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Abstract

Atopic dermatitis is a chronic pruritic inflammatory skin disease. We recently described an animal 

model in which repeated epicutaneous applications of a house dust mite extract and staphylococcal 

enterotoxin B induced eczematous skin lesions. In this study we showed that global gene 

expression patterns are very similar between human atopic dermatitis skin and allergen/

staphylococcal enterotoxin B-induced mouse skin lesions, particularly in expression of genes 

related to epidermal growth/differentiation, skin-barrier, lipid/energy metabolism, immune 

response, or extracellular matrix. In this model, mast cells and T cells, but not B cells or 

eosinophils, were shown to be required for the full expression of dermatitis, as revealed by 

reduced skin inflammation and reduced serum IgE levels in mice lacking mast cells or T cells 

(TCRβ−/− or Rag1−/−). The clinical severity of dermatitis correlated with the numbers of mast 

cells, but not eosinophils. Consistent with the idea that Th2 cells play a predominant role in 

allergic diseases, the receptor for the Th2-promoting cytokine thymic stromal lymphopoietin and 

the high-affinity IgE receptor, FcεRI, were required to attain maximal clinical scores. Therefore, 
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this clinically relevant model provides mechanistic insights into the pathogenic mechanism of 

human atopic dermatitis.
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Introduction

Atopic dermatitis (AD), or eczema, is a chronic or chronically relapsing, pruritic 

inflammatory skin disease. The etiology of this disease is incompletely understood, but it is 

multifactorial and the disease is manifested by complex interactions between genetic and 

environmental factors (Bieber, 2008; Boguniewicz and Leung, 2011). Pathological 

examination reveals hyperkeratosis, spongiosis, and parakeratosis in acute lesions and 

marked epidermal hyperplasia and perivascular accumulation of lymphocytes and mast cells 

in chronic lesions. Immunological abnormalities of AD are characterized by sensitization 

with various allergens (e.g., foods, aeroallergens, microbes, and autoallergens), high serum 

IgE levels, and skin lesions with apoptotic keratinocytes and infiltration with immune cells 

such as CD4+ T cells, eosinophils, and mast cells. These T cells express IL-4, IL-5, and 

IL-13 (Grewe et al., 1998), and numerous studies suggest an association between AD 

development and T helper 2 (Th2) cell skewed immune responses. However, there are also 

data suggesting that AD development is independent of IgE, but correlates with an increase 

in interferon (IFN)-γ-producing Th1 cells (Thepen et al., 1996; Tsicopoulos et al., 1994; 

Werfel et al., 1996). Thus, as Irvine et al have stated, AD was considered for many years to 

be primarily immunologically driven disease with secondary barrier defect (the so-called 

insideoutside hypothesis). By contrast, some investigators had hypothesized that the primary 

defect is in the skin barrier (the outside-inside hypothesis) (Irvine et al., 2011). Various loss-

of-function mutations in the FLG gene encoding filaggrin, a key protein for formation of the 

skin barrier, were recently found in a substantial proportion of AD patients (Palmer et al., 

2006; Sandilands et al., 2007) and flaky tail mutant mice (Fallon et al., 2009). Furthermore, 

tight junction proteins claudin-1 and claudin-23 are reduced in AD patients. Silencing of 

claudin-1, whose expression is inversely correlated with Th2 biomarkers, in human 

keratinocytes diminishes tight junction function (De Benedetto et al, 2011). Thus, strong 

association of FLG mutations with AD and other studies have validated the outside-inside 

hypothesis (De Benedetto et al, 2012; Irvine et al, 2011). However, FLG mutations 

predispose subjects to allergen sensitization but these mutations are not sufficient for 

causing AD, as other genetic and environmental influences likely promote the Th2 immune 

response in susceptible individuals.

A number of mouse AD models have been developed over the last fifteen years, and have 

provided mechanistic insights into the pathogenesis of human AD (Gutermuth et al., 2004; 

Jin et al, 2009; Kawakami et al, 2009a). For example, a mouse model induced by 

epicutaneous (EC) sensitization with ovalbumin (OVA) mimicked skin lesions of human 

AD characterized by epidermal and dermal thickening, infiltration of CD4+ T cells and 
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eosinophils, and local expression of mRNAs for IL-4, IL-5 and IL-13 (Spergel et al, 1998). 

Dermatitis in this model required αβ T cells, but not B cells or mast cells (Alenius et al, 

2002; Woodward et al, 2001). Different roles of IL-4, IL-5, IL-10, IL-17, IFN-γ, chemokine 

receptors, complement components and complement receptors in this model were 

demonstrated using gene-manipulated mice (Jin et al, 2009). We also developed a highly 

reproducible mouse model that mimicked human AD, in which skin inflammation was 

induced by repeated treatments of Dermatophagoides farinae extract (Der f) and 

staphylococcal enterotoxin B (SEB) (Kawakami et al, 2007). Thus, AD patients often suffer 

from skin infections and more than 90% of AD patients are colonized with Staphylococcus 

aureus, as compared to about 5% of healthy subjects. S. aureus infection is thought to be 

critical in the pathogenesis and/or worsening of skin lesions (Jappe, 2000; Strange et al, 

1996). Moreover, there is a strong association of human AD with house dust mite allergens 

(Fuiano and Incorvaia, 2012; Kimura et al, 1998; Scalabrin et al, 1999). In this study, we 

demonstrated the clinical relevance of this model to human AD by global gene expression 

analysis, and then investigated the cellular and molecular players involved in skin 

inflammation in this model. We focused particularly on the role of mast cells.

Results

Gene expression profiles in lesional skin of Der f/SEB-induced dermatitis are similar to 
those in human AD skin

Our previous study showed that AD-like skin lesions can be induced by epicutaneous 

applications of Der f and SEB in NC/Nga and C57BL/6 (B6) mice (Kawakami et al., 2007). 

Higher clinical scores were observed with dermatitis-prone NC/Nga mice than with B6 

mice. Global gene expression analysis of skin RNAs showed r=0.956 (Spearman’s 

correlation coefficient) between normal and eczematous skin in NC/Nga mice, while 

r=0.976 between normal and eczematous skin in B6 mice. Thus, the lower values of 

Spearman’s correlation coefficient might reflect higher clinical scores in NC/Nga mice. 

Comparison between B6 and NC/Nga mice yielded r=0.962 when healthy skin was 

compared, and r=0.970 when eczematous skin was compared. Clustering analysis also 

showed higher similarity between eczematous B6 and eczematous NC/Nga mice than other 

comparisons (Fig. S1A). These data imply that the same pathogenic mechanisms may 

underlie the development of AD-like skin lesions in both strains of mice. By contrast, 

comparison between different tissues gave lower values, e.g., r=0.855 between normal skin 

and normal spleen of B6 mice; r=0.857 between eczematous skin and spleen of eczematous 

B6 mice.

To examine the clinical relevance of our Der f/SEB induction model, we compared skin 

gene expression data derived with B6 and NC/Nga mice with human AD skin data deposited 

in the NCBI Gene Expression Omnibus (GEO) database. The changes in expression of 

genes in human AD versus healthy skin from AD patients or healthy subjects were 

compared with those of orthologous genes in mouse eczematous versus healthy skin, using 

OrderedList algorithm (Lottaz et al., 2006; Yang et al., 2006). This analysis detected 

significant similarity in gene expression in the skin between human AD and mouse AD-like 

dermatitis (Table 1 and Fig. S1B). The top genes contributing to 95% of the similarity score 
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were similar when our B6 and NC/Nga results were compared with different human AD 

data, and were related to epidermal growth/differentiation (e.g., several keratin genes, 

cornified cell envelope-related genes [Sprr1b, Sprr2k, Tgm3, Lce1m]), skin barrier function 

(e.g., several kallikrein-related peptidases, serine protease inhibitors [Serpinb3d, 3a, 13a]), 

immune responses (e.g., several cytokines, chemokines, and their receptors, S100A8, 

S100A9), and lipid/energy metabolism (e.g., Slc27a2, Pck1), extracellular matrix/adhesion 

(e.g., several matrix metalloproteinases, their inhibitor Timp4, Tnc) Among these genes, 

Il7r, Il21r, CD8a, Ltb, Ccl5, Cxcl9, Cxcl10, Dlg2, Zap70, Pik3r1, and Fos are involved in 

the development and/or various aspects of functions of T cells, and Fcer1a, Hck, Ccl2, 

Pik3r1, and Fos are involved in the development and/or functions of mast cells (see more 

detail in Supplementary Description of Microarray Data and Table S1). Consistent with the 

altered expression of skin barrier-related genes, Der f/SEB-induced mice had impaired skin 

barrier, as revealed by high levels of TEWL (Fig. S2). Expression of select genes among the 

top similarity contributors was confirmed by RT-qPCR (Fig. S1C).

The above expression data, together with previous results showing high serum IgE levels in 

both the majority of AD patients and allergen-induced eczematous mice (Jin et al., 2009; 

Kawakami et al., 2009a), showed high similarity between human AD and Der f/SEB-

induced skin inflammation, supporting the clinical relevance of our model. Thus, these 

results set the stage for detailed mechanistic investigations.

T cells, but not B cells, are required for maximal skin inflammation

CD4 T cells, particularly Th2 cells, play a predominant role in allergic diseases including 

AD (Boguniewicz and Leung, 2011; Novak and Leung, 2011). To begin to analyze the 

cellular requirement for allergen-induced dermatitis, we performed the Der f/SEB 

experiments on T celldeficient TCRβ−/− and T cell/B cell-deficient Rag1−/− mice. For 

comparison, B cell-deficient µMT and WT mice were also tested. Both TCRβ−/− and Rag1−/− 

mice exhibited substantially lower clinical scores than WT mice (Fig. 1A). By contrast, the 

clinical scores of µMT mice were similar to those of WT mice. These observations were 

reflected in the thicknesses of skin (Fig. 1B–D). While the epidermis was thickened in all 

AD-induced mice, the dermis in TCRβ−/− or Rag1−/− mice was not thickened following Der 

f/SEB treatment (Fig. 1C). The clinical scores correlated with the thicknesses of epidermis 

and dermis (Fig. 1D). In comparison to the non-AD WT sample, the increased thickness of 

the epidermis in AD-induced samples could be attributed to expansion of differentiated 

layers, such as the stratum spinosum denoted by keratin 1 (K1) and the stratum granulosum 

marked by loricrin (Fig. S3). Consistent with the perturbation of epidermal homeostasis, 

there was an increase in keratin 6 expression. Despite a defect in tight junction formation, E-

cadherin (which nucleates adherens junctions) expression appeared normal. Consistent with 

our previous data (Kawakami et al., 2007), serum IgE levels (3076 ± 839 ng/ml, n=7) were 

high in eczematous WT mice. By contrast, without T cell help, IgE levels (700 ± 279 ng/ml, 

n=6) were lower in TCRβ−/− mice. As expected from the lack of antibodyproducing B cells, 

µMT and Rag1−/− mice did not have detectable levels of serum IgE (<15.6 ng/ml, the 

detection limit, n=8 or 6), indicating that IgE is not essential for skin inflammation. 

However, this does not exclude the possibility that IgE might contribute to some aspects of 
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skin inflammation (see below). These results demonstrate that T cells, but not B cells, are 

required for the full expression of dermatitis in this model, similar to the EC OVA model.

Mast cells, but not eosinophils, are required for maximal skin inflammation

Histological analysis showed increased numbers of eosinophils in lesional skin in TCRβ−/−, 

Rag1− /−, µMT, and WT mice (Fig. 2A). However, no correlation was found between the 

numbers of eosinophils in skin lesions and clinical scores observed in these mice (Fig. 2B). 

Furthermore, the clinical scores in Der f/SEB-treated eosinophil-deficient PHIL or 

ΔdblGATA mice were not different from those in WT control (Fig. 2C–D), indicating that 

eosinophils are dispensable for allergen-induced skin inflammation. By contrast, the 

numbers of mast cells correlated positively with clinical scores (Fig. S4). Clinical scores 

were significantly lower in Der f/SEB-treated mast cell-deficient KitW-sh/W-sh mice than in 

the corresponding WT mice (Fig. 3A). Consistent with these observations, the thicknesses of 

the lesional epidermis and dermis were significantly reduced in KitW-sh/W-sh mice (Fig. 3B–

C). To further confirm the role of mast cells, KitW-sh/W-sh mice were engrafted with BMMCs 

generated from WT mice. These mice exhibited clinical scores similar to WT mice (Fig. 

3A). The numbers of engrafted mast cells were at near-normal levels (1131 ± 98/mm2 in 

engrafted mice versus 1770 ± 49 /mm2 in WT mice). In the absence of mast cells, the 

decreased thickening of AD-induced skin was consistent with a lower expression of K1 in 

AD-induced KitW-sh/W-sh mice versus AD-induced WT mice (Fig. 3D). Concerned about the 

possible role of abnormalities other than the mast cell deficiency in KitW-sh/W-sh mice (Reber 

et al, 2012; Rodewald and Feyerabend, 2012), we performed Der f/SEB experiments using 

the recently engineered mast cell-deficient mouse strain Cpa3-Cre;Mcl-1fl/f/ (Lilla et al, 

2011). These mice also exhibited significantly blunted skin inflammation (Fig. S5). 

Interestingly, eosinophil infiltration was increased in mast cell-deficient mice (Fig. 3E), 

while neutrophils were decreased (Fig. 3F). Moreover, the numbers of neutrophils were 

significantly correlated with the clinical scores (Fig. S6). However, the role of neutrophils in 

our model remains to be determined. These results strongly indicate that mast cells are 

required for maximal skin inflammation.

FcεRI contributes to skin inflammation

High clinical scores in µMT mice (Fig. 1A) do not necessarily indicate that immunoglobulins 

are not involved in AD pathogenesis, because there are both activating and inhibitory Fc 

receptors (Nimmerjahn and Ravetch, 2006) and IgE binding to FcεRI has positive effects on 

mast cell survival and activation (Asai et al, 2001; Kalesnikoff et al., 2001; Kitaura et al, 

2003). Elevated IgE levels are found in up to 80 percent of AD patients (Leung and Bieber, 

2003) and anti-IgE therapy is efficacious to treat severe AD patients (Amrol, 2010; Vigo et 

al., 2006). Therefore, we tested whether the IgE-FcεRI axis is involved in skin 

inflammation. As shown in Fig. 4A, the clinical scores were significantly lower in 

FcεRIα−/− mice than in WT mice. Although H&E staining showed that epidermal/dermal 

thicknesses were not altered compared with WT mice (Fig. 4B–C), immunofluorescence 

microscopy analysis indicated that the increase in differentiating cell populations is slightly 

higher in AD-induced FcεRIα−/− mice compared with AD-induced WT counterparts (Fig. 

4D). The same trend of expression changes could be seen for K6 and E-cadherin. However, 

consistent with the lower clinical scores, lesional skin had less infiltration of neutrophils in 
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FcεRIα−/− mice (Fig. 4E). One of the major cytokines acutely secreted from FcεRI-activated 

mast cells is TNF-α, which is important for late-phase allergic reactions and neutrophil 

accumulation (Wershil et al, 1991). However, mice lacking TNF-a failed to show a 

reduction in clinical scores (Fig. 4F), suggesting that a factor(s) other than TNF-α may be 

critical for the mast cell contribution to skin inflammation in this model of AD.

TSLP contributes to skin inflammation

TSLP activates dendritic cells (DCs) and TSLP-activated DCs prime naive T cells to 

produce several cytokines such as IL-4, IL-5, IL-13 and TNF-α (Liu, 2006). TSLP is highly 

expressed by keratinocytes from AD patients (Soumelis et al., 2002), and transgenic mice 

overexpressing TSLP in keratinocytes develop AD-like eczematous lesions (Li et al., 2005; 

Yoo et al., 2005). As shown in Fig. 5A, TSLP protein was highly expressed by keratinocytes 

in lesional skin of B6 mice. Skin sections in which the primary antibody was omitted 

suggested that the fluorescence in hair follicles might be non-specific. TSLP mRNA levels 

were also increased in lesional skin (data not shown). Next, we tested whether TSLP is 

involved in skin inflammation in the Der f/SEB model. Importantly, mice lacking TSLPR 

exhibited substantial reduction in clinical scores (Fig. 5B). Although the thicknesses of 

epidermis and dermis were not significantly different between WT and TSLPR−/− mice (Fig. 

5C–D), the numbers of neutrophils and eosinophils, but not mast cells, were drastically 

reduced in TSLPR−/− mice (Fig. 5E). Consistent with the histological analysis of AD-

induced samples, expression of markers of epidermal differentiation was not significantly 

different between WT and TSLPR−/− mice (Fig. 5F). Interestingly, K6 expression was higher 

in AD-induced skin from TSLPR−/− mice versus WT mice. However, serum IgE levels were 

not lower in TSLPR−/− mice (10.1 ± 3.8 µg/ml, n=4 versus WT 4.4 ± 1.1 µg/ml, n=7). These 

results collectively indicate that the TSLP-TSLPR axis is critically involved in certain 

aspects of this AD model.

Discussion

This and previous (Kawakami et al, 2007) studies strongly support the clinical relevance of 

our Der f/SEB-induced AD model for the following reasons. First, eczematous mice thus 

induced exhibited similarity to human AD skin in gross and microscopic morphology and 

pruritus. Second, eczematous mice showed Th2 predominant skin inflammation and 

elevated serum IgE levels. Third, global gene expression in eczematous skin was similar to 

human AD skin, confirming altered epidermal differentiation (leading to impaired barrier 

function) and immune dysregulation in both human and mouse diseases. Fourth, consistent 

with the efficacy of anti-IgE therapy in treating severe AD patients (Belloni et al, 2008; Liu 

et al, 2011), the IgE-FcεRI axis was involved in Der f/SEB-induced dermatitis. Finally, the 

requirement of TSLPR for Der f/SEB-induced dermatitis was also consistent with Th2 

inflammation in human AD.

To the best of our knowledge, this study represents a previously unreported comparison in 

gene expression at the genomic level between human AD and a mouse model of AD. The 

genes that contribute to similarity in human AD and our mouse model are related to 

epidermal growth and differentiation, skin barrier, lipid and energy metabolism, immune 
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response, and extracellular matrix. Many of these genes have been implicated in the 

pathophysiology of human AD (Barnes, 2010).

This study showed that mast cells and αβ T cells, but not B cells or eosinophils, are required 

for the full expression of AD-like skin lesions in B6 mice. This report also demonstrates the 

requirement for mast cells in an AD model (Kawakami et al, 2009a) by using a strict set of 

approaches including mast cell knock-in (Nakano et al., 1985). According to the widely 

accepted notion for AD development (Bieber, 2008; Boguniewicz and Leung, 2011), the 

impaired skin barrier function allows easy access of allergens to the inside of epidermis and 

dermis; allergens are taken up by Langerhans cells and/or dermal dendritic cells, and these 

cells migrate and mature to present allergens to naïve helper T cells in lymph nodes; 

activated and differentiated Th2 cells migrate back to skin sites re-exposed to allergens; 

these effector Th2 cells recruit eosinophils, mast cells, and other granulocytes to cause tissue 

damage. Our results support this scenario, particularly the roles of αβ T cells and mast cells. 

The dispensability of eosinophils shown in this study, as well as the dispensability of CCR3 

(the chemokine receptor essential for eosinophil recruitment) in another AD model (Ma et 

al, 2002), probably indicates that tissuedamaging functions of eosinophils are redundant 

with those of other cells. Despite the apparent involvement of the IgE-FcεRI axis in certain 

features of Der f/SEB-induced dermatitis, including clinical score and numbers of 

neutrophils, B cells were not required for the full expression of the dermatitis. This could be 

interpreted as reflecting a balance between positive and negative regulatory functions of 

immunoglobulins in allergic inflammation. IgG receptors such as FcγRI, FcγRIIIA, and 

FcγRIV are activating receptors, whereas FcγRIIB is an inhibitory receptor (Nimmerjahn 

and Ravetch, 2006). FcγRIIB inhibits FcεRI-mediated activation as well (Kraft and Novak, 

2006). The cellular requirements for dermatitis development in our model were not identical 

to those of the EC OVA model, as dermatitis in the latter model required αβ T cells, but not 

B or mast cells (Alenius et al, 2002; Woodward et al, 2001). By contrast, skin inflammation 

induced by EC sensitization with cedar pollen antigens was abolished in mast cell-deficient 

mice (Oiwa et al, 2008). The mast cell contribution to dermatitis development in that model 

and our model, but not in the EC OVA model, might be due to the use of complex allergens 

containing component(s) that trigger mast cell activation. Similar to our model, FcεRI was 

shown to be involved in dermatitis in an EC OVA sensitization model (Abboud et al., 2009). 

While reduced NK cell activity was shown in our model and it led to severe erosive skin 

lesions upon vaccinia virus infection (Kawakami et al., 2009b), NK cell activity seemed 

normal in the EC OVA model. Therefore, the two AD models might mimic different aspects 

of the AD phenotype. Alternatively, these different models reflect heterogeneity of human 

AD.

Several studies implicated TNF-α as an important factor in skin inflammation: TNF-α 

expression is high in AD and psoriatic lesional skin (Zimmermann et al., 2011); TNF-α and 

IFN-γ induce keratinocyte apoptosis (Konur et al., 2005); TNF-α inhibits barrier protein 

expression (filaggrin and loricrin) via a JNK-dependent pathway (Kim et al., 2011); TNF-α 

and TWEAK (TNF-like weak inducer of apoptosis) cooperate in the induction of apoptosis 

in primary keratinocytes and artificial skin equivalents. TWEAK upregulates TNF-α 

expression in keratinocytes. High TWEAK expression was observed in AD lesions, but not 
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in healthy skin or psoriatic lesions (Zimmermann et al., 2011). Although TNF-α could be 

produced by T cells and mast cells, the two cell types required for the full expression of 

dermatitis, TNF-α was not required for Der f/SEB-induced dermatitis. Since anti-TNF-α 

therapy is effective in treating psoriasis (Kircik and Del Rosso, 2009; Langley et al., 2010), 

but not AD (Belloni et al., 2008; Pua and Barnetson, 2006), this result also supports the 

relevance of our Der f/SEB-induced dermatitis as a model of human AD.

TSLP is considered a master regulator of allergic inflammation (Liu, 2006). TSLP activates 

DCs and TSLP-activated DCs prime naive T cells to produce Th2 cytokines (IL-4, IL-5, 

IL-13) and TNF-α. TSLPR is expressed on other immune cells as well, and TSLP is 

necessary and sufficient for allergic inflammation (Ziegler and Artis, 2010). Given that 

TSLP is highly expressed by keratinocytes from AD patients (Soumelis et al., 2002), and 

Der f/SEB-induced dermatitis and transgenic mice overexpressing TSLP in keratinocytes 

develop AD-like eczematous lesions (Li et al., 2005; Yoo et al., 2005), it was not surprising 

that TSLPR was required for Der f/SEB-induced dermatitis. Considering the requirement of 

T cells in maximal Der f/SEB-induced dermatitis and the dispensability of T cells for 

dermatitis in keratinocytespecific TSLP transgenic mice, it is tempting to speculate that T 

cells are required for the expression of TSLP in keratinocytes and they become dispensable 

after high-level expression of TSLP is attained. In this context, mast cells, which express 

TSLPR (Allakhverdi et al., 2007), might exert an effector role downstream of TSLP. 

Alternatively, mast cells, together with T cells, might also be required for TSLP production 

in keratinocytes, since mast cells stimulated via FcεRI produce TSLP (Okayama et al., 

2009; Soumelis et al., 2002) and combinations of Th2 cytokines and inflammatory cytokines 

(IL-1α or TNF-α) can induce TSLP production in keratinocytes (Bogiatzi et al., 2007).

In summary, this study has strengthened the clinical relevance of Der f/SEB-induced model 

of AD. By establishing its cellular and molecular basis, this model should be a useful tool 

for further studying the pathogenesis of AD and developing novel therapeutic strategies to 

the treatment of human AD.

Materials and Methods

Der f/SEB-induced dermatitis

Dermatitis was induced in NC/Nga, C57BL/6 (B6) mice or mutant mice with a C57BL/6 

genetic background as previously described (Kawakami et al, 2007). NC/Nga mice were 

purchased from Charles River Japan (www.crj.co.jp). µMT (Kitamura et al, 1991), TCRβ−/− 

(Mombaerts et al, 1991), Rag1−/− (Mombaerts et al., 1992), KitW-sh/W-sh (Grimbaldeston et 

al., 2005), Cpa3-Cre;Mcl-1f/fl (Lilla et al., 2011), PHIL (Lee et al, 2004), ΔdblGATA (Yu et 

al, 2002), FcεRIα−/− (Dombrowicz et al, 1993), TNF-α−/− (Pasparakis et al, 1996), 

TSLPR−/− (Al-Shami et al, 2004), and GM-CSF−/− (Stanley et al, 1994) mice were 

previously described. Briefly, solutions of 500 ng of SEB (Sigma-Aldrich, St. Louis, MO) 

and 10 µg of Der f extract (100 µg/ml, Greer Laboratories, Lenoir, NC) were pipetted on a 1 

cm × 1 cm square gauze pad placed on the shaved area. This portion of the back skin was 

occluded with a Tegaderm™ Transparent Dressing (3M HealthCare, St. Paul, MN) using 

bandages. Three days later, the dressings were replaced with a new one. After an additional 

4 days had passed, the dressings were removed and the mice were kept without treatment for 
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the next week. The one-week Der f/SEB treatment was repeated once more. Clinical severity 

was scored by an investigator who did not know the identities of mice 2 days after removing 

the dressings in the last cycle. Clinical scores were based on the severity (0, no symptoms; 1, 

mild; 2, intermediate; 3, severe) of four possible symptoms (redness, bleeding, eruption, and 

scaling). Der f/SEB experiments were performed using 3–6 mice per group and cumulative 

data from 2–5 experiments are presented. Animal experiments were approved by the Animal 

Care and Use Committee of the La Jolla Institute for Allergy and Immunology. Other 

experimental procedures, together with detailed description of microarray data, 

supplementary Table and Figures, can be found in the Supplementary Data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. T cells, but not B cells, are indispensable for maximal skin inflammation
Dermatitis induction by epicutaneous applications of Der f and SEB was performed as 

described in the Materials and Methods. Each symbol represents one mouse. (A) Clinical 

skin scores. (B) H&E staining of naïve (upper rows) and lesional (lower rows) skin tissues. 

Bar, 200 µm. (C) Thicknesses of epidermis, dermis, and total skin (epidermis + dermis) 

layers, as measured in H&E-stained tissues. (D) Relationships between clinical scores and 

skin layer thicknesses. Linear regression lines are shown. *, p<0.05; **, p<0.01; ***, 

p<0.001; ****, p<0.0001; n.s., not significant.
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Figure 2. Eosinophils are dispensable for allergen-induced skin inflammation
(A,B) Eosinophils stained with Congo red were enumerated in the skin sections derived 

from experiments shown in Fig. 1. Each symbol represents one mouse. There was no 

significant correlation between eosinophil numbers and clinical scores. (C,D) Dermatitis 

induction by epicutaneous applications of Der f and SEB was performed on eosinophil-

deficient PHIL (C) and ΔdblGATA (D) mice. Clinical scores are shown.
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Figure 3. Mast cells are indispensable for maximal skin inflammation
(A) Mast cell-deficient KitW-sh/W-sh mice exhibited lower clinical scores than WT mice. The 

scores similar to WT mice were restored by engraftment of BMMC (W-sh + BMMC). (B) 

H&E staining of naïve and lesional skin tissues. Enlarged images of the areas indicated by 

rectangles are shown below. Bar, 200 µm. (C) Thicknesses of epidermis, dermis, and total 

skin layers. (D) Immunofluorescence microscopy was performed on naïve and lesional skin 

tissues. Numbers of eosinophil (E) and neutrophil (F) before and after AD induction. *, 

p<0.05; **, p<0.01; ***, p<0.001; n.s., not significant.
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Figure 4. FcεRI, but not TNF-α, is required for maximal skin inflammation
Der f/SEB induction experiments were performed on FcεRIα−/− (A–E) and TNF-α−/− (F) 

mice. (A, F) Clinical skin scores. Thicknesses of epidermis, dermis, and total skin layers (B, 

C, D), and inflammatory cell infiltration (E) for these mice are also shown. (B) H&E 

staining and (D) immunofluorescence microscopy were performed on naïve and lesional 

skin tissues in FcεRIα−/− mice. *, p<0.05; n.s., not significant.
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Figure 5. The Th2-promoting cytokine TSLP contributes to skin inflammation
(A) Expression of TSLP (red) before (Upper) and after (Lower) dermatitis induction with 

Der f/SEB in WT mice was revealed by immunofluorescence microscopy. Also shown are 

enlarged images of the areas indicated by rectangles as well as negative control without 

primary antibody. Bar, 100 µm. (B–F) Der f/SEB induction experiments were performed on 

TSLPR−/− mice. (B) Clinical skin scores, (C,D) thicknesses of epidermis, dermis, and total 

skin layers, and (E) inflammatory cell infiltration are shown. (C) H&E staining and (F) 
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immunofluorescence microscopy were performed on naïve and lesional skin tissues in 

TSLPR−/− mice. **, p<0.01; ***, p<0.001 by Student’s t -test.
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