) and consisted of linear
appraisal records from years 2004 to 2020. The initial data
set included 79,342 IMB cows from 464 herds phenotyped for
fifteen type traits. The type traits were five composite traits,
namely, final score (FS), structure (ST), feet and legs (FL), yield
potential (YP) and udder teat (UT), and 10 linear traits, namely,
stature (STAT), body depth (BD), body length (BL), foot angle
(FA), fore udder attachment (FUA), rear udder width (RUW),
udder depth (UD), teat placement (TP), teat length (TL), and
body condition score (BCS). The median age at evaluation was
46 months. The scale used for scoring varied according to the
set of observed traits. Composite traits were scored on a 65–100
scale, linear traits were scored on a 1–50 scale and BCS was scored
on a 4.5–9.5 scale. Overall 17 official classifiers were enrolled
in the scoring procedures. Data editing consisted of retaining
only cows from herds with at least two contemporaries (i.e.,
individuals classified by the same classifier in the same round of
classification) and whose ascendants were confirmed by a DNA
parentage test. Finally, 7,714 buffalo cows belonging to 194 herd
with a pedigree containing 18,831 individuals were used in the
analysis. Descriptive statistics are in Table 1.

Alteration of Genetic Relationships and
Grouping Strategies
The impact of different genetic grouping strategies on VC, EBV,
and their accuracies (ACC) was investigated using the original
pedigree and a modified pedigree where two different proportion
of missing genealogies, namely, 30% (30) and 60%, (60) were
randomly introduced. The choice of using these two thresholds
was based not only on the need to mimic the real situation
observed across ANASB farms but also to investigate the effect
of moderate or massive pedigree gaps. After introducing the
missing genealogy, the individual was assigned to a specific

TABLE 1 | Mean, standard deviation (SD), minimum (Min), maximum (Max), and
coefficient of variation (CV) for traits evaluated in the IMB.

Type Trait Mean SD Min Max CV

Composite Final score (FS) 81.34 1.82 65 87 0.02

Structure (ST) 82.50 2.38 69 91 0.03

Feet and legs (FL) 80.19 2.59 65 89 0.03

Under teat (UT) 80.30 2.64 65 90 0.03

Yield potential (YP) 83.44 2.14 71 90 0.03

Linear Stature (STAT) 30.57 6.56 8 50 0.21

Body depth (BD) 29.48 6.00 7 50 0.20

Body length (BL) 31.50 6.56 10 50 0.21

Foot angle (FA) 22.65 6.14 3 50 0.27

Fore udder attachment (FUA) 22.39 6.84 2 46 0.31

Rear udder width (RUW) 24.20 6.12 2 50 0.25

Udder depth (UD) 27.69 6.33 2 50 0.23

Teat placement (TP) 21.30 4.74 1 50 0.22

Teat length (TL) 23.85 7.04 2 50 0.30

Body condition score (BCS) 7.34 0.47 4.5 9.5 0.06

genetic group. Genetic groups (GG) were created following two
clustering methods.

The first method (Y) was based on the year of birth and
on an average generation interval, which for the IMB was
defined (based on an estimation on actual IMB data) as 6 years.
Individuals born before 1985 was considered as base animals and
assigned to group 1. The remainder of the buffaloes was assigned
to six different groups.

The second grouping strategy (GC) was based on the genetic
distances estimated from the original pedigree. The procedure
consisted of two steps. In the first step the pedigree-based additive
relationship matrix was calculated and used as input for a
hierarchical cluster analysis using a complete-linkage clustering
method (Kaufman and Rousseeuw, 2009). This method works
in a bottom-up manner. Each object is initially considered as a
single-element cluster (leaf). At each step of the algorithm, the
two clusters that are the most similar are combined into a new
bigger cluster (nodes).

This procedure is iterated until all points are member of just
one single big cluster (root). The result is a tree that can be
plotted as a dendrogram. In the second step, the dendrogram
is visually evaluated to define a priori the cut-off level that
will identify the number of clusters (i.e., genetic groups). Each
individual is then assigned to a particular cluster. Following the
above mentioned procedure, fourteen different genetic groups
were created (Supplementary Figure 1).

In detail at the end of the procedures, four scenarios were
created according to the grouping strategy (Y or GC) and the
proportion of missing genealogies (30 or 60%).

Successively, VC, EBV, and ACC were estimated for each
trait presented in Table 1 fitting a single-trait animal model
and using the original pedigree (GOLD) and the four scenarios,
namely Y30, Y60, GC30, and GC60. Estimates from GOLD were
considered as gold standard. The estimation of VC, EBV, and ACC
was repeated 10 times per each scenario (Y30, Y60, GC30, and
GC60). The average number of animals and its standard deviation
per scenario are shown in Table 2.
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TABLE 2 | Average number of animals (and standard deviation) by genetic
grouping strategy (GG) and proportion of missing genealogies.

GG Level Proportion of missing genealogies

30% 60%

Ya 1 43 (0) 43 (0)

2 456 (1) 456 (1)

3 1,798 (87) 1,800 (89)

4 2,524 (432) 2694 (607)

5 2,394 (412) 2,876 (906)

6 1,001 (271) 1,435 (715)

7 148 (35) 218 (106)

GCb 1 5,973 (656) 6,279 (656)

2 695 (52) 985 (54)

3 369 (22) 559 (23)

4 279 (53) 450 (55)

5 291 (81) 468 (81)

6 345 (96) 556 (96)

7 134 (35) 218 (35)

8 356 (90) 579 (90)

9 206 (58) 330 (57)

10 101 (31) 162 (30)

11 219 (61) 353 (61)

12 238 (56) 393 (56)

13 249 (65) 397 (66)

14 69 (21) 109 (22)

aGrouping strategy based on the year of birth and on an average generation
interval set to 6 years.
bGrouping strategy based on the genetic distances estimated from the
original pedigree.

Genetic Analysis
The following single-trait animal model with groups was used to
estimate VC, their corresponding heritability, and breeding value
for each considered trait:

yijklm = µ+ hyci + PAj + DIMk + NMl + am

+

p∑
n=1

tmngn + eijklm

where yijklm is the score of each trait for a given buffalo cow;
µ is the overall mean; hyci is the fixed effect of the ith herd-
year of evaluation-classifier (i = 1,. . .957); PAj is the fixed effect
of the jth age nested within parity (j = 1,. . .173); DIMk is the
fixed effect of the kth days in milk (k = 1,. . .30); NMl is the fixed
effect of the lth number of milking (l = 1,. . .3); am is the random
additive genetic effect of the mth buffalo; gn is the fixed group
effect based on Y or GG and containing the nth ancestor; tmn is
the additive relationship between the nth and mth animals and
the summation is over all p ancestors of animal m; and eijklm is
the random residual effect.

In matrix notation, the model can be written as:

y = Xb+ ZaQaga + Zaa+ e

where matrix X is an incidence matrix relating phenotypic
records in vector y to fixed effects in vector b, matrix Za is
an incidence matrix relating phenotypic records in vector y
to animal additive genetic effects in vector a, matrix Qa is an
incidence matrix relating animals in vector a to unknown parent
groups in vector ga. Vectors a and e have means 0 and variances
Aσ2

a and σ2
e , respectively.

The corresponding mixed-model equations were: X′X X′Z X′ZQ
Z′X Z

′

Z + A−α Z′ZQ
Q′Z′X Q′Z′Z Q′Z′ZQ


 b̂

â
ĝ

 =
 X′y

Z′y
Q′Z′y


Solving the equations the breeding value of an animal m will be:

am∗ = Qĝ + âm

The accuracy of EBV was calculated as recommended by
Aguilar et al. (2020):

Accuracyij = 1−
SE2(

1+ fx
)

va

where SE is the standard error for the animal solution i in trait
j, fx corresponds to individual inbreeding and va is the additive
variance σ2

a .

Comparison of Analysis
Results from different scenarios were compared based on
descriptive statistics (i.e., mean and standard errors) of VC,
Pearson’s correlations between EBVs grouped by animal status
(i.e., bulls with at least 10 daughters, buffalo cows with or without
progeny), re-rankings of first 10 bulls, efficiency of selection
(SEf) as defined later and genetic trends, estimated by the linear
regression of EBVs on year of birth.

The SEf was calculated as proposed by Petrini et al. (2015) and
Peškovičová et al. (2004), which defined SEf as the ratio between
EBVs excluding (x̄gg_GG) and including genetic groups (x̄GG_GG):

SEf (%) = 100× x̄gg_GG/x̄GG_GG

The SEf was calculated for the best 10, 30, and 50%
animals, respectively.

Softwares
Data preparation and editing, and all statistical analysis were
performed using the R programming environment v.3.6.1
(R Core Team, 2019), except VC which were estimated
using AIREMLF90 (Misztal et al., 2002) and EBV which
were obtained using BLUPF90 (Misztal et al., 2018). The R
package optiSel (Wellmann, 2019) was used to calculate the
pedigree-based additive relationship matrix and the package
stats for the hierarchical cluster analysis (R Core Team,
2019). The analyses were run on the ANASB server1 using
an Intel R© Pentium R© CPU G3220 @ 3.00GHz, with 2 CPUs
and 16 Gb of RAM.

1http://www.anasb.it
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RESULTS

Data Overview
Descriptive statistics for the analyzed traits are shown in Table 1.
The deviation from the normal distribution was moderate, with
kurtosis values ranging from 0.03 to 2.07. Traits distribution was
skewed to the right (Supplementary Figure 2) and the average
coefficient of variation was 2.8 and 24.4% for composite and
linear traits, respectively.

Variance Components and Heritability
The VC and heritability estimates from the different
scenarios are shown in the Tables 3, 4 for composite and
linear traits, respectively. The estimated genetic variance
was highest for five linear traits (STAT, FUA, RUW, UD,
and TL), intermediate for BD, BL, FA, and TP, while the
lowest were for composite traits and BCS. On average,
the estimates of the additive variances from the GOLD
scenario were the highest, observing largest differences

TABLE 3 | Component of variance and hereditability for the composite traits obtained in the different pedigree scenario in the IMB.

Scenario Parameter FS ST FL UT YP

GOLD σ2 a 0.55 0.98 0.74 1.02 0.58

σ2 e 2.02 2.90 4.67 5.96 2.39

σ2 p 2.57 3.88 5.41 6.98 2.98

h2 ± s.e. 0.22 ± 0.03 0.25 ± 0.03 0.14 ± 0.03 0.15 ± 0.03 0.20 ± 0.04

Y30 σ2 a 0.54 0.89 0.73 0.98 0.55

σ2 e 2.03 2.98 4.67 6.01 2.43

σ2 p 2.57 3.87 5.40 6.98 2.97

h2 ± s.e. 0.21 ± 0.03 0.23 ± 0.03 0.14 ± 0.03 0.14 ± 0.03 0.18 ± 0.04

Y60 σ2 a 0.55 0.87 0.74 0.99 0.50

σ2 e 2.02 3.00 4.65 5.99 2.48

σ2 p 2.56 3.86 5.39 6.98 2.97

h2 ± s.e. 0.21 ± 0.04 0.22 ± 0.04 0.14 ± 0.03 0.14 ± 0.03 0.17 ± 0.05

GC30 σ2 a 0.51 0.93 0.78 1.17 0.52

σ2 e 2.06 2.94 4.62 5.83 2.45

σ2 p 2.56 3.86 5.40 6.99 2.97

h2 ± s.e. 0.20 ± 0.04 0.24 ± 0.04 0.14 ± 0.03 0.17 ± 0.03 0.18 ± 0.04

GC60 σ2 a 0.48 0.83 0.84 1.52 0.51

σ2 e 2.08 3.02 4.55 5.48 2.46

σ2 p 2.56 3.85 5.40 7.00 2.97

h2 ± s.e. 0.19 ± 0.05 0.22 ± 0.05 0.16 ± 0.05 0.22 ± 0.05 0.17 ± 0.06

σ2a = additive genetic variance; σ2e = residual variance; σ2p = phenotypic variance; h2 = hereditability; s.e. = standard error.

TABLE 4 | Component of variance and hereditability for the linear traits obtained in the different pedigree scenario in the IMB.

Scenario Parameter STAT BD BL FA FUA RUW UD TP TL BCS

GOLD σ2 a 9.33 4.44 4.90 2.89 6.64 6.21 7.69 2.53 10.46 0.030

σ2 e 17.01 19.19 16.20 28.37 31.34 23.47 22.64 16.62 29.35 0.159

σ2 p 26.34 23.63 21.10 31.26 37.98 29.68 30.33 19.16 39.81 0.189

h2 ± s.e. 0.35 ± 0.03 0.19 ± 0.03 0.23 ± 0.03 0.09 ± 0.02 0.17 ± 0.03 0.21 ± 0.03 0.25 ± 0.03 0.13 ± 0.03 0.26 ± 0.03 0.16 ± 0.03

Y30 σ2 a 8.82 4.21 4.92 3.14 6.18 6.11 6.76 2.25 10.32 0.025

σ2 e 17.54 19.32 16.23 28.08 31.67 23.51 23.34 16.88 29.31 0.163

σ2 p 26.36 23.53 21.15 31.22 37.85 29.62 30.10 19.12 39.63 0.188

h2 ± s.e. 0.33 ± 0.03 0.18 ± 0.03 0.23 ± 0.03 0.10 ± 0.03 0.16 ± 0.03 0.21 ± 0.03 0.22 ± 0.03 0.12 ± 0.03 0.26 ± 0.03 0.13 ± 0.03

Y60 σ2 a 8.50 4.20 4.92 3.14 5.98 5.65 6.63 2.39 10.25 0.026

σ2 e 17.96 19.26 16.24 28.07 31.75 23.89 23.29 16.71 29.20 0.162

σ2 p 26.45 23.46 21.15 31.21 37.73 29.55 29.92 19.11 39.45 0.188

h2 ± s.e. 0.32 ± 0.04 0.18 ± 0.04 0.23 ± 0.04 0.10 ± 0.03 0.16 ± 0.04 0.19 ± 0.04 0.22 ± 0.04 0.13 ± 0.03 0.26 ± 0.04 0.14 ± 0.04

GC30 σ2 a 9.10 4.10 4.89 2.99 6.03 5.41 6.97 2.45 9.80 0.028

σ2 e 17.27 19.40 16.22 28.24 31.77 23.85 23.08 16.66 29.77 0.158

σ2 p 26.37 23.50 21.12 31.23 37.80 29.26 30.05 19.12 39.57 0.188

h2 ± s.e. 0.35 ± 0.04 0.17 ± 0.03 0.23 ± 0.04 0.10 ± 0.03 0.16 ± 0.03 0.18 ± 0.04 0.23 ± 0.04 0.13 ± 0.03 0.25 ± 0.04 0.15 ± 0.04

GC60 σ2 a 9.93 3.48 5.41 3.09 5.33 5.39 6.61 2.60 9.72 0.026

σ2 e 16.55 19.95 15.75 28.10 32.38 24.10 23.30 16.51 29.70 0.161

σ2 p 26.48 23.42 21.16 31.19 37.71 29.49 29.91 19.12 39.43 0.187

h2 ± s.e. 0.38 ± 0.05 0.15 ± 0.05 0.26 ± 0.05 0.10 ± 0.04 0.14 ± 0.05 0.18 ± 0.05 0.22 ± 0.05 0.14 ± 0.04 0.25 ± 0.05 0.14 ± 0.05

σ 2a = additive genetic variance; σ 2e = residual variance; σ 2p = phenotypic variance; h2 = hereditability; s.e. = standard error.
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with GC60 for the STAT (−0.60) and FUA (+1.31) traits,
respectively.

Differences among heritability estimates varied according to
the trait and the scenario considered and are presented in
Figure 1. The green line identifies the heritability from the GOLD
scenario. The largest differences were observed in the scenario
GC60 for trait UT (0.22 vs. 0.15) and for trait BD (0.15 vs. 0.19).
Moreover, GC60 showed the highest within-trait variability, with
maximum differences for UT, BCS, and FS (0.39, 0.21, and 0.18,
respectively), and minimum differences of 0.08 for RUW and

STAT (result not show). Standard errors of heritabilities for all
traits were low, ranging from 0.03 (GOLD) to 0.05 (GC60).

Correlations Between Breeding Values
The correlations between EBVs in the different scenarios are
shown in Table 5. Results differed depending on sex: higher
estimates were observed in the female population when using
a grouping strategy based on the year of birth (Y), while
for the bulls higher estimates were observed with the genetic
clustering strategy (GC). On average, the correlations were

FIGURE 1 | Box plot of the hereditability for composite and linear traits obtained in the different pedigree scenario in the IMB.
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TABLE 5 | Average correlations for buffalo cows and bulls’ EBVs for the
composite and linear traits obtained in the different pedigree scenario in the IMB.

Traita Female with records Bulls

Y30 Y60 GC30 GC60 Y30 Y60 GC30 GC60

FS 0.92 0.85 0.89 0.80 0.94 0.86 0.93 0.85

ST 0.93 0.87 0.90 0.81 0.89 0.77 0.94 0.84

FL 0.88 0.80 0.88 0.77 0.90 0.70 0.93 0.77

UT 0.89 0.80 0.85 0.73 0.92 0.79 0.92 0.80

YP 0.88 0.78 0.84 0.71 0.91 0.75 0.92 0.85

STAT 0.95 0.89 0.93 0.87 0.95 0.87 0.95 0.89

BD 0.92 0.85 0.89 0.79 0.91 0.77 0.92 0.79

BL 0.92 0.84 0.90 0.81 0.94 0.85 0.95 0.87

FA 0.85 0.75 0.83 0.68 0.76 0.63 0.90 0.77

FUA 0.92 0.85 0.88 0.78 0.90 0.74 0.89 0.76

RUW 0.92 0.86 0.90 0.80 0.92 0.82 0.93 0.81

UD 0.95 0.90 0.92 0.86 0.87 0.74 0.90 0.74

TP 0.88 0.80 0.86 0.75 0.85 0.72 0.91 0.81

TL 0.95 0.90 0.92 0.86 0.88 0.77 0.92 0.77

BCS 0.89 0.82 0.87 0.77 0.76 0.59 0.90 0.78

Average 0.91 0.84 0.88 0.79 0.89 0.76 0.92 0.81

aSee Table 1 for trait acronym.

positive and high. Considering buffalo cows with records, the
average correlation across traits between official EBVs and
EBVs from different scenarios were 0.91, 0.88, 0.84, and 0.79
for Y30, GC30, Y60, and GC60, respectively. The best results
were observed for STAT, UD, and TL (average r = 0.91)
while the most affected trait was FA in the scenario GC60
(r = 0.68).

In the case of bulls, the correlation between EBVs in the
grouping GC30 ranged from 0.90 for FUA to 0.96 for STAT

and BL, while, in the GC60 scenario the values range between
0.75 for UD to 0.90 for STAT (Table 5). As expected, the
highest correlations occurred in scenarios where the proportion
of missing pedigree was lower (i.e., Y30 and GC30).

Accuracy of Breeding Values
The accuracy of breeding values across traits and scenarios for
bulls with at least 10 daughters and buffalo cows with own record
are presented in Table 6. The drop in accuracy for bulls ranged
from 0.06 for stature in the scenario GC30 to 0.24 for YP in the
scenario Y60. Similar pattern was observed in buffalo cows, with
higher accuracies in the Y30 and GC30 scenarios. On average the
best results were shown by GC30 (average accuracy = 0.43) and
Y30 (average accuracy = 0.42), while the worst results were in
the scenario GC60 (average accuracy = 0.34) and Y60 (average
accuracy = 0.32) (Figure 2).

Selection Efficiency
The result of the average selection efficiency for the three different
selection intensities (top 10, 30, and 50%) for composite and
linear trait are summarized in the Table 7. Average of SEf ranged
from 22.12 (Top 50 for FL in GC60 scenario) to 85.94% (Top 10
for FS in GC30 scenario) for the composite trait, and from 17.09
(Top 50 for FA in Y60 scenario) to 88.80% (Top 10 for STAT in
GC30) for linear traits.

Observing the average intensity of selection across scenarios,
the highest value was in GC30 (81.27%), followed by 78.75, 67.41,
and 65.22% in Y30, GC60, and Y60, respectively. The average
intensity of selections for the best 10, 30, and 50% were 73.16,
60.40, and 42.31%, respectively.

Within each scenario, selection efficiency in composite traits
was more effective than in linear traits. When the best 10% of
individuals were selected, four out of five composite traits had a

TABLE 6 | Average accuracy buffalo cows and bulls’ EBVs for the composite and linear traits obtained in the different genetic group in the IMB.

Traita GOLD Y30 Y60 GC30 GC60

Bulls Female Bulls Female Bulls Female Bulls Female Bulls Female

FS 0.55 0.29 0.47 0.24 0.37 0.21 0.46 0.21 0.33 0.17

ST 0.58 0.32 0.47 0.24 0.38 0.22 0.50 0.26 0.39 0.20

FL 0.47 0.22 0.39 0.20 0.28 0.13 0.40 0.16 0.30 0.13

UT 0.48 0.23 0.33 0.14 0.28 0.13 0.37 0.17 0.35 0.19

YP 0.46 0.21 0.34 0.15 0.22 0.10 0.36 0.13 0.28 0.11

STAT 0.64 0.39 0.56 0.34 0.45 0.29 0.58 0.35 0.49 0.33

BD 0.52 0.26 0.42 0.20 0.34 0.17 0.42 0.18 0.31 0.13

BL 0.56 0.30 0.47 0.24 0.38 0.21 0.48 0.23 0.42 0.24

FA 0.39 0.17 0.30 0.11 0.21 0.08 0.3 0.10 0.26 0.09

FUA 0.51 0.25 0.41 0.19 0.30 0.14 0.41 0.17 0.30 0.12

RUW 0.54 0.28 0.44 0.22 0.35 0.18 0.45 0.21 0.33 0.16

UD 0.58 0.32 0.46 0.24 0.37 0.21 0.50 0.25 0.39 0.21

TP 0.46 0.21 0.34 0.14 0.23 0.10 0.37 0.14 0.31 0.13

TL 0.59 0.33 0.49 0.26 0.42 0.25 0.51 0.26 0.41 0.23

BCS 0.49 0.24 0.33 0.13 0.28 0.13 0.38 0.14 0.28 0.11

Average 0.52 0.27 0.42 0.20 0.32 0.17 0.43 0.20 0.34 0.17

aSee Table 1 for trait acronym.
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FIGURE 2 | Box plot and histogram of average accuracy for the composite and linear traits by sex obtained in the different genetic group in the IMB.

selection efficiency higher than 60%, while only three out of 10
linear traits exceeded such a threshold (Table 7). A similar trend
was observed selecting 30% (3/5; 4/10 ≥ 50.01%) or 50% (3/5;
4/10 ≥ 32.91%).

In terms of standard deviation, the GC30 scenario showed
the lowest standard deviation (average = 4.61), while the values
obtained from GC60 and Y60 tend to be higher, with an average
SD of 7.94 and 7.82, respectively.

Re-Ranking
The effect of the different genetic grouping strategies on the
ranking of the bulls was explored using only three linear
traits, with high, medium, and low heritability, namely STAT

(h2 = 0.35), UD (h2 = 0.23), and FA (h2 = 0.10). Spearman’s
rank correlation calculated on 111 bulls in STAT-UD-FA were
0.921–0.884–0.842, 0.913–0.852–0.728, 0.846-0.695-0.659, and
0.811-0.690-0.587 for GC30, Y30, GC60, and Y60, respectively.
The consistency of ranking across grouping strategy can
also be effectively visualized with a target plot (Biscarini
et al., 2016). The rankings of the first 10 bulls across
replicates and grouping strategy for STAT, UD, and FA are
presented in Figures 3–5, respectively. Each cloud of points
represents the ranking of the bull across replicates and within
grouping strategy. When the points within the clouds are
more dispersed, a larger re-ranking was observed (e.g., BULL9
for STAT trait).
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TABLE 7 | Mean (SD) of efficiency (%) in the selection of the best animals for the
composite and linear traits obtained in the different pedigree scenario in the IMB.

Traita Best Y30 Y60 GC30 GC60

FS 10% 85.11 (4.39) 76.59 (5.96) 85.94 (3.64) 78.64 (5.26)

30% 79.40 (2.77) 67.42 (4.21) 78.47 (2.59) 65.03 (6.70)

50% 58.02 (3.89) 49.24 (5.10) 58.36 (5.12) 47.36 (4.51)

ST 10% 85.90 (2.94) 71.76 (5.51) 85.56 (2.31) 74.16 (6.45)

30% 75.29 (3.37) 60.79 (6.84) 76.88 (4.62) 59.54 (4.54)

50% 61.40 (4.61) 47.40 (4.23) 61.42 (5.33) 45.17 (4.57)

FL 10% 77.56 (7.12) 52.94 (7.27) 81.86 (4.94) 59.99 (9.58)

30% 65.24 (10.81) 39.40 (8.31) 69.17 (5.18) 39.45 (11.85)

50% 45.27 (12.22) 23.61 (6.33) 51.17 (3.24) 22.12 (8.49)

UT 10% 83.86 (4.50) 75.82 (7.74) 82.08 (7.25) 66.32 (9.99)

30% 75.59 (2.78) 59.06 (8.66) 72.53 (5.06) 53.05 (10.68)

50% 55.33 (3.93) 42.65 (8.12) 50.11 (6.21) 36.07 (5.85)

YP 10% 81.20 (6.07) 65.42 (9.91) 81.62 (4.73) 73.81 (5.19)

30% 67.99 (6.35) 48.52 (8.86) 61.37 (6.64) 54.01 (8.20)

50% 47.39 (7.15) 32.15 (5.96) 43.55 (4.82) 36.29 (7.72)

STAT 10% 88.20 (3.48) 78.17 (4.52) 88.80 (2.79) 75.53 (8.75)

30% 78.07 (2.95) 65.43 (6.32) 77.66 (5.48) 64.95 (5.46)

50% 57.01 (3.31) 45.98 (6.61) 53.91 (4.30) 43.90 (6.23)

BD 10% 79.56 (4.03) 65.32 (11.87) 80.48 (4.37) 63.23 (9.87)

30% 66.58 (4.16) 45.51 (12.36) 64.56 (6.59) 45.16 (6.68)

50% 47.75 (3.74) 30.42 (8.87) 42.74 (6.22) 26.65 (5.52)

BL 10% 87.32 (5.02) 75.34 (6.01) 87.00 (3.77) 78.22 (5.52)

30% 76.58 (5.90) 63.58 (5.40) 75.95 (4.08) 65.03 (9.02)

50% 51.46 (4.69) 40.51 (5.15) 52.71 (5.65) 43.08 (7.51)

FA 10% 72.68 (7.42) 57.76 (10.66) 77.91 (6.54) 58.96 (13.58)

30% 41.43 (6.45) 28.49 (12.88) 58.62 (7.53) 38.32 (12.55)

50% 26.53 (6.16) 17.09 (11.12) 42.98 (7.74) 22.99 (7.66)

FUA 10% 78.37 (5.20) 63.29 (9.79) 75.38 (2.78) 66.12 (7.49)

30% 69.73 (6.10) 51.93 (7.88) 67.30 (5.10) 52.37 (8.48)

50% 49.77 (8.29) 35.40 (6.14) 51.03 (2.96) 37.75 (7.66)

RUW 10% 78.26 (7.49) 66.44 (7.90) 83.74 (3.74) 68.61 (5.45)

30% 74.16 (7.34) 59.74 (4.37) 74.46 (4.55) 58.60 (4.38)

50% 50.57 (9.91) 38.05 (6.88) 58.88 (4.28) 40.27 (4.11)

UD 10% 74.12 (4.78) 61.15 (4.64) 78.28 (5.91) 60.84 (7.90)

30% 62.03 (7.14) 45.55 (5.72) 66.55 (5.47) 45.43 (8.68)

50% 41.64 (4.63) 25.30 (6.08) 47.77 (6.73) 31.05 (5.62)

TP 10% 74.87 (4.63) 63.73 (9.03) 79.06 (3.56) 71.11 (9.27)

30% 59.99 (4.50) 43.66 (11.04) 69.87 (4.91) 58.61 (7.78)

50% 40.42 (3.30) 30.73 (9.10) 51.78 (4.33) 41.76 (3.32)

TL 10% 76.27 (4.41) 57.14 (7.85) 75.23 (4.48) 57.49 (7.14)

30% 66.10 (3.88) 46.45 (7.27) 66.49 (4.77) 44.98 (7.09)

50% 45.97 (4.30) 29.81 (8.24) 48.94 (4.28) 30.68 (5.25)

BCS 10% 58.02 (6.73) 47.45 (8.57) 76.07 (8.29) 58.15 (7.70)

30% 59.16 (5.72) 37.89 (8.57) 67.05 (4.03) 51.64 (7.30)

50% 40.14 (7.26) 23.36 (8.73) 51.47 (5.14) 36.17 (6.06)

aSee Table 1 for trait acronym.

Genetic Trend
The genetic trends for both composite and linear traits
are presented in Figures 6, 7. Overall a flat trend was
observed until year 2013 for all traits. After this year, positive
trends were observed and differences among years were

enhanced on including genetic groups. For composite traits, an
underestimation of the genetic trend was observed when the
GC30 and GC60 grouping strategies were used.

Specific behaviors were detected across linear traits. Genetic
trends for STAT, FUA, and TL showed the same pattern as the
composite traits. BD and BL showed an uneven trend, with a
clear positive trend from year 2014. However, when using GC30
and GC60 grouping strategies, EBVs were more regressed than
when EBVs were estimated using a grouping strategy based on
the year of birth. Similar results were observed for FA and UD
where, particularly for recent years, Y30 and Y60 EBVs were
higher than GC30 and GC60 EBVs. Finally, BCS showed a flat
trend until 2014 followed by a slight decrease, a pattern common
to all grouping strategies.

The different grouping strategies have had an impact on the
EBVs scale. From year 2000 the average increase in the scenario
without genetic groups (GOLD) was +0.032 for composite traits
and +0.014 for linear traits (Figure 8). The average increase in
composite traits was +0.046, +0.042, +0.026, and +0.020 when
the Y30/Y60/GC30/GC60 genetic group was used, respectively.
The same order was observed in the linear trait set with an
average increase of+0.020,+0.018,+0.009, and+0.006.

DISCUSSION

In this study, the effect of two genetic grouping strategies on
the estimation of VC and EBV for type traits in a parentage-
tested IMB sub-population was evaluated. In the last three years
the IMB has experienced an exponential increase in term of
registered animals in the Herd Book. As a consequence, IMB
is facing a situation where phenotypic data are available for
many animals, but some animals lack complete genealogical
data. Records from individuals without pedigree information has
been excluded from the genetic evaluation or assumed to have
an unknown sire. Such practice results in loss of information
and potentially could compromise expected genetic gain (Sapp
et al., 2007). To mitigate this undesirable effect, several statistical
methods have been developed over the years. The use of genetic
grouping, parentage probabilities, use of phenotypic information
to increase the probability of defining the paternity, iterative
empirical Bayesian model (ITER), Bayesian hierarchical model
(HIER), and model based on the average relationship matrix
(ANRM), have been applied to account for uncertain paternity
(Henderson, 1988; Peškovičová et al., 2004; Sapp et al., 2007;
Petrini et al., 2015; Carneiro et al., 2017; Shiotsuki et al., 2018;
Macedo et al., 2020).

Genetic groups are normally created according to different
criteria, for example on the basis of origin, sex, herd, or year of
birth of the individual. The creation of the GG is not a simple
procedure and can sometimes present some practical problems.
Genetic groups modeling must be balanced as groups with few
animals might impair the estimation of the GG effect (Rodriguez
et al., 1996; Peškovičová et al., 2004; Petrini et al., 2015). At the
same time, very large groups are not able to capture the actual
differences which exist among individuals. However, (Quaas,
1988) warned about potential bias in defining a determinate
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FIGURE 3 | Ten best ranked bulls for the Stature trait according to the different genetic group in the IMB. When the points within the clouds are more dispersed, a
larger re-ranking was observed.

FIGURE 4 | Ten best ranked bulls for the Udder depth trait according to the different genetic group in the IMB. When the points within the clouds are more
dispersed, a larger re-ranking was observed.
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FIGURE 5 | Ten best ranked bulls for the Foot angle trait according to the different genetic group in the IMB. When the points within the clouds are more dispersed,
a larger re-ranking was observed.

grouping strategy due to the effects of confusion between groups.
In our case, the “phantom” parents of an individual are always
assigned to the same group, because the grouping is based on
animal itself, not on its parents, as shown by other studies
(Peškovičová et al., 2004; Shiotsuki et al., 2013; Petrini et al., 2015;
Wolak and Reid, 2017).

Results have shown that including GG in the mixed model
equation had an effect on the estimates of both VC, which can
be observed in Tables 3, 4, and EBV (Table 5). Pieramati and Van
Vleck (Pieramati and Van Vleck, 1993) obtained lower estimates
of additive genetic variance with models that included genetic
group. However, we have found that the estimates of VC and
EBV with the Y30 and GC30 genetic groups are quite close to
the GOLD estimates. These results support the efficiency of the
methodology to estimate the true parameters. According to the
magnitude of heritability estimates, the GC60 scenario was the
one that showed the largest discrepancy with GOLD, confirmed
by the highest SE (0.05). Petrini et al. (2015) suggested that such
result may be caused by the structure of the group itself. Indeed,
the size of GG should be homogeneous and well balanced. In
the present study, when a genetic clustering strategy was used,
a greater number of groups with a more heterogeneous size was
observed. These results depend on the pedigree structure of the
IMB, because its completeness is mainly related to the use of
artificial insemination. Bulls used for AI have a more complete
pedigree both on paternal and maternal side. The fourteen groups
used in the GC strategy (Table 2) are based on the relationship
matrix and hence are strictly related to the completeness of the

paternal line. Indeed in the GC scenario we had a particular
group – namely group 1 – which basically included all individuals
with no pedigree information and whose size was from 10 to 20-
fold larger than the others. Those evidences matched results from
Santana et al. (2013) and Shiotsuki et al. (2013) who stressed the
importance of the structure of the groups, especially in terms of
their number and size (Petrini et al., 2015).

As expected, EBVs accuracy decreased when an increased
proportion of missing pedigree was simulated (Table 6).
However, when the proportion of missing pedigree was 30%, the
average percentage point drop in accuracy was 10 and 7 for bulls
and buffalo cows, respectively. We can therefore hypothesize
that the contemporary use of the available pedigree information
and of the most appropriate GG strategy will mitigate the loss
in accuracy of the EBV due to missing pedigree information.
Sullivan (1995) suggested the importance of the inclusion of
genetic groups in EBV estimation and that data should not be
discarded due to the uncertainty of the paternities. Surely, the
problem of uncertain paternities might possibly be mitigated by
the use of genomic selection (Abdel-Shafy et al., 2020; Macedo
et al., 2020; Misztal et al., 2020), however, the genotyping of all
animals in a herd might still be too expensive. In the case of IMB,
the use of GG is a practical and no cost solution to integrate
all the available information into the genetic evaluations process
eventually not compromising the accuracy of the results.

On the other hand, Pearson’s correlations between EBVs were
generally high in all clustering scenarios. However, Y30 and GC30
scenarios showed the highest correlations. Several studies have
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FIGURE 6 | Genetic trend by year of birth for the composite trait, according to the different genetic group.

shown that correlation coefficients between EBVs lower than 0.70
could suggest changes in the classification of animals (Crews and
Franke, 1998; Petrini et al., 2015). Moreover, if we analyze results
within traits, we can observe a relationship with heritability value.
In our case, the trait that had the lowest correlation coefficient
(r = 0.68) was FA, whose h2 was 0.10. In addition, observing
the correlations within sex, the Y30/Y60 genetic group strategy
showed the highest coefficients for buffalo cows, while for bulls
GC30 was the most appropriate for the data. This result was
somewhat expected because the strategy based on the hierarchical
clustering is strictly related to the relationship matrix, i.e., on

the pedigree information. The number of AI bulls in the IMB
population is limited (n < 100) and most of them have common
ancestors. This means that grouping based on the relationship
matrix will be possibly biased by the sire’s pedigree. Actually,
all individuals with both parents missing have been assigned to
group 1 (Table 2), possibly regressing their breeding value. On
the other hand, the year of birth has a more balanced behavior
and it is less linked to the pedigree. Therefore, our results suggest
that the EBV and consequently the ranking of the animals, will be
closely influenced by the nature of the trait and by the structure
and type of grouping adopted (Shiotsuki et al., 2018).
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FIGURE 7 | Genetic trend by year of birth for the linear trait, according to the different genetic group.

Considering SEf, several studies suggest that it can be used
as a measure of the correlation between the ranking of the
best animals obtained in the different analyzes and that would
in turn provide information on the degree of efficacy of the
genetic grouping strategy (Theron et al., 2002; Peškovičová
et al., 2004; Petrini et al., 2015). A value above 70% would
indicate that the ranking observed in the different scenarios
is stable and does not undergo a significant re-ranking. In
relation to what we observed in this study, when the selection
intensity is 10%, practically all traits exceeded this threshold
(14/15 traits in Y30 and 15/15 in GC30). Meanwhile, in
the scenario where the proportion of missing of pedigrees

was 60% only 5/15 traits showed a value of SEf higher
than 70%. These results suggest that bulls that are above
the 90th percentile would experience virtually no important
changes in their ranking. Another aspect worth noticing is
the standard deviation of SEf. If a large standard deviation
is observed, the response to selection will be more unstable
and less accurate (Peškovičová et al., 2004). In this regard,
the genetic group GC30 showed the lowest standard deviation
while results obtained from GC60 and Y60 were more unstable.
Consequently, when considering a high correlation and SEf, in
addition to a low SD, we retain that the ranking of the bulls
will be consistent.
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FIGURE 8 | The effect of different grouping strategy on EBVs scale. Average annual increase for the composite and linear trait EBVs, according to the different
genetic group.

The inclusion of GG in the genetic evaluation could have
unpredictable but substantial effects on the estimated genetic
trend (Saavedra, 2019). Furthermore, the exclusion of genetic
groups or having paternities with “phantom” parents could
lead to biased estimates of selection response (Theron et al.,
2002). In our study, these expectations are met, observing
how the cumulative genetic trends without genetic groups
were slightly lower than those estimated with the Y30/Y60
genetic group. Upward trends may indicate that the grouping
type “year of birth” may be comparable to those obtained in
GOLD. Other study, obtained some indication that the best
strategy was grouping phantom sires according to the year of
birth and the phantom dams in a single group due to the
slow genetic change in females over the generations (Casellas
et al., 2007). Theron et al. (2002) and Shiotsuki et al. (2013)
observed higher genetic trends when they included GG in
the analyses. Those results did not agree with (Petrini et al.,
2015) where the inclusion of GG in genetic analyses showed a
lower genetic trend.

The effectiveness of including GG on genetic evaluation
depends on the genetic structure of the population, the nature of

the observed trait (Petrini et al., 2015) and the criterion adopted
to define GG. Several authors recommended that the definition
of the GG should be a balance between complexity of the
method and the adequate representation of genetic differences
(Rodriguez et al., 1996; Peškovičová et al., 2004; Petrini et al.,
2015; Carneiro et al., 2017; Shiotsuki et al., 2018). The adoption
of an inappropriate method may not only have consequences on
genetic progress (at the population level), but also on the choice of
the best animals that will be used at the herd level. On the other
hand, a change in the pedigree structure tends to have a higher
impact on traits with medium-low heritability. In our study, this
fact occurred with the FA trait, where GC30/GC60 scenarios had
the largest correlation with GOLD. On the other hand, for traits
with high heritability, the weight of the phenotypic information
is high, therefore, the use of GG would have a lesser effect on
the estimates. According to Cardoso and Tempelman (Cardoso
and Tempelman, 2003), differences between the models that take
into account uncertain paternity do not necessarily increase with
increasing heritability, but these differences will be greater for
the traits of medium-low heritability. In addition, individuals
that have a greater number of ancestors or progeny with an
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incomplete pedigree will be more affected, in particular young
animals with no own phenotypic information.

The lack of pedigree information is a common problem among
domestic species, being more pronounced in less represented
breeds that are mainly managed by small farmers with scarce
economic resources. Resolving the uncertainty of paternity has
always been a topic of interest to the scientific community and
for decades various methodologies have been developed that
allow managing the presence of gaps in a relationship matrix.
Nowadays, there are different tools to improve the knowledge
of genealogical information, such as DNA-based methods, but
these are still expensive for breeders. Likewise, in those species
that have recently implemented the genetic evaluation system
they may face this problem, as they may be in the situation
where they possess historical phenotypic data from which it
is almost impossible to obtain biological samples due to the
absence of a DNA banks.

The prediction of the genetic value with models that consider
the uncertainty in paternity have been shown to have better
precision (Cardoso and Tempelman, 2003; Sapp et al., 2007;
Shiotsuki et al., 2012; Shiotsuki et al., 2013; Carneiro et al., 2017;
Shiotsuki et al., 2018). Its effectiveness depends on the definition
of the grouping strategy (Petrini et al., 2015), which requires
prior knowledge of: (a) the selection process of the breed, (b)
the sources of genetic variation present in the population, (c) the
intensity of selection or the generational interval. It is clear that
GG should be included in the model to improve the accuracy
of the EBV of animals with some degree of unknown paternity
(Saavedra, 2019). Therefore, the use of genetic groups can be
considered an effective alternative in the absence of relationship
data for VC and EBV.

CONCLUSION

Pedigree completeness is a fundamental requirement of any
genetic evaluation. In species other than dairy cattle, the presence
of individuals with phenotypic records but with an incomplete
pedigree is not a trivial matter. Buffalo breeding is an example
of such a situation. We do expect a more extended use of DNA
testing which will eventually increase the implementation of
genomic selection approaches in Buffalo species as well. However,
missing information in the pedigree will still be present and
even genomic selection will be faced with the same problem.
When a variable proportion of missing pedigree information
is present in a population under selection, including genetic
groups in the mixed model equations for both VC and EBV

estimation is a worth-while and low-demanding approach to
mitigate the loss in accuracy. Different strategies can be used to
create genetic grouping depending on data distribution across
years and on population structure. In the IMB population the
best results were obtained when grouping was based on the year
of birth. These findings confirmed the possibility of developing
a genetic evaluation in populations with uncertain paternities
without the need to exclude data or to use only a select of the
available population.
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