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Abstract

Background: Cancer treatment in the 21st century has seen immense advances in opti-

cal imaging and immunotherapy. Significant progress has beenmade in the bioengineering

and production of immunoconjugates to achieve the goal of specifically targeting tumors.

Discussion: In the 21st century, antibody drug conjugates (ADCs) have been the focus

of immunotherapeutic strategies in cancer. ADCs combine the unique targeting of mono-

clonal antibodies (mAbs)with the cancer killing ability of cytotoxic drugs. However, due to

random conjugation methods of drug to antibody, ADCs are associated with poor antigen

specificity and low cytotoxicity, resulting in a drug to antibody ratio (DAR) >1. This means

that the cytotoxic drugs in ADCs are conjugated randomly to antibodies, by cysteine or

lysine residues. This generates heterogeneous ADC populations with 0 to 8 drugs per

an antibody, each with distinct pharmacokinetic, efficacy, and toxicity properties. Addi-

tionally, heterogeneity is created not only by different antibody to ligand ratios but also

by different sites of conjugation. Hence, much effort has beenmade to find and establish

antibody conjugation strategies that enable us to better control stoichiometry and site‐

specificity. This includes utilizing protein self‐labeling tags as fusion partners to the orig-

inal protein. Site‐specific conjugation is a significant characteristic of these engineered

proteins. SNAP‐tag is one such engineered self‐labeling protein tag shown to have prom-

ising potential in cancer treatment. The SNAP‐tag is fused to an antibody of choice and

covalently reacts specifically in a 1:1 ratio with benzylguanine (BG) substrates, eg,

fluorophores or photosensitizers, to target skin cancer. This makes SNAP‐tag a versatile

technique in optical imaging and photoimmunotherapy of skin cancer.

Conclusion: SNAP‐tag technology has the potential to contribute greatly to a broad

range of molecular oncological applications because it combines efficacious tumor

targeting, minimized local and systemic toxicity, and noninvasive assessment of

diagnostic/prognostic molecular biomarkers of cancer.
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1 | INTRODUCTION

1.1 | Skin cancer

Skin cancer occurs as two main types, ie, non‐melanoma and mela-

noma. Non‐melanoma types include basal cell carcinoma (BCC) and

squamous cell carcinoma (SCC), which are of keratinocyte origin, as

well as Merkel cell carcinoma (MCC), sebaceous gland tumors, and

malignant pilomatrixoma.1,2 Melanoma types include superficial

spreading melanoma (SSM), lentigo maligna melanoma (LMM), nodular

melanoma (NM), acral lentiginous melanoma (ALM), mucosal mela-

noma, desmoplastic melanoma, and nevoid melanoma.3

In addition, non‐melanoma skin cancers (NMSC) can have more

than one histological subtype, in which case they are referred to as

mixed types.4 There is variability in the behavior of different types

of skin cancer, as well as histopathological variants, depending on

growth patterns.4 For example, BCC carcinomas grow slowly, with

damage to surrounding tissue, but rarely spreads to vital structures,

whereas SCC and melanomas are aggressive and are more likely to

metastasize.5,6 Solar and actinic keratitis, viral warts, and Bowen dis-

ease increase the risk of NMSC, while clinically atypical mole (CAM),

giant congenital melanocytic nevi, and lentigo maligna have been

shown to increase the risk of developing melanoma.7 The risk of

developing skin cancer is also higher in people with poor immune

function (such as HIV/AIDS and solid organ transplant patients)8-10

and people of fair skin color.10-14

The observed increases in skin cancer rates are associated with

several factors, including the fact that older populations are at higher

risk of NMSC, and also increased occupational and recreational UV

light exposure15,16 (Figure 1). For instance, studies have shown that

indoor tanning is associated with a significantly increased risk of

BCC and SCC, with a higher risk with use in early life (<25 y).17 Each

year in the United States, over 5.4 million cases of NMSC are treated

in more than 3.3 million people.18 In 2017, it was estimated that

87 110 new cases of invasive melanoma were diagnosed in the United
States and an estimated 9730 people were casualties of this aggres-

sive type of skin cancer.19 The annual cost of treating skin cancers in

the United States is estimated at $8.1 billion: about $4.8 billion for

NMSC and $3.3 billion for melanoma.20
1.1.1 | Current skin cancer treatment

The use of conventional cancer therapies for skin cancers has been

fraught with poor specificity in targeting the cancer cells, partly due

to variations in surface receptor expressed by tumor cells.21 Surgical

therapy may be used depending on the type and location of cancer,

age of person, and whether the cancer is in the primary or recurring

stages.22 For example, a person (<50 y of age), diagnosed with BCC,

can undergo a surgical excision known as Mohs surgery. Mohs micro-

graphic surgery removes skin cancer one layer at a time, each time

examining these layers under a microscope immediately after removal.

Although this procedure allows for minimal scarring by preserving

healthy tissue, it is time consuming (3‐4 h to remove a single lesion)

and expensive.23-25 Superficial removal of cancerous tissue can be

done with cautery and curettage using a spoon‐like instrument with

a sharp edge.26 Another surgical procedure that may be used for skin

cancer is electrosurgery, which is a procedure that cuts/destroys/cau-

terizes tissue using a high‐frequency electric current applied locally

with a pencil‐shaped metal instrument.27

For low‐risk disease or treatment of elderly patients, radiation

therapy (external beam radiotherapy or brachytherapy),28 topical che-

motherapy (5‐fluorouracil),29 and cryotherapy (freezing the cancer

off)30 can provide adequate control of the disease. However, the top-

ical application of 5‐fluorouracil often fails due to the inadequate fre-

quency and/or length of treatment, insufficient drug concentration,

and a poor penetration of the cream into the epidermis, which contrib-

utes to tumor recurrence.29 Hence, personalized/precision medicine

has emerged because of its potential to improve the accuracy of tumor

targeting and minimize toxicity to normal tissue. The beneficial role of

novel‐targeted therapies and the potential use of SNAP‐tag fusion
FIGURE 1 A sketch showing the squamous
cells, melanocytes, and basal cells found in the
epidermal layer of the skin. Ultraviolet (UV)
light from the sun can damage the DNA in
these skin cells and give rise to SCC, BCC, or
melanoma
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proteins in cutaneous cancers is described hereafter. This review

seeks to elaborate more on the applications of these diagnostic and

therapeutic treatment modalities.
1.2 | Targeted drug and molecular therapies in skin
cancers

The field of cancer immunotherapy attempts to target and kill cancer

cells by manipulating the body's immune system and has been

immensely successful for the treatment of skin cancer.31 To date,

eight drugs have been approved by the US Food and Drug Agency

(FDA) for the treatment of metastatic melanoma. These include the

chemotherapeutic drug dacarbazine (DTIC) (FDA approved in 1975)

and the immunotherapeutic agents such as vermurafenib, ipilimumab

(FDA approved 2011), dabrafenib, and trametinib (FDA approved

2013), interleukin‐2 (IL‐2) (FDA approved 1998),32-35 and nivolumab

and pembrolizumab (FDA approved 2014)36 (Table 1). DTIC is more

commonly used as the current standard treatment for metastatic mel-

anoma.32-34 Until recently, single‐agent chemotherapy using DTIC has

produced the best therapeutic outcome, with 5% to 15% of patients

responding to the therapy, although less than 2% survive 6 years post

treatment.33,37 Since the discovery of the BRAFV600E mutation in mel-

anomas, three BRAF inhibitors—vemurafenib, trametinib, and

dabrafenib—have been used to stop signals that cause cancer cells to

grow and divide. However, these drugs are associated with serious

side effects, as highlighted in Table 1.38,39

As persistent inflammation has emerged as a cardinal hallmark of

cancer,40 targeting toll‐like receptors (TLRs) is also hypothesized as a

plausible potential molecular approach for skin cancer therapies.41

Another successful treatment option in patients with melanoma is

the use of monoclonal antibodies (mAbs), which are immune
TABLE 1 FDA approved melanoma and BCC treatments and their adver

Trade Name Details of Drug
Year of FDA
Approval

DTIC‐Dome (dacarbazine) Antineoplastic
chemotherapy drug.

1975

Intron (interferon α‐2b) Biologic response
modifier

1995

Aldara (imiquimod) Immune response
modifier

1997

Proleukin (interleukin‐2) Antineoplastic biologic
response modifier

1998

Zelboraf (vermurafenib) BRAF kinase inhibitor 2011

Yervoy (ipilimumab) Monoclonal antibody 2011

Erbitux (cetuximab) Monoclonal antibody 2011

Tafinlar (dabrafenib) BRAF kinase inhibitor 2013

Mekinist (trametinib) MAP kinase 1 and MAP
kinase 2 inhibitors

2013

Opdivo (nivolumab) Checkpoint inhibitor 2014

Keytruda
(pembrolizumab)

Monoclonal antibody 2014
checkpoint inhibitors. For example, the monoclonal antibody

ipilimumab is directed toward the cytotoxic T‐lymphocyte antigen

(CTLA)‐4 and was the first (CTLA)‐4 inhibitor to demonstrate an

improved overall survival rate in melanoma patients.42 Other mAbs

such as nivolumab bind to the programmed‐cell death (PD)‐1 receptor

and block interaction with PD‐L1 and PD‐L2 ligands.43 This binding

releases PD‐1 pathway‐mediated immune responses against tumor

cells.43 Recently, anti‐programmed cell death‐1 (Anti‐PD‐1) was

approved for the treatment of patients with advanced melanoma.37

Although PD1 blockers have comparatively better safety, the main

concern with PD1 monotherapy is patient response rate (around

30%‐40%).44

The pegylated version of interferon α‐2b (PEG‐IFN) has been

approved as an adjuvant for surgically resected “high‐risk” melanoma

patients.45 However, these mAbs are associated with severe side

effects, including dermatologic, gastrointestinal, hepatic, endocrine,

and, less commonly, inflammatory events.46

EGFR (epidermal growth factor receptor) is the first molecular tar-

get against which mAbs have been developed for cancer therapy.47

Anti‐EGFR mAbs are known to bind to the extracellular domain of

EGFR in its inactive state, then compete for receptor binding by

occluding the ligand‐binding region, and block ligand‐induced EGFR

tyrosine kinase activation.48,49 The anti‐EGFR mAb called cetuximab

is used in combination with radiotherapy and is considered a promis-

ing treatment modality for locally advanced inoperable NMSC.50 How-

ever, side effects such as a persistent rash are still associated with

cetuximab as well as other cutaneous toxicities such as painful fissures

in palms and soles and paronychia.51 mAbs targeting tumor‐associated

cell surface antigens overexpressed on tumor cells but also expressed

on normal cells can thus also interact with normal cells.52,53 In addition

to the related off‐target, nonspecific toxicities, the high proportion of

nonhuman sequences eventually incorporated in mAbs is likely to be
se side effects

Type of Cancer Adverse Effects

Melanoma; Hodgkin
lymphoma

Respiratory toxicity and dyspnea and
hepatic necrosis

Malignant melanoma Flu‐like syndrome, low blood counts,
and changes in vision

Basal cell carcinoma Skin reactions, systemic inflammation,
and auto‐immune

Metastatic melanoma Vascular leak syndrome, hypotension,
and oliguria

Melanoma Skin reactions, photosensitivity,
arthralgia, and SCC

Melanoma Diarrhea, colitis, hypopituitarism, and
hypothyroidism

Squamous cell carcinoma Diarrhea, skin toxicity, fatigue, and
mucositis

Metastatic melanoma Hyperglycemia, hyperkeratosis, and
hypophosphatemia

Malignant melanoma Skin reactions, cardiomyopathy, and
cardiac failure

Melanoma Colitis, thrombocytopenia, and
lymphopenia

Metastatic melanoma Hyperglycemia, hyponatremia, and
anemia
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recognized as “foreign” and therefore induce a host immune response.

This can result in reduced efficacy of the mAb, due to increased clear-

ance.52,53 Table 1 summarizes the different types of treatments

approved for skin cancer and their corresponding adverse side effects.

To provide an improved targeting approach, antibody drug conju-

gates (ADCs) have been designed, in which a cytotoxic payload is

attached to an antibody via a chemical linker.54 This is exemplified,

for instance, by the novel ADC EV20‐Sap that displayed promising

antitumor activity in metastatic melanoma, obtained by chemically

coupling the HER‐3 targeting antibody EV20 to the plant toxin

saporin.55 This conjugate maintained the biological activity of the

naked HER‐3 antibody. It binds to melanoma cells with the same affin-

ity as free EV20 and eliminated cancer cells, upon internalization with

IC50 values in the range of 0.15nM to 20nM. This attests to its pow-

erful specificity and target‐dependent cytotoxic activity. Furthermore,

in a murine melanoma model, EV20‐Sap treatment led to a significant

reduction of pulmonary metastasis.55

Despite the therapeutic efficacy of ADCs, their major challenges

were size and heterogeneity.56,57 The large size of mAbs (150 kDa)

might exhibit relatively limited tissue penetration and is prone to non-

specific binding owing to their Fc domain.58 Furthermore, the cytotoxic

agents in ADCs are typically conjugated randomly to the antibodies,

using either the reduced sulfhydryl groups of cysteine residues or the

amino groups of lysine side chains. This generates heterogeneous

ADC populations with variable drug to antibody ratios (DAR) that

results in reduced efficacy and unpredictable pharmacokinetic pro-

files.56,57 While one might presume that high‐affinity binding is ideal,

several studies have shown that very high affinities might be subopti-

mal for therapeutic antibodies to penetrate deep into solid tumors.59,60

This results in rapid and tight binding to the outer surface of a tumor

and reduced numbers of antibodies diffusing to the core of the tumor.

This is because rate of diffusion is approximately inversely proportional

to the cube root of molecular weight.60,61 Thus, the intended effects of

the mAb would not be universal to all tumor cells.60,62

Many nanoparticle‐based drug delivery systems have been

approved by the FDA and are currently undergoing clinical trials for skin

cancer therapy.63 It has been shown that delivering the chemothera-

peutic agent doxorubicin by gold nanoparticles was very effective

against a melanoma cell line.64 Lo Prete et al applied a cholesterol‐rich

nanoemulsion to deliver etoposide in a mouse model of melanoma.65

The nanoemulsion delivery was associated with decreased side effects,

increasing maximum tolerated dose fivefold and increased inhibition of
FIGURE 2 The autocatalytic reaction of scFv‐SNAP genetically fused to t
modified photosensitizer (in yellow)
tumor growth by concentrating etoposide at the tumor site (a fourfold

higher concentration in tumor than with free etoposide).65 Nonethe-

less, nanoparticles as efficient drug delivery systems are hindered by

incomplete toxicological assessment, low drug‐loading capacities, diffi-

culty in scale‐up production, and low stability.66

Natural compounds have been suggested for use alone67,68 or in

combination with photodynamic therapy (PDT)69 in the treatment of skin

cancer. PDT is a treatment modality that uses an effector molecule called

a photosensitizer (PS), followed by local illumination with visible light of

specific wavelength(s). When a PS is exposed to a specific wavelength

of light, it produces reactive oxygen species (ROS) that induce apoptosis

of cancerous lesions.70 To date, targeting cancer cells using PDT has

relied on the passive accumulation of PS in tumor tissues, which might

not lead to optimal dosage of PS, thus leading to the application of rela-

tively high dosage of PS within the tumor.71 As a result, PDT may

damage healthy tissues, by causing prolonged skin photosensitivity.72

Efforts to bypass this lack of specificity have focused on the

identification of specific cancer biomarkers, drug conjugates, and resistant

mechanisms contributing to cancer survival after therapeutic treatments.

The addition of SNAP‐tag technology to skin cancer management poten-

tially presents a more structurally reliable method for conjugation and

delivery of photosensitizer or cytotoxic payload for targeted cancer che-

motherapeutic purposes, as discussed below.
1.3 | Targeted drug conjugation and SNAP‐tag
technology

SNAP‐tag is a mutant form of the enzyme O6‐alkyguanine‐DNA

alkyltransferase, used as a tag for self‐labeling with modified O(6)

benzylguanine (BG) substrates via an irreversible transfer of an alkyl group

to a cysteine residue within its active site (Figure 2).73 Different BG‐

modified effector molecules, eg, photosensitizers, toxins, or fluorophores,

can be conjugated to SNAP‐tag in a site‐specific and selective manner for

diagnostic or therapeutic treatment of cancer, without affecting the activ-

ity of the recombinant ligand.74-76 Fusing SNAP‐tag to recombinant anti-

bodies by protein engineering provides a new antibody format that is

designed to overcome the problems of nonspecific targeting and hetero-

geneity; the efficient directed, covalent conjugation is provided by an

autocatalytic reaction (Figure 2) under physiological conditions, providing

a 1:1 stoichiometry between recombinant SNAP‐tag–based antibody

fusion protein and BG‐modified small synthetic substrate.73
he amino terminus of the VL chain of the scFv and conjugated to a BG‐
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Besides the fact that the recombinant expression of antibody

genes is difficult because of their large size, the usage of whole

immunoglobulins (IgGs) can cause unwanted side effects mediated

by the constant (Fc) region of the antibody.60 To overcome this chal-

lenge, SNAP‐tag fusion proteins are engineered with antibody frag-

ments called single‐chain variable fragments (scFvs), which are

formed by the tandem arrangements of the heavy (VH) and light

chain (VL) domains joined by a flexible serine/threonine linker

(Figure 2).77,78 There is no preferential orientation of one domain

to the other, and VH‐L‐VL and VL‐L‐VH constructs are likely equiva-

lent. Most scFv fragments are generated using a 15‐amino acid res-

idue linker of composition (Gly4Ser)3.
79 The biological effects of the

scFv can be enhanced by (1) reducing the length of the linker,

resulting in paired scFvs that bind to one another through comple-

mentary regions to form bivalent molecules called diabodies, (2) fur-

ther shortening of linker to form trimers/tetramers, or (3)

complementary scFvs produced as a single chain called tandem

scFvs.77 The small size of the scFv (27 kDa) allows for better clear-

ance from the body, better tissue/tumor penetration, and simple and

straightforward production in bacterial cell systems vs mammalian

cells.74,76,80 The construct also produces a high tumor to background

ratio with high visualization and a low nonspecific background sig-

nal.81-84 By identifying tumor‐specific antigens (TAAs) for mela-

noma, BCC, or SCC and targeting them with an advanced

recombinant SNAP‐tag antibody‐labeling technology, tumors can

be screened prior to therapy and the appropriate treatment

modality implemented.85 One such treatment modality that shows

promising potential with the use of SNAP‐tag technology is

photoimmunotherapy (PIT).

A SNAP fusion protein is a type of ADC that exhibits similarities

and differences to conventional ADCs. The following similarities
FIGURE 3 Structure of two types of ADCs: A, an immunoglobulin (IgG) w
and, B, a single‐chain variable fragment (scFv) attached to SNAP and conju
uptake and internalization common to both types of ADCs
between the both are clear from Figure 3: (1) Both the monoclonal

antibody and the SNAP fusion protein share similar features in struc-

ture in that they both contain variable light and heavy chains (scFvs)

with complementarity determining regions (CDRs) that constitute the

antigen‐binding region of the antibody (Figure 3; A1 & B1). This corre-

sponding paratope is specific for tumor‐associated epitopes that are

restricted in their expression on healthy cells. (2) Mechanisms of

receptor‐mediated uptake and internalization are common to both

types of ADCs within a tumor cell, where apoptosis is induced by

the release of the cytotoxic agent into the cytosol (Figure 3C).

The following differences between conventional ADCs and SNAP

fusion proteins are clear from Figure 3: (1) Disulfide bonds link the

heavy and light chains of the IgG, while a (Gly4Ser)3 linker connects

heavy and light chains in an scFv (Figure 3; A2 & B2). (2) The method

of conjugation of a drug/cytotoxic agent to the antibody within a con-

ventional ADC differs from that of a SNAP fusion protein. For SNAP

fusion proteins, a chemical linker is attached to the cytotoxic drug

via the lysine or cysteine amino acid side chains on the mAb, creating

a variety of possible conjugation sites for the drug (DAR > 1), and this

creates heterogeneous constructs with unpredictable pharmacokinetic

profiles, off‐target side effects and a relatively low maximum tolerated

dose.86 The type of linker (cleavable or noncleavable) also impacts on

the efficacy of the ADC. For example, these linkers facilitate prema-

ture spontaneous drug release, which damages normal tissues.87

SNAP‐tag is genetically fused to the scFv and conjugated to the

cytotoxic agent via an autocatalytically generated covalent bond

through the cysteine residue of the enzymes catalytic site with the

benzylguanine‐modified agent to generate a homogenous construct

with a higher therapeutic index.73,75 This creates a single specific site

for conjugation and allows an optimal 1:1 stoichiometry, which does

not affect the activity of the recombinant ligand and overcomes the
ith variable (V) and constant (C) regions conjugated to a cytotoxic agent
gated to a benzylguanine modified cytotoxic agent. C, Mechanisms of
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challenges of current ADC conjugation strategies that are highlighted

above88 (Figure 3; A3 & B3). (3) The Fc region is the domain that deter-

mines the effector function of the IgG, that is, how it engages with spe-

cific cell receptors or other defense proteins, eg, B lymphocytes, in

order to elicit an immune response to cause cell death.89 The Fc region

is not present in the antibody part of SNAP fusion proteins, such that

the cytotoxic agent alone elicits the effector function by lysosomal

release into the cytosol to induce apoptosis (Figure 3; A4, B4 & C).

1.3.1 | Photoimmunotherapy

Photoimmunotherapy (PIT) consists of conjugating a photosensitizer

to a tumor cell–specific mAb.90,91 Research show that PIT has been

influential in treating melanoma with laser light. Naylor et al combined

laser treatment with imiquimod to treat melanoma. The laser light

devitalized the tumor and converted the cells from a viable tumor to

antigenic materials for the immune system to respond to. Continued

therapy with imiquimod after laser therapy ensured that the

devitalized tumor was engulfed and processed by recruited dendritic

cells.92 In 2010, another in situ PIT study was performed on patients

with metastatic melanoma.93 The components of PIT included the

local application of imiquimod irradiated with laser light. Eleven

patients received this treatment modality in one or multiple 6‐week

treatment cycles, and a 12‐month overall survival rate of 70% with

no toxic side effects was observed.93 In 2017, Naylor et al used a

novel immunological approach for treatment of metastatic cancers,

called laser immunotherapy, in combination with the check point

inhibitor ipilimumab, to treat melanoma.94 It was observed that after

laser immunotherapy on one patient, cutaneous melanoma in the head

and neck completely disappeared.94 The patient was then adminis-

tered one course of ipilimumab, 3 months after laser treatment, and

all tumor nodules in the lung decreased. The patient remained tumor

free for 1 year.94 This highlights the efficacy of combination treatment

in enhancing therapeutic effects in melanoma treatment.

Another newly developed cell‐selective cancer therapy is near‐

infrared photoimmunotherapy (NIR‐PIT). Its promising potential in skin

therapy is attributed to reduced photon scattering, light absorption,

and auto‐fluorescence, as well as increased light penetration into tis-

sue, as compared with PDT.95 NIR‐PIT can target a broad array of

cancer‐specific target molecules including the proteins EGFR, HER2,

PSMA, CD25, CEA, mesothelin, GPC3, and CD20.96 Since NIR‐PIT

can selectively kill off target cells, it can be used to eliminate cancer

stem cells displaying markers such as CD44 and CD133, as was dem-

onstrated for breast cancer and glioblastoma stem cells.96 This creates

the possibility of using this option to target antigens associated with

melanoma or BCC.

EpCAM (CD 326) is a human transmembrane glycoprotein located

on the cell membrane and within the cytoplasm of all non‐squamous

epithelial cells.97 Previous studies have shown that anti‐EpCAM anti-

body Ber‐EP4 is a sensitive marker of basal cell carcinoma; however,

it fails to stain cutaneous squamous cell carcinoma.98,99 Chondroitin

sulfate proteoglycan 4 (CSPG4), also known as melanoma chondroitin

sulfate proteoglycan (MCSP), is a membrane‐bound proteoglycan and

was initially characterized on the surface of melanoma cells.100,101

Targeting CSPG4 was also shown to be clinically relevant by an
increase in survival of melanoma patients who received CSPG4 mimics

as a form of active specific immunotherapy.102 Targeting CSPG4 also

inhibited the growth and recurrence of melanoma in a human mela-

noma xenograft model.103

Two photosensitizers (PS) that are currently used in NIR‐PIT are

IR700 and hypericin. IR700 is a promising PS that, besides having no

off‐target effects, possesses ideal properties such as high purity,

photostability, and a strong absorption peak close to 700 nm allowing

improved light penetration into tissues.90,104-107 Recently, the IR700

fluorophore was conjugated to a scFv fragment against three

overexpressed cancer antigens, ie, the EGFR, EpCAM, and CSPG4,

using SNAP‐tag technology.76,88 In vitro success of this therapeutic

approach in killing melanoma cells was attributed to the scFv‐425

(EGFR) targeted effect, as well as the nontoxic effect of free IR700

even after irradiation.

Hypericin (HYP) has been shown to be an effective second‐

generation PS. Hypericin is a natural photosensitizer, biosynthesized

within the dark glands of the petals and leaves of the St John's Wort

plant (Hypericum perforatum).108,109 It belongs to the chemical class

of naphtodianthrones and can be chemically synthesized through con-

version of emodin to hypericin using Hyp‐1 enzyme, yielding approx-

imately 84.6% efficient conversion when overexpressed in

Escherichia coli.110,111 Hypericin‐based PDT treatment was shown to

be effectively cytotoxic to metastatic melanoma through the localiza-

tion of HYP in melanosomes.112-114 Another study showed that

hypericin can inhibit the growth of SCC tumors in culture and can

reduce tumor size in mice in the complete absence of light.115

Recently, an attempt to circumvent chemoresistance was made by

Biteghe and Davids, who by combining DTIC with hypericin were able

to overcome this resistance due to the genotoxic effect by DTIC and

the oxidative stress induced by HYP‐PDT.116 Optical imaging methods

have also seen widespread application in skin cancer diagnostics as

they are noninvasive, with fast response times, and are potentially

sensitive to biochemical and structural changes presented in skin can-

cer development.117,118
1.4 | Optical imaging methods in cancer diagnosis

For skin cancer diagnostics, the primary optical imaging techniques

used are widefield imaging, optical spectroscopy, and microscopy

imaging.119 Widefield imaging allows the examination of large areas

and has the potential of improving detection of hidden lesions, margin

delimitation, and also guide biopsy site determination.120 A major

advantage of the widefield microscope is the low cost, simplicity,

and flexibility of the system.121 In contrast, some disadvantages of

widefield microscopy include low image resolution, potential for shad-

ing artifacts due to uneven illumination, and the alignment of different

cameras to ensure pixel registration when using multiple indicators.122

Microscopy imaging has the main advantage of the evaluation of the

tissue characteristics at cellular level, but only a small fraction of the

lesion volume is interrogated.123

Optical spectroscopy presents more detailed information on

tissue composition than widefield microscopy, as the light intensity

for each collected emission wavelength is correlated to specific
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biomolecules.124 Raman spectroscopy has gained considerable

interest in disease diagnosis, particularly cancer, because of its

ability to provide molecular specific information about tissues. Each

Raman spectral peak can be associated with specific vibrations in

molecular bonds.125,126 Thus, this technique provides biochemical

information about a sample, including conformations and concen-

trations of constituents.127 Different forms of Raman spectroscopy

have evolved to meet requirements in a specific biological applica-

tion. However, due to long integration times, bulky instrumenta-

tion, high excitation intensities, and mutagenicity of the UV light,

Raman has limitations for in vivo use.126 Thus, NIR dispersive

Raman spectroscopy, in which NIR excitation minimizes fluores-

cence and absorption by tissue, has been the technique of choice

for in vivo applications.126

Fluorescence imaging is another optical method based on the

use of fluorophores, which are compounds that can emit light after

absorption of the appropriate wavelength light.128 NIR fluorescent

probes are advantageous for in vivo imaging because of minimum

photodamage to biological samples, deep tissue penetration, and

minimum interference from background autofluoresence by biomol-

ecules in living systems.95 SNAP‐tag technology provides a unique

antibody format that allows for site‐specific conjugation of

organic/inorganic fluorophores or fluorescence nanoparticles in

the NIR spectral region. For accurate imaging, the nanoparticles

are conjugated with targeting ligands and/or constructed as off‐

on probes. Polyglycerol doxorubicin was conjugated to EGFR‐

specific (scFv‐425)‐SNAP‐tag fusion proteins for targeted delivery

to different cell lines. These SNAP‐tag–conjugated nanoparticles

showed increased specificity, no off‐target internalization, and

accumulation and EGFR concentration‐dependent toxicity,

warranting further in vivo studies of scFv‐SNAP fusion proteins

with multifunctional polyglycerol.129 Petershans et al developed a

method for protein immobilization onto modified CdSe/ZnS

quantum dot surfaces using simple SNAP‐tag methodology.130

Mazzucchelli et al designed a SNAP fusion protein, which was irre-

versibly immobilized on magnetofluorescent nanoparticles through

the recognition between SNAP and a pegylated O6‐alkylguanine

derivative. The targeting efficiency of the resulting nanoparticle

against HER2‐positive breast cancer cells was assessed by flow

cytometry and immunofluorescence.131 In addition, an epidermal

growth factor–based nanoprobe (EGF‐NP) for in vivo optical

imaging of epidermal growth factor receptor (EGFR) was devel-

oped. The NIR fluorophore (Cy5.5) and quencher (BHQ‐3) was

sequentially conjugated to EGF (6.2 kDa) compared with EGFR

antibody (150 kDa).132 The self‐quenched EGF‐NP exhibited great

specificity to EGFR and rapidly internalized into the cells, as

monitored by time‐lapse imaging.132 Importantly, the self‐quenched

EGF‐NP boosted strong fluorescence signals upon EGFR‐targeted

uptake into EGFR‐expressing cells, followed by lysosomal degrada-

tion, as confirmed by lysosomal marker cell imaging.132

In a study by Gong et al, an NIR fluorescent SNAP‐tag substrate

BG‐800 was synthesized by conjugating an IRDye 800CW to the

benzyl‐guanine amino group (BG‐NH2) of the protein tag.84 Because

BG‐800 was cell impermeable, the SNAPf‐ADRβ2 fusion protein was

used in such a way that ADRβ2 directed the localization of SNAPf
fusion protein to the cell membrane. BG‐800 reacted with SNAPf‐

ADRβ2 in both cell lysate and live cell culture.84 The tumor expressing

SNAPf‐ADRβ2 was then visualized using BG‐800 conjugated to the

IRDye 800CW. SNAP(f) is a fast‐labeling variant of SNAP‐tag showing

an improved reaction with benzylguanine (BG)‐modified synthetic

substrate, leading to a faster covalent attachment of substrate to the

SNAP(f). This property makes SNAP(f) a valuable tool for imaging

applications. SNAP(f)‐beta‐2 adrenergic receptor (SNAP(f)‐ADRβ2)

fusion protein was created with the ADRβ2 portion of the protein

directing the localization of the protein to the cell membrane.84

Rapid optical imaging of EGF receptor expression with a single‐chain

antibody SNAP‐tag fusion protein was also studied. EGF receptors (which

is a member of the receptor tyrosine kinase [RTK] family) are usually

overexpressed in cancer, even though healthy cells also express them.133

The EGFR‐specific scFv fusion protein 425‐SNAP was labeled with the

NIR dye BG‐747, and its accumulation, specificity, and kinetics were mon-

itored using NIR fluorescence imaging in a subcutaneous pancreatic carci-

noma xenograft model.74 The 425 (scFv) SNAP fusion protein

accumulated rapidly and specifically at the tumor site. Its small size allowed

efficient renal clearance and a high tumor to background ratio (TBR).74

The SNAP‐tag can also be combined with other protein tags, such

as HaloTag,134 or other reporter gene systems that use fluorescent sub-

strates, such as β‐galactosidase/DDAOG system,135 to create

multiplexed imaging systems. A second version of AGT‐based tag

named CLIP‐tag reacts specifically with benzylcytosine (BC) deriva-

tives.136 Because SNAP‐tag and CLIP‐tag only react with their specific

substrates, they could be used simultaneously for dual‐color fluores-

cence imaging.137 For example, the nonspecific blood flow tracer indo-

cyanine green (ICG) was successfully used to visualize regional

lymphatic flow from cancer lesions and identified sentinel lymph nodes

in humans.137 Simultaneous but separate visualization of different lym-

phatic drainages was made possible by fluorescent agents with multiple

colors.137 The clinical use of NIR fluorescence imaging for sentinel lym-

phatic mapping was first reported by Kitai et al in 18 breast cancer

patients.138 They injected 25mg of ICG near the areola of breast cancer

patients and successfully visualized the draining lymphatics in all

patients and localized the sentinel lymph nodes in 17 of 18 patients.138

Following this study, additional clinical studies have confirmed the util-

ity of NIR sentinel mapping in melanoma.139 Tumor detection with NIR

fluorescence during a surgical procedure has been performed in several

tumor types, with application in melanoma using ICG.140 The subse-

quent conjugation of ICG to SNAP‐tag thus creates new possibilities

for image guided surgery in melanoma patients in the future.

As shown in Figure 4A, the scFv targets the fusion protein to

the surface receptor on the tumor, cell and the conjugated photo-

sensitizer (IR 700) is activated by a specific wavelength of light

(500‐700 nm). The energy‐enriched photosensitizer releases the

extra energy to its surroundings and returns to the ground state.

Singlet O2 is converted to reactive oxygen species (ROS), which

induces apoptosis/necrosis of tumor cells.88 This application is

referred to as photoimmunotherapy; in Figure 4B, auristatin F

(AURIF) (microtubule destabilizer) conjugated to the SNAP‐tag anti-

body fusion protein gets internalized and released into the cytosol

where it induces apoptosis,141 referred to as ADC therapy. In

Figure 4; C & D, fluorophores and magnetofluorescent



FIGURE 4 A summary of the diagnostic and therapeutic applications of SNAP‐tag fusion proteins on a tumor cell expressing the extracellular
receptor CSPG4. A, scFv targets the fusion protein to the surface receptor on the tumor cell by photoimmunotherapy. B, Auristatin F‐SNAP‐
tag conjugate gets internalized and released into the cytosol where it induces apoptosis. C, Magnetofluorescent nanoparticles and, D, fluorophores
enter the cell by receptor‐mediated uptake and accumulate within the tumor and allow for optical detection
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nanoparticles enter the cell by receptor‐mediated uptake and used

for optical imaging.131,142 After their release, their corresponding

signals accumulate within the tumor and allow for optical detec-

tion. These are a few examples that prove the versatility of

SNAP‐tag technology, which depending on the type of the BG

modified substrate conjugated will either elicit signal accumulation

for diagnosis88,131,142 or induce apoptosis to eliminate cancer

cells.141,143
2 | CONCLUSION

In the era of precision medicine, SNAP‐tag technology is a potentially

promising molecular targeting approach for early diagnosis and treatment

of skin cancer, which has a high burden globally. In this review, we have

identified and discussed the prospects for the use of SNAP‐tag for

targeted therapy of skin cancers, as well as some of its potential advan-

tages over currently available conventional skin cancer treatment options.

Not least, the use of SNAP‐tag technology in combination with other

recently emerging 'omics‐based technologies can potentially offer a trea-

sure trove of targeted diagnostic, prognostic, and therapeutic options for

the management of skin cancers in a systems‐oriented manner.
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