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Abstract
Purpose Circulating and dietary magnesium have been shown to be inversely associated with the prevalence of cardiovascular 
disease (CVD) and mortality in both high and low-risk populations. We aimed to examine the association between dietary 
magnesium intake and several measures of vascular structure and function in a prospective cohort.
Methods We included 789 participants who participated in the vascular screening sub-cohort of the Hoorn Study, a popu-
lation-based, prospective cohort study. Baseline dietary magnesium intake was estimated with a validated food frequency 
questionnaire and categorised in energy-adjusted magnesium intake tertiles. Several measurements of vascular structure and 
function were performed at baseline and most measurements were repeated after 8 years of follow-up (n = 432). Multivari-
able linear and logistic regression was performed to study the cross-sectional and longitudinal associations of magnesium 
intake and intima-media thickness (IMT), augmentation index (Aix), pulse wave velocity (PWV), flow-mediated dilatation 
(FMD), and peripheral arterial disease (PAD).
Results Mean absolute magnesium intake was 328 ± 83 mg/day and prior CVD and DM2 was present in 55 and 41% of the 
participants, respectively. Multivariable regression analyses did not demonstrate associations between magnesium intake 
and any of the vascular outcomes. Participants in the highest compared to the lowest magnesium intake tertile demonstrated 
in fully adjusted cross-sectional analyses a PWV of −0.21 m/s (95% confidence interval −1.95, 1.52), a FMD of −0.03% 
(−0.89, 0.83) and in longitudinal analyses an IMT of 0.01 mm (−0.03, 0.06), an Aix of 0.70% (−1.69, 3.07) and an odds 
ratio of 0.84 (0.23, 3.11) for PAD
Conclusion We did not find associations between dietary magnesium intake and multiple markers of vascular structure and 
function, in either cross-sectional or longitudinal analyses.

Keywords Magnesium intake · Intima-media thickness · Flow-mediated dilatation · Pulse wave velocity · Augmentation 
index · Peripheral arterial disease
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Introduction

Cardiovascular disease (CVD) is one of the most common 
morbidities and the leading cause of death worldwide [1, 
2]. In addition to traditional risk factors of CVD, such as 
physical inactivity, tobacco use, hypertension, hypercho-
lesterolemia, obesity and diabetes, magnesium deficiency 
gained interest during recent years as a potentially modifi-
able risk factor of CVD [3–8].

As one of the most abundant intracellular cations, magne-
sium is required for normal cell physiology and is essential 
for neuromuscular and cardiovascular function [9]. Sev-
eral systematic reviews and meta-analyses demonstrated 
an association between high serum or dietary magnesium 
and a reduced risk of all-cause and cardiovascular mortal-
ity, CVD including coronary heart disease and ischemic 
stroke, hypertension, and type 2 diabetes (DM2) within 
the general population [3–7, 10]. Part of this association 
might be explained by the protective effects of magnesium 
on vascular calcification, vascular tone, endothelial cell 
function and low-grade inflammation, influencing both 
vascular structure and function [9, 11]. The calcification 
inhibiting effects of magnesium have been demonstrated in 
animal studies as well [12–15]. Literature on the associa-
tion between magnesium intake, and markers of vascular 
structure and function in humans is very limited, while many 
studies do report on the associations with serum magnesium 
concentration [16–22], or the effects of magnesium supple-
mentation [23–28]. Yet, besides magnesium concentration 
and magnesium supplementation, the role of magnesium 
intake from dietary sources (among others leafy vegetables, 
nuts, whole grains and seeds) could be of importance in 
the prevention of vascular impairment on a public health 
level and for dietary guidelines. Only a few studies investi-
gated the association between dietary magnesium intake and 
intima-media thickness (IMT) or pulse wave velocity (PWV) 
[29–32]. However, these studies did not observe consistent 
associations and were mostly performed cross-sectionally 
in high-risk populations such as DM2 or chronic kidney 
disease cohorts. No studies reported on magnesium intake 
in relation to flow-mediated dilatation (FMD), augmenta-
tion index (Aix) or peripheral artery disease (PAD). These 
vascular markers have been measured in a sub-cohort of the 
Hoorn study, a population-based prospective cohort in the 
Netherlands that was initiated to study the prevalence and 
risk factors of impaired glucose metabolism and DM2.

Therefore, the aim of this study was to examine whether 
dietary magnesium intake is associated with vascular mark-
ers IMT, FMD, PWV, Aix and PAD, cross-sectionally and 
after 8 years of follow-up in individuals of the vascular 
screening sub-cohort of the Hoorn study.

Methods

Study population

The Hoorn Study is a prospective, population-based cohort 
of Dutch citizens, initiated in 1989 in the Hoorn region. 
This cohort has been described in detail previously [33]. In 
brief, 3553 Caucasian men and women, aged between 50 to 
75 years, were randomly selected from the municipal regis-
try of the city of Hoorn, resulting in 2484 participants that 
provided informed consent. For the present study, we used 
data of a vascular screening sub-cohort (n = 831) with addi-
tional questionnaires and several measurements of vascular 
structure and function in 2000–2001, which was considered 
baseline. This sub-cohort was oversampled for individu-
als with DM2 and impaired glucose metabolism (IGM) to 
investigate effect modification by glucose metabolism status 
[33, 34]. Participants with a missing food frequency ques-
tionnaire (FFQ) (n = 20) and without any available vascular 
measurements of interest (n = 22) at baseline were excluded 
from the current analyses, resulting in 789 participants 
(Fig. 1). Follow-up visits of this vascular screening sub-
cohort were performed in 2007–2009 in 432 participants, 
with repeated measurement of at least one of the vascular 
measurements. Absence of follow-up visit was due to death 
(n = 128), inability to participate due to poor health status 
or relocation (n = 52), too many missings in previous visit 
(n = 12) and untraceable or unknown reason (n = 165). The 
study was approved by the Ethics Committee of the VU Uni-
versity Medical Centre (Amsterdam, the Netherlands).

Magnesium intake assessment

Magnesium intake at baseline was assessed based on a vali-
dated, 178 item food frequency questionnaire (FFQ), esti-
mating specific food consumption over the previous year. 
This FFQ demonstrated correlation coefficients of  ≥ 0.61 
for fibre and macronutrients and 0.32–0.78 for specific food 
groups high in magnesium content (bread, cereals, vegeta-
bles, nuts and seeds), in comparison to multiple 24 h dietary 
recalls [35, 36]. Participants filled out the FFQ at home and 
these questionnaires were checked for completeness after 
return. Nutrient intake, including magnesium and dietary 
fibre intake, was calculated by multiplying the amount and 
frequency of consumption of each food item by its nutrient 
content using the Dutch Food Composition Table (NEVO) 
1993 [37]. Finally, for each nutrient, the total intake was 
summed for all food items, resulting in a mean nutrient spe-
cific, daily intake. No data on supplement use was avail-
able, therefore, magnesium intake is defined as solely dietary 
intake of magnesium.
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Measurements of vascular structure and function

At baseline, IMT, Aix, PWV, FMD and ankle-brachial 
index (ABI) were measured by a trained researcher. At the 
follow-up visit, measurements of IMT, ABI and Aix were 
repeated. A short description of each of the five markers 
of vascular structure and function is listed below, more 
detailed descriptions of each vascular measure are published 
previously [38–45]. Measurements of the IMT were per-
formed at the location of the common carotid artery using 
an ultrasound device and we applied the mean of multiple 
measurements within the analyses [38]. The FMD was 
assessed through ultrasound examination of the diameter of 
the brachial artery before and after pressure cuff inflation 
[39]. FMD is expressed as a percentage and calculated as 
the mean of three measurements of the maximum diameter 

after pressure cuff inflation minus the baseline diameter, 
divided by the baseline diameter. Measurements of both Aix 
and PWV were performed using the Sphygmocor, AtCor 
Medical device, measuring the radial artery, and carotid and 
femoral arteries, respectively [40, 41]. The Aix is expressed 
as a percentage and calculated as augmentation pressure 
divided by the tonometrically derived pulse pressure. The 
carotid-femoral travelled distance was estimated using body 
height, conform the formula proposed by Weber et al. (body 
height/4 + 7.28) [42, 43]. Subsequently, the carotid-femoral 
PWV was calculated as travelled distance in meters divided 
by transit time in seconds. The ABI was calculated using 
Doppler-assisted systolic blood pressure measurements at 
both sides [44, 45]. The clinical cut off of the left or right 
ABI to classify as a peripheral arterial disease (PAD) was a 
value below 0.9 [46].

Fig. 1  Flow chart of study pop-
ulation. DM diabetes mellitus, 
FFQ food frequency question-
naire. *Ref: Spijkerman AM, 
et al. Diabetes Care. 2002 [34]. 
**Poor health status included 
illness, reduced mobility, high 
age and dementia
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Other determinants

Hypertension is defined as systolic blood pres-
sure  ≥ 140 mmHg, diastolic blood pressure  ≥ 90 mmHg or 
the use of antihypertensive medication. Glucose status is 
classified according to the WHO criteria (1999) of normal 
glucose metabolism (NGM), IGM and DM2 [47]. Informa-
tion on prior CVD was extracted through medical records 
in combination with the Rose Angina Questionnaire [48]. 
Subjects filled out multiple questionnaires to obtain infor-
mation about education level (low, middle, high), smoking 
status (never, former, current), self-reported physical activity 
(hours/week), dietary intake (FFQ) and alcohol consumption 
(no consumption, 0–13 glasses per week,  ≥ 14 glasses per 
week) [33, 35]. All laboratory values were acquired after 
overnight fasting and included glucose, haemoglobin A1c 
(HbA1c), total cholesterol, low-density lipoprotein choles-
terol (LDL-cholesterol), high-density lipoprotein cholesterol 
(HDL-cholesterol), triglycerides, C-reactive protein (CRP), 
and serum creatinine (Jaffe method). Estimated glomeru-
lar filtration rate (eGFR) was calculated according to the 
chronic kidney disease epidemiology collaboration (CKD-
EPI 2009) [49].

Statistical analyses

We adjusted all dietary intake variables for energy intake 
using the residual method [50]. Due to differences in total 
energy intake and sex-specific magnesium intake recommen-
dations, we classified participants into sex-specific tertiles 
according to their energy-adjusted magnesium intake. The 
classification into tertiles was separately performed for the 
cross-sectional (full-cohort) and longitudinal analyses sam-
ple (only including those with follow-up measurements). 
Baseline characteristics are displayed for the magnesium 
intake tertiles. Variables are displayed as mean and standard 
deviation when normally distributed, as median and inter-
quartile range [IQR] when the distribution was skewed and 
for categorical variables as percentage. To examine trends 
across the magnesium intake tertiles, we performed linear 
regression analyses or chi-square (Mantel–Haenszel test) 
for continuous and categorical variables respectively, with 
magnesium tertiles as a continuous determinant. For this 
purpose, we first performed a log-transformation for those 
continuous variables with a right-skewed distribution.

We performed multiple linear regression analyses to 
investigate the associations between magnesium intake ter-
tiles and IMT, FMD, PWV and Aix, and logistic regression 
for the association with PAD. The lowest magnesium intake 
tertile was considered as the reference category. IMT, Aix 
and PAD were analysed prospectively as well, by adding 
time and the baseline value as an independent variable to 
the regression models. In the longitudinal analysis of PAD, 

cases with PAD at baseline were excluded (n = 7). Both 
PWV and FMD were analysed cross-sectionally only, since 
these measurements were not repeated during the follow-up 
visit.

We defined three a priori nested models to adjust for 
potential confounding in all analyses. The first model is 
adjusted for age, sex and glucose metabolism status. The 
second model is additionally adjusted for prior CVD, smok-
ing status and systolic blood pressure. The third model also 
included energy intake and energy-adjusted fibre intake. 
Effect modification by age (above or below the median age 
of 68), glucose status (NGM, IGM or DM2) and prior CVD 
(yes or no) was tested by adding interaction terms to the 
regression models with magnesium as a continuous vari-
able. Stratified analyses were performed when significant 
interaction terms were found (p < 0.10) and confirmed with 
interaction terms for the magnesium intake tertiles.

For the 32 participants with missing data on covariates 
in the above specified regression models (with a maximum 
of 3% missing for each covariate), we imputed missing data 
using multiple imputation with predictive mean matching 
(10 sets of 10 iterations each). Missing covariates at base-
line were CVD (n = 23), glucose metabolism status (n = 2), 
smoking (n = 5), systolic blood pressure (n = 2), glucose sta-
tus (n = 2). We imputed separately for cross-sectional and 
longitudinal data sets. For the longitudinal analyses, missing 
data of outcome variables at follow-up (IMT n = 11, Aix 
n = 29, ABI n = 6) were imputed, however, we did not impute 
missing data in outcome variables at baseline (up to 19% 
missing). Therefore, those cases were not included in the 
longitudinal analyses. We checked imputation of continuous 
variables by visual inspection of the convergence plots. Sen-
sitivity analyses were performed for complete case analysis 
and absolute intake tertiles variables, based on the absolute 
instead of energy-adjusted magnesium intake.

We performed all analyses using IBM SPSS Statistics 
24.0 (IBM Corp., Armonk, NY). Two-sided p values  < 0.05 
were considered statistically significant.

Results

Participant characteristics

Participant characteristics at baseline are presented accord-
ing to sex-specific and energy-adjusted magnesium intake 
tertiles (Table 1). The mean age was 68.5 ± 7.2 years and 
398 (51%) of the participants were men. DM2 and IGM was 
present in 41% and 23% of the participants, respectively, 
and 55% of the participants had a history of CVD. Mean 
absolute magnesium intake was 328 ± 83 mg/day, with a 
mean of 353 ± 87 mg/day for men and 303 ± 70 mg/day for 
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Table 1  Baseline characteristics 
of the vascular screening 
sub-cohort of the Hoorn study 
according to sex-specific and 
energy-adjusted magnesium 
intake tertiles (n = 789)

Normally distributed data are presented as mean ± standard deviation, non-normally distributed data as 
median [interquartile range], categorical data as %. BMI body mass index, CVD cardiovascular disease, 
HbA1c haemoglobin A1c, LDL low-density lipoprotein, HDL high-density lipoprotein, CRP C-reac-
tive protein, eGFR estimated glomerular filtration rate (CKD-EPI 2009), PPI proton-pump inhibitor. 
Intima-media thickness n = 733, augmentation index n = 614, peripheral arterial disease (ankle brachial 

Total cohort Magnesium intake tertiles

Tertile 1 Tertile 2 Tertile 3

N 789 262 264 263
 Median magnesium intake, mg/day 328 282 328 371
 Range of magnesium intake
(min–max), mg/day

136–530 136–313 303–350 345–530

Demographics
 Age, years* 68.5 ± 7.2 69.2 ± 7.4 68.9 ± 7.4 67.3 ± 6.7
 Male, n (%) 404 (51) 133 (51) 134 (51) 134 (51)

Education level, n (%)*
 Low 398 (51) 138 (54) 139 (53) 121 (47)
 Intermediate 294 (38) 98 (38) 93 (35) 103 (40)
 High 89 (11) 22 (9) 31 (12) 36 (14)

Lifestyle
 Smoking status, n (%)*

  Current 136 (17) 61 (24) 47 (18) 28 (11)
  Former 360 (46) 112 (43) 124 (47) 124 (47)
  Never 288 (37) 87 (34) 91 (35) 110 (42)

 Physical activity, h/week* 18.4 [9.0–29.0] 15.5 [7.5–27.8] 19.2 [9.5–31.0] 19.0 [9.7–28.0]
Alcohol consumption, n (%)
 No consumption 142 (18) 46 (18) 50 (19) 46 (18)
 0 – 13 glasses per week 482 (61) 151 (58) 164 (62) 167 (64)
  ≥ 14 glasses per week 165 (21) 65 (25) 50 (19) 50 (19)

BMI, kg/m2 27.7 ± 4.0 27.4 ± 3.9 27.8 ± 3.8 27.8 ± 4.3
Clinical characteristics
 Glucose status, n (%)

  Normal glucose metabolism 287 (36) 91 (35) 92 (35) 103 (39)
  Impaired glucose metabolism 181 (23) 64 (25) 62 (24) 55 (21)
  Type 2 diabetes mellitus 320 (41) 106 (41) 109 (41) 105 (40)

 Prior CVD, n (%)* 417 (54) 152 (60) 133 (52) 132 (51)
 Hypertension, n (%) 552 (70) 184 (70) 183 (70) 185 (70)
 Systolic blood pressure, mmHg 142 ± 20 141 ± 19 143 ± 20 142 ± 22
 HbA1c, mmol/mol 43.2 ± 8.5 42.3 ± 8.4 43.3 ± 8.1 43.5 ± 9.3
 Triglycerides, mmol/l 1.4 [1.0–1.9] 1.4 [1.0–1.9] 1.4 [1.0–1.9] 1.4 [1.0–1.8]
 Total cholesterol, mmol/l 5.7 ± 1.0 5.7 ± 1.0 5.7 ± 1.0 5.7 ± 1.1
 LDL cholesterol, mmol/l 3.6 ± 0.9 3.5 ± 0.9 3.6 ± 0.9 3.7 ± 0.9
 HDL cholesterol, mmol/l 1.4 ± 0.4 1.4 ± 0.4 1.4 ± 0.4 1.4 ± 0.4
 CRP, mg/l* 2.0 [0.8–4.0] 2.1 [1.1–4.4] 2.1 [1.1–4.3] 1.6 [0.7–3.5]
 eGFR, ml/min/1.73m2* 81 ± 14 79 ± 15 83 ± 12 82 ± 14
 Use of PPIs, n (%)* 33 (4) 16 (6) 12 (5) 5 (2)

Dietary intake
 Energy intake, kcal/day 1936 ± 506 1961 ± 512 1857 ± 486 1987 ± 515
 Dietary fibre, g/day* 23.3 ± 4.9 19.9 ± 4.0 23.2 ± 3.7 26.7 ± 4.5
 Calcium intake, mg/day* 1062 ± 312 883 ± 229 1092 ± 273 1209 ± 336
 Phosphorus, mg/day* 1439 ± 240 1248 ± 178 1469 ± 175 1596 ± 220

Vascular measurements
 Intima-media thickness, mm 0.86 ± 0.19 0.86 ± 0.163 0.86 ± 0.18 0.86 ± 0.17
 Augmentation index, % 32.4 ± 8.7 32.5 ± 9.0 33.2 ± 8.7 31.5 ± 8.5
 Peripheral arterial disease, n (%) 43 (7.1) 15 (7.5) 14 (7.3) (14) 6.7
 Pulse wave velocity, m/s 10.3 ± 5.2 10.4 ± 7.6 10.5 ± 3.3 10.2 ± 3.9
 Flow-mediated dilatation, % 3.8 ± .9 3.7 ± 4.2 3.6 ± 3.4 4.0 ± 3.9
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women. Participants with lower magnesium intake were 
older, suffered more frequently from CVD, were more fre-
quent smokers, less physically active, had higher triglycer-
ides, higher CRP, lower eGFR, were more frequently proton 
pump inhibitor users, and had a lower fibre, calcium and 
phosphate intake. The mean of vascular measurements at 
baseline are presented in Table 1. In the case of IMT, Aix 
and PWV, a higher value represents worse vascular structure 
or function, while a higher FMD reflects better endothelial 
function.

Mean follow-up duration was 7.5 ± 0.6 year. Participants 
with a vascular follow-up visit were significantly younger 
and healthier, with less frequent DM2 or a history of CVD, 
and they had a slightly higher baseline magnesium intake 
compared to those with baseline measurements only. These 
differences were also reflected in more favourable baseline 
values of vascular measures for participants with follow-up 
measurements (Supplementary Table 1). Energy-adjusted 
magnesium intake correlated well with phosphate and fibre 
intake (r = 0.64 and r = 0.62, respectively) and a weaker cor-
relation was found for calcium (r = 0.44), all p < 0.01.

index < 0.9) n = 603, pulse wave, velocity n = 317, flow-mediated dilatation n = 635. *p trend < 0.05 **Die-
tary intake is adjusted for total energy intake using the residual method. Tertiles are sex-specific and, there-
fore, values may overlap

Table 1  (continued)

Table 2  Cross-sectional 
association between sex-
specific, energy-adjusted 
magnesium intake tertiles 
with intima-media thickness 
(n = 733), augmentation 
index (n = 614), pulse wave 
velocity (n = 317), flow-
mediated dilatation (n = 635) 
and peripheral arterial disease 
(n = 589)

Model 1: age, sex and glucose status;
Model 2: model 1 + prior CVD, smoking status and systolic blood pressure;
Model 3: model 2 + caloric intake and energy-adjusted fibre intake
ABI ankle-brachial index, Aix augmentation index, CI confidence interval, CVD cardiovascular disease, 
FMD flow-mediated dilatation, IMT intima-media thickness, Mg magnesium, OR odds ratio, PAD periph-
eral artery disease (ABI  < 0.9), PWV pulse wave velocity, Ref. reference category
*Dietary intake is adjusted for total energy intake using the residual method. Tertiles are sex-specific and 
therefore magnesium intake values may overlap

Magnesium intake tertiles* p trend

Tertile 1 Tertile 2 Tertile 3

Median magnesium intake, mg/day 282 328 371
Range of magnesium intake (min–

max), mg/day
136–313 303–350 345–530

Beta (95% CI)
IMT (mm) n = 237 n = 248 n = 248
 Model 1 Ref. (0.0) 0.00 (−0.03, 0.03) 0.01 (−0.02, 0.04) 0.38
 Model 2 Ref. (0.0) 0.00 (−0.03, 0.03) 0.01 (−0.02, 0.04) 0.38
 Model 3 Ref. (0.0) 0.00 (−0.03, 0.03) 0.02 (−0.02, 0.05) 0.31

Aix (%) n = 201 n = 200 n = 113
 Model 1 Ref. (0.0) 0.25 (−1.33, 1.82) −0.97 (−2.53, 0.59) 0.22
 Model 2 Ref. (0.0) 0.38 (−1.18, 1.94) −0.49 (−2.05, 1.06) 0.53
 Model 3 Ref. (0.0) 0.56 (−1.11, 2.23) 0.24 (−1.65, 2.14) 0.81

PWV (m/s) n = 99 n = 111 n = 107
 Model 1 Ref. (0.0) −0.05 (−1.44, 1.34) 0.08 (−1.33, 1.50) 0.91
 Model 2 Ref. (0.0) −0.07 (−1.40, 1.25) 0.13 (−1.23, 1.49) 0.85
 Model 3 Ref. (0.0) −0.31 (−1.79, 1.17) −0.21 (−1.95, 1.52) 0.82

FMD (%) n = 210 n = 206 n = 219
 Model 1 Ref. (0.0) −0.08 (−0.80, 0.64) 0.10 (−0.61, 0.81) 0.78
 Model 2 Ref. (0.0) −0.12 (−0.83, 0.59) −0.07 (−0.77, 0.63) 0.85
 Model 3 Ref. (0.0) −0.04 (−0.79, 0.70) −0.03 (−0.89, 0.83) 0.94

OR (95% CI)
ABI prevalent PAD n = 201

n = 15
n = 192
n = 14

n = 196
n = 14

 Model 1 Ref. (1.0) 1.00 (0.46, 2.16) 1.02 (0.47, 2.21) 0.96
 Model 2 Ref. (1.0) 1.19 (0.52, 2.71) 1.50 (0.64, 3.52) 0.36
 Model 3 Ref. (1.0) 1.30 (0.54, 3.18) 1.75 (0.63, 4.88) 0.28
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Cross‑sectional associations

Measurements of vascular structure and function at baseline 
did not differ significantly between the magnesium intake 
tertiles (Table 1). No crude or multivariable-adjusted cross-
sectional associations were observed between magnesium 
intake tertiles and PWV, FMD, IMT, Aix or prevalent PAD 
(Table 2). For FMD, results were also stratified according 
to the presence of CVD at baseline, because of a signifi-
cant interaction between magnesium intake and prior CVD 
(p = 0.03). However, stratification did not considerably 
change these results (Supplementary Table 2). We found 
no effect modification by age, sex or glucose metabolism 
status for any of the vascular outcome measures (all p 
values  > 0.10).

Longitudinal associations

Overall, both IMT and Aix increased significantly from a 
mean IMT of 0.84 ± 0.16 mm at baseline to 0.88 ± 0.16 mm 
at follow up, and a mean Aix of 31.4 ± 8.6% – 34.2 ± 8.4%, 
both p < 0.01. Absolute outcome and changes of IMT, Aix 
and incident PAD after 8 year of follow-up did not differ sig-
nificantly across magnesium intake tertiles (Table 3). After 
full adjustment, we did not observe associations between 
the magnesium intake tertiles and any of these vascular 

measurements (Table 4). We found no effect modification 
by age, sex, glucose metabolism status or prior CVD. 

Sensitivity analysis

Complete case analysis including, 757 and 417 participants 
for the cross-sectional and longitudinal cohorts, respectively, 
did not change the results for any of the vascular outcomes 
(Supplementary Table 3 and 4). The sensitivity analysis with 
absolute magnesium intake tertiles and energy-unadjusted 
intake variables did not considerably change the results 
(Supplementary Table 5 and 6). Although the cross-sectional 
energy-unadjusted analysis of Aix demonstrated a lower Aix 
for the highest compared to the lowest magnesium tertile, 
−1.71% (95% confidence interval −3.27, −0.14) and p trend 
< 0.01, adding fibre intake to the model erased this inverse 
association (Supplementary Table 5).

Discussion

We found no evidence for cross-sectional or longitudinal 
associations between dietary magnesium intake and mark-
ers of vascular structure and function including IMT, Aix, 
PWV, FMD and PAD.

Our results confirm the very limited previous literature on 
magnesium intake and these vascular makers. In two large 

Table 3  Markers of vascular 
structure and function at 
baseline and after 8 years of 
follow-up for all participants 
with follow-up measurements 
of intimal media thickness, 
augmentation index and ankle-
brachial index, according to 
sex-specific and energy-adjusted 
magnesium intake tertiles 
(n = 432)

Data are presented as mean ± standard deviation, categorical data as n (%)
IMT n = 404, Aix n = 332, ABI n = 345
ABI Ankle-brachial index, Aix augmentation index, IMT intima-media thickness, Mg magnesium, PAD 
peripheral artery disease (ABI < 0.9)
*Dietary intake is adjusted for total energy intake using the residual method. Tertiles are sex-specific and, 
therefore, values may overlap
**The reported number of incident PAD are with the exclusion of prevalent PAD cases

Magnesium intake tertiles* p trend

Tertile 1 Tertile 2 Tertile 3

Median magnesium intake, mg/day 291 338 381
Range of magnesium intake (min–

max), mg/day
150–325 310–359 353–542

IMT (mm) n = 133 n = 136 n = 135
 Baseline 0.84 ± 0.14 0.84 ± 0.17 0.84 ± 0.17 0.80
 Follow-up 0.87 ± 0.15 0.88 ± 0.15 0.88 ± 0.17 0.46

Delta IMT 0.04 ± 0.17 0.04 ± 0.18 0.04 ± 0.19 0.67
Aix (%) n = 115 n = 107 n = 110
 Baseline 31.1 ± 8.8 32.5 ± 8.7 30.8 ± 8.3 0.78
 Follow-up 33.1 ± 9.1 35.1 ± 7.7 34.6 ± 8.0 0.16
 Delta Aix 2.0 ± 9.2 2.6 ± 9.2 3.9 ± 9.4 0.12

ABI n = 116 n = 114 n = 115
 Prevalent PAD, n (%) 2 (1.7) 3 (2.6) 2 (1.7)
 Incident PAD**, n (%) 13/114 (11.4) 11/111 (9.9) 10/103 (8.8) 0.53
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population-based cohorts, the Atherosclerosis Risk in Com-
munities (ARIC) cohort and the Multi-Ethnic Study of Ath-
erosclerosis (MESA) cohort, cross-sectional and multivaria-
ble associations for dietary magnesium and IMT were absent 
[29, 30]. In contrast, one smaller cohort study in healthy 
participants and one dietary intervention study in people 
with diabetes demonstrated age adjusted, inverse associa-
tions between (baseline) magnesium intake and IMT [31, 
32]. However, these analyses were not energy- or fibre intake 
adjusted and also no association between magnesium intake 
and PWV was found [32]. To our knowledge, no studies have 
reported on dietary magnesium in relation to Aix, FMD or 
PAD. Other parameters of vascular structure and function 
such as coronary or aortic calcification, heart failure and 
blood pressure have been studied more frequently in rela-
tion to dietary magnesium, but these studies also revealed 
inconsistent results [5, 7, 10, 51–55]. Fibre or ‘diet’ was an 
imported confounder in most of these studies, often attenuat-
ing or erasing associations when adjusted for. Adjustment for 
fibre intake also considerably influenced most of our analy-
ses of vascular outcomes, although these associations were 
not significant in crude or in fully-adjusted models. We also 

considered confounding by physical activity, alcohol intake 
and, education, however, this did not materially change the 
results (data not shown).

The absence of associations between magnesium intake 
and all markers of vascular structure and function in this 
cohort contradicts the more established association between 
dietary magnesium intake and CVD and mortality observed 
in systematic reviews and meta-analyses [3–7]. Similarly, 
these results are not in line with the mainly confirmative 
studies of serum magnesium concentrations in relation to 
vascular outcomes [16–20, 56, 57]. These inconsistencies 
could be explained in several ways. First of all, due to com-
plex magnesium homeostasis—balancing fractional magne-
sium absorption, shifts between intracellular and extracel-
lular compartments, uptake and release form the bone and 
renal excretion—it is possible that dietary magnesium intake 
has no or too little effect on serum or total body magnesium 
and explain why no associations between magnesium intake 
and vascular parameters are found. Secondly, our sample 
size could be too small (lack of power) to demonstrate an 
association, since most confirmative studies were larger 
cohorts or meta-analyses. Furthermore, not all studies that 

Table 4  Longitudinal 
association between sex-
specific, energy-adjusted 
magnesium intake tertiles 
with intima-media thickness 
(n = 415), augmentation index 
(n = 361) and the odds ratio 
of incident peripheral artery 
disease (n = 344) at 8 years of 
follow-up

*Dietary intake is adjusted for total energy intake using the residual method. Tertiles are sex-specific and, 
therefore, values may overlap
Model 1: age, sex and glucose status;
Model 2: model 1 + prior CVD, smoking status and systolic blood pressure;
Model 3: model 2 + caloric intake and energy adjusted fibre intake
ABI ankle-brachial index, Aix augmentation index, CI confidence interval, IMT intima-media thickness, 
OR odds ratio, PAD peripheral artery disease, Ref. reference category. The longitudinal associations are 
adjusted for time of follow-up and participants with PAD at baseline were excluded for the association with 
PAD (ABI < 0.9)

Magnesium intake tertiles* p trend

Tertile 1 Tertile 2 Tertile 3

Median magnesium intake, mg/day 291 338 381
Range of magnesium intake (min–

max), mg/day
150–325 310–359 353–542

Beta (95% CI)
 IMT (mm) n = 137 n = 140 n = 138
 Model 1 Ref. (0.0) 0.01 (−0.03, 0.04) 0.02 (−0.02, 0.05) 0.37
 Model 2 Ref. (0.0) 0.01 (−0.03, 0.04) 0.02 (−0.02, 0.05) 0.31
 Model 3 Ref. (0.0) 0.00 (−0.04, 0.04) 0.01 (−0.03, 0.06) 0.57
 Aix (%) n = 122 n = 117 n = 122
 Model 1 Ref. (0.0) 1.59 (−0.40, 3.57) 1.76 (−0.20, 3.72) 0.08
 Model 2 Ref. (0.0) 1.65 (−0.33, 3.63) 1.76 (−0.20, 3.72) 0.08
 Model 3 Ref. (0.0) 1.04 (−1.06, 3.15) 0.70 (−1.69, 3.07) 0.56

OR (95% CI)
 ABI n = 114 n = 114 n = 116
 Incident PAD n = 13 n = 12 n = 12
 Model 1 Ref. (1.0) 0.67 (0.23, 1.92) 0.99 (0.34, 2.89) 0.92
 Model 2 Ref. (1.0) 0.61 (0.20, 1.84) 0.94 (0.31, 2.85) 0.86
 Model 3 Ref. (1.0) 0.59 (0.18, 1.88) 0.84 (0.23, 3.11) 0.77
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found an inverse association between magnesium intake 
and (other) vascular markers adjusted for energy intake or 
dietary intake of other nutrients such as fibre and, therefore, 
possibly incorrectly attributed this association to magnesium 
intake, while in fact this may reflect a healthier diet or bet-
ter nutritional status. Another explanation is the relatively 
high percentage of comorbidities of this vascular screen-
ing sub-cohort, including prior CVD (55%), hypertension 
(70%), DM2 (41%) and IGT (23%) and already unfavourable 
vascular outcomes at baseline. Based on the understanding 
that magnesium inhibits vascular calcification and inflamma-
tion rather than reversing established vascular impairment 
[58], we cannot exclude that the assumed beneficial effect 
of higher magnesium intake is too small to be detected in 
this already severely vascular affected high-risk population. 
In line, a recent sub-analysis of the ARIC cohort did not 
show an association between serum magnesium and PAD 
risk in high-risk individuals, while this association was pre-
sent in the overall population-based cohort [59]. Lastly, the 
range of magnesium intake within a regular diet is relatively 
small. The absolute magnesium intake of 321 mg/day (IQR 
of 273–375) within this cohort, is close to the European 
Food Safety Authority magnesium intake recommendation 
of 300 mg and 350 mg per day for adult women and men, 
respectively. Also the absolute dietary magnesium intake 
range of 109–701 mg/day is close to the intake range of 
96–425 mg/day described in a systematic review and meta-
analysis of multiple prospective cohort studies on magne-
sium intake [10]. However, this dietary range may be too 
small to detect substantial and consistent associations on 
vascular parameters, hardly influencing serum magnesium 
levels. Magnesium intervention studies, mostly doubling 
daily magnesium intake (up to 610 mg of elemental magne-
sium a day on top of dietary intake) are less vulnerable for 
confounding by dietary components accompanying a higher 
magnesium diet and are more likely to positively influence 
magnesium balance. Indeed, several-magnesium supplemen-
tation studies within comparable or even higher risk study 
populations did find an effect of magnesium supplementa-
tion on IMT, PWV and FMD [24–27, 60–62].

Strengths and limitations

The strengths of this study include its combination of a com-
prehensive set of markers of vascular structure and function 
in a single, cohort and its prospective design. In addition, the 
selection of a high-risk population with already unfavourable 
vascular outcomes at baseline is one of the strengths, since 
results of dietary exposure are generally most pronounced 
for those at high risk. To our knowledge, it is the first study 
that investigated dietary magnesium intake in relation to 
FMD, PAD and Aix. We were able to adjust for a variety of 
covariates, including energy and fibre intake and we could 

study the effect modification for glucose status, sex, age and 
a history of CVD.

A limitation of our study is the sample size that could 
have been insufficient to detect significant and clinically 
relevant differences for some of the vascular markers, 
potentially in the case of PWV [63] and for the risk of PAD. 
However, for IMT, FMD and Aix, the effect estimates and 
95% CI did not include clinical relevant differences [64], 
and, therefore, these null results are not due to lack of power 
but rather reflect very small differences. Another limitations 
is that assessment of magnesium intake with the FFQ was 
not validated to estimate magnesium intake. However, the 
FFQ was validated for other nutrients and correlated well 
with fibre intake and adequately ranks subjects according to 
intake of most food groups, energy and fibre intake [35, 36]. 
Therefore, we assume that the FFQ correctly ranks subjects 
according to their magnesium intake. With only estimated 
magnesium intake at baseline, possible dietary changes 
affecting magnesium intake during follow-up are not taken 
into account in the longitudinal association, though we can 
assume that dietary intake is relatively stable over the years 
[65]. Unfortunately, we only had follow-up measurements 
of three out of five vascular outcomes and although the 
majority of participants had measurements of all concerning 
vascular outcomes, missing data in outcome measurements 
could be due to measurement specific or participant-related 
complications, or simply because of separate visits for some 
vascular measurements. In addition, the longitudinal asso-
ciations may be biased due to a selective and high rate of lost 
to follow-up (attrition bias). However, we observed similar 
results for the cross-sectional analyses of concerning out-
come parameters. Every vascular measurement has its own 
limitations, but generally they are complex to perform and 
these measurements are subject to inter-individual variation 
and variation due to external factors, such as temperature, 
medicine or caffeine intake. Finally, inherent to our stud-
ies observational design, there may be residual confound-
ing due to unmeasured factors. However, considering the 
overall absence of associations between magnesium intake 
and the vascular markers, residual confounding as well as 
adjustment for multiple testing would not change the results.

Conclusions and future research

Dietary intake of magnesium is not associated with vascular 
structure and function within this prospective cohort. It is 
unknown if a substantial higher magnesium intake in the 
general population may be beneficial for vascular outcome 
parameters. Therefore, we suggest future studies to focus on 
magnesium supplementation on top of dietary magnesium 
intake in relation to vascular outcomes, especially in a long-
term and preventive setting.
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