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Abstract

Background: Unclassified simian strain Treponema Fribourg-Blanc was isolated in 1966 from baboons (Papio cynocephalus)
in West Africa. This strain was morphologically indistinguishable from T. pallidum ssp. pallidum or ssp. pertenue strains, and it
was shown to cause human infections.

Methodology/Principal Findings: To precisely define genetic differences between Treponema Fribourg-Blanc (unclassified
simian isolate, FB) and T. pallidum ssp. pertenue strains (TPE), a high quality sequence of the whole Fribourg-Blanc genome
was determined with 454-pyrosequencing and Illumina sequencing platforms. Combined average coverage of both
methods was greater than 5006. Restriction target sites (n = 1,773), identified in silico, of selected restriction enzymes within
the Fribourg-Blanc genome were verified experimentally and no discrepancies were found. When compared to the other
three sequenced TPE genomes (Samoa D, CDC-2, Gauthier), no major genome rearrangements were found. The Fribourg-
Blanc genome clustered with other TPE strains (especially with the TPE CDC-2 strain), while T. pallidum ssp. pallidum strains
clustered separately as well as the genome of T. paraluiscuniculi strain Cuniculi A. Within coding regions, 6 deletions, 5
insertions and 117 substitutions differentiated Fribourg-Blanc from other TPE genomes.

Conclusions/Significance: The Fribourg-Blanc genome showed similar genetic characteristics as other TPE strains.
Therefore, we propose to rename the unclassified simian isolate to Treponema pallidum ssp. pertenue strain Fribourg-Blanc.
Since the Fribourg-Blanc strain was shown to cause experimental infection in human hosts, non-human primates could
serve as possible reservoirs of TPE strains. This could considerably complicate recent efforts to eradicate yaws. Genetic
differences specific for Fribourg-Blanc could then contribute for identification of cases of animal-derived yaws infections.
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Introduction

Treponema Fribourg-Blanc was isolated in 1966 from baboons

(Papio cynocephalus) in West Africa [1,2]. This strain was morpho-

logically indistinguishable from T. pallidum ssp. pallidum (TPA) or

ssp. pertenue (TPE) strains and the ability to cause human infection

was experimentally verified [3]. In baboons, enlarged lymphatic

nodes with no specific clinical signs were observed [2]. Several

other cases of primate treponematoses have been described [4–9]

either without clinical signs or with symptoms of yaws. Skin

samples taken from baboons in the Gombe National Park revealed

a yaws-like infection that appeared to be transmitted via sexual

contact [10]. Furthermore, in a field survey in 2007 at Lake

Manyara National Park in Tanzania, several olive baboons (Papio

hamadryas anubis) showed severe ulcerations strictly localized to the

anogenital regions [11]. Similar lesions were found also in wild

baboons living in other Tanzanian National Parks and in the

Ngorongoro Conservation Area (Tanzania) [12]. Although this

clinical manifestation suggested a disease similar to human syphilis

infections, a genetic analysis of the causative agent showed higher

genetic similarity to human yaws-causing strains than to syphilis-

causing strains [11,12].

The causative agent of yaws, Treponema pallidum ssp. pertenue [13],

predominantly causes infections in tropical regions of Africa, Asia,

Oceania and South America with an estimated prevalence of 2

million cases worldwide [14]. Three TPE strains were recently

sequenced [15] and the observed genetic difference from syphilis-

causing strains of T. pallidum ssp. pallidum was lower than 0.2% of

the genome sequence. In humans, yaws is a multi-stage disease,

transmitted through direct skin contact from an infected patient to

a recipient. It is characterized by skin nodules and ulcerations,

joint and soft tissue destruction and bone changes. Although some

reports have described infection of the central nervous system,

cardiovascular system and fetus during yaws infection [16], there is
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not enough experimental data to clearly prove the ability of TPE

strains to invade the CNS or cause congenital infection. It is

generally believed that humans are the primary reservoir of yaws.

Since transmission requires direct contact with the causative agent

of yaws, a risk of contamination between human and other

primates could exist in regions where yaws and other primate

treponemal infections occur simultaneously [10].

Several previous genetic studies have described partial FB

sequences [17–26] and some of them predicted that FB strains

were closely related to TPE strains [18,19,21,22,24]. Prior to this

work, about 55 kbp (4.83%) of the FB genome sequence had been

determined. In this communication, we compare the complete

genome sequence of the simian isolate Fribourg-Blanc to three

TPE strains (Samoa D, CDC-2, and Gauthier) and to five TPA

strains (Nichols, DAL-1, Chicago, SS14, Mexico A). Based on the

low genetic variability between Fribourg-Blanc and the 3 TPE

strains, the Fribourg-Blanc bacterial strain is a Treponema pallidum

ssp. pertenue strain.

Materials and Methods

Amplification and isolation of Fribourg-Blanc DNA
A sample containing extracted Fribourg-Blanc treponemes

(from infected rabbit tissue) was obtained from D. L. Cox,

CDC, Atlanta, GA, USA. The sample contained 56106 cells per

ml and the DNA was amplified in one step directly from frozen

cells (56103 cells) with the whole genome amplification procedure

(REPLI-g kit, QIAGEN, Valencia, CA, USA). Amplification

resulted in 413 ng of DNA per ml, (30 ml in total); however, both

treponemal and rabbit DNA was present in the amplified DNA.

Therefore, Fribourg-Blanc DNA was repeatedly amplified using

the pooled segment genome sequencing (PSGS) method described

previously [15]. Briefly, the genomic Fribourg-Blanc DNA was

amplified with 134 specific primer pairs as overlapping PCR

products (Table S1). To enable sequencing of paralogous genes,

PCR products were separated into four pools (pool 1–4) and mixed

in equimolar amounts. For 454-pyrosequencing, PCR products of

these pools were labeled with multiplex identifier (MID) adapters

and sequenced as four different samples. However, only one

sequencing mixture was prepared for Illumina because MID

adapters were not available.

DNA sequencing and assembly of the Fribourg-Blanc
genome

Whole genome DNA sequencing used a Roche/Genome

Sequencer FLX System platform (454 Life Sciences, Branford,

CT, USA) combined with the Illumina/Solexa Genome Analyzer

IIx approach (Illumina, San Diego, CA, USA). Sequencing was

performed at The Genome Institute, Washington University

School of Medicine (St. Louis, MO, USA). 454 reads were

assembled using a Newbler assembler while Illumina reads were

assembled using Velvet [27]. 454-pyrosequencing and Illumina

sequencing resulted in average read lengths of 230 bp and 35 bp

and the total average coverage of 706 and 4656, respectively.

Assembled contigs obtained from both methods were aligned to

the reference genome TPE CDC-2 using Lasergene software

(DNASTAR, Madison, WI, USA). All gaps in the genome

sequence and all discrepancies between contig sequences obtained

using both methods were resolved using Sanger sequencing.

Altogether, 85 genomic regions of the Fribourg-Blanc genome

were amplified and Sanger sequenced.

In addition, several genomic regions were amplified with

specific primers as Treponema pallidum intervals (TPI) using a

GeneAmp XL PCR Kit (Applied Biosystems, Foster City, CA,

USA) [28]. These intervals contained following paralogous genes:

tprC (TPI11), tprD (TPI12), tprE (TPI25A), tprF and tprG (TPI25B),

tprI and tprJ (TPI48), and tprL (TPI78). XL PCR products were

purified using a QIAquick PCR Purification Kit (QIAGEN) and

sequenced with a BigDye Terminator v3.1 Cycle Sequencing Kit

(Applied Biosystems) using internal primers. The TPI71A (Table

S1) region, which was not included in any pool, was sequenced

similarly. The tprK (TPFB_0897), arp (TPFB_0433), and

TPFB_0470 genes were amplified and cloned into pCR 2.1-

TOPO (Invitrogen, Carlsbad, CA, USA) and five independent

clones for TPFB_0433, eight for TPFB_0470 or ten clones for tprK

were sequenced.

A total of 11 genomic regions (in genes TPFB_0012,

TPFB_0040, TPFB_0067, TPFB_0179, TPFB_0279,

TPFB_0347, TPFB_0859, TPFB_0865 and in intergenic regions

(IGR) TPFB_0347–0348, IGR TPFB_0379–0380, IGR

TPFB_0381–0382), containing homopolymeric (G or C) stretches

were amplified with Pfu polymerase (Fermentas Inc., Glen Burnie,

MD, USA) as follows: 5 ml of 106Pfu buffer with 20 mM MgSO4,

1 ml of dNTP mix (each nucleotide of 10 mM concentration), 1 ml

of DNA (1–5 ng/ml), 0.5 ml of forward primer and 0.5 ml of reverse

primer, 41 ml of water for PCR, and 1 ml (2.5 U) of Pfu DNA

polymerase. The cycling conditions were: 94uC for 1 minute; 30

cycles: 94uC for 1 minute, 60uC for 30 s, 72uC for 1 minute; 72uC
for 10 minutes. To facilitate the subsequent cloning of these PCR

products into a pCR 2.1-TOPO vector (Invitrogen), 0.2 ml of Taq

polymerase was added to the mixture and incubation at 72uC for

10 minutes followed. Plasmid DNA was isolated using a QIAGEN

Plasmid Mini Kit (QIAGEN) and sequenced with universal

primers from a TOPO TA Cloning Kit. At least five independent

clones were sequenced.

Whole genome fingerprinting (WGF)
To verify final genome assemblies, whole genome fingerprints of

three enzymes including BamH I, EcoR I and Hind III [24,28] were

compared to the in silico restriction enzyme analysis of the

sequenced Fribourg-Blanc genome. The average error rate of

WGF for Treponema paraluiscuniculi strain Cuniculi A was previously

Author Summary

A bacterial strain isolated in 1966 from baboons (Papio
cynocephalus) in West Africa was preliminarily character-
ized as unclassified simian strain Treponema Fribourg-Blanc
(FB). This strain was morphologically identical to T.
pallidum ssp. pallidum (TPA, agent of syphilis) or ssp.
pertenue (TPE, agent of yaws). In this study, we completed
a high quality whole genome sequence of simian isolate
Treponema Fribourg-Blanc and compared it to known
genome sequences of Treponema pallidum strains. No
major differences in the gene order of the FB genome
were found when compared to all known genomes of
Treponema pallidum subspecies. Moreover, the FB genome
clustered with other TPE strains, while T. pallidum ssp.
pallidum strains clustered separately. In general, the FB
genome showed similar genetic characteristics to other
TPE strains. Therefore, we proposed that the simian isolate
Fribourg-Blanc be classified as a bacterial strain belonging
to Treponema pallidum ssp. pertenue. It appears that,
except for humans, the reservoir of yaws-causing trepo-
nemes may also include free-living primates, especially in
Africa.

Genome of Simian Isolate Treponema Fribourg-Blanc
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calculated [29] and corresponded to 27.9 bp (1.6% of the average

fragment length) with a variation range between 0 and 132 bp.

Gene identification, annotation and classification
The final whole genome sequence was assembled from 454-

pyrosequencing and Illumina contigs and Sanger sequenced

regions comprising the tpr genes, repetitive DNA regions (e.g.

TPFB_0433, TPFB_0470), regions containing homopolymers,

gaps between contigs and discrepant regions between 454 and

Illumina contigs. The Geneious software v5.6.5 [30] was used for

gene annotation based on the recent annotation of the CDC-2

genome [15]. Gene TPFB_0897, coding for TprK protein,

showed intrastrain variability and therefore nucleotides in variable

regions were replaced with Ns in the complete genome sequence.

Genes were tagged with the TPFB_ prefix. In Fribourg-Blanc, the

original locus tag numbering corresponds to the tag numbering of

orthologous genes annotated in the TPE CDC-2 genome. For

proteins with unpredicted functions, a gene size limit of 150 bp

was applied. TPE genes were classified into seven groups

according to their probable function as described previously, i.e.

genes involved in general metabolism; in cell processes and cell

structure; in DNA replication, repair, recombination; in regula-

tion, transcription and translation; in transport; in virulence; and

genes of unknown function [15].

Comparisons of whole genome sequences
Whole genome nucleotide alignments of five TPA strains, three

TPE strains [15], Treponema paraluiscuniculi Cuniculi A strain

(CP002103.1, [29]) and the Fribourg-Blanc isolate (CP003902.1)

were used for determination of genetic relatedness using several

approaches including calculation of nucleotide diversity (p),

calculation of nucleotide divergence (dA) and construction of a

phylogenetic tree. TPA strains included Nichols (resequenced

genome; unpublished data), DAL-1 (CP03115.1, [31]), SS14

(resequenced genome; unpublished data), Chicago (CP001752.1,

[32]), and Mexico A (CP003064.1, [33]) while TPE strains

included Samoa D (CP002374.1), CDC-2 (CP002375.1), and

Gauthier (CP002376.1). Whole genome alignments were con-

structed using Geneious software and SeqMan software (DNAS-

TAR, Madison, WI, USA). Nucleotide changes among studied

whole genome sequences were analyzed using DnaSP software,

version 5.10 [34]. An unrooted phylogenetic tree was constructed

from whole genome sequence alignments using the Maximum

Parsimony method and MEGA software [35].

Nucleotide sequence accession numbers
The complete genome sequence of the Fribourg-Blanc isolate

was deposited in the GenBank under the accession number

CP003902.1.

Results

Whole genome sequencing, genome annotation, and
genomic parameters

The FB genome was determined using two independent whole

genome sequencing methods (454-pyrosequencing, Illumina) with

a total combined average coverage greater than 5006. The Sanger

sequencing method was used for finishing the complete genome

sequence and for additional sequencing including paralogous,

repetitive and intrastrain variable chromosomal regions.

The Fribourg-Blanc genome was annotated according to the

sequence of the CDC-2 genome [15]. The gene names were

denoted with the TPFB_ prefix (Treponema pallidum Fribourg-

Blanc). The FB genome was most similar to TPE strains. The

summarized genomic features of the Fribourg-Blanc simian isolate

(and other completely sequenced TPE strains) are shown in

Table 1. The Fribourg-Blanc genome (1,140,481 bp) was 737–

1151 bp longer than other TPE strains. No major genome

rearrangements were found compared to the other 3 TPE

genomes. Altogether, 1122 genes were annotated in the Fri-

bourg-Blanc genome including 54 untranslated genes encoding

rRNA, tRNA and other ncRNA (a short bacterial RNA molecules

that are not translated into a protein). Compared to the other TPE

genomes, genes TPFB_0012 and TPFB_0896 (both encoding

hypothetical proteins) contained a 1 bp deletion (frameshift

mutation) and nonsense mutation, respectively. Therefore, these

two genes were not annotated in the FB genome. TPFB_0304

(encoding treponemal conserved hypothetical protein) was not

annotated because of nucleotide change in the stop codon followed

by fusion with the TPFB_0303 (encoding DNA mismatch repair

protein MutL). The average and median gene lengths of the

Fribourg-Blanc genome were calculated as 983 bp and 831 bp,

respectively. The intergenic regions covered 53 kb and represent-

ed 4.63% of total FB genome length, which is similar to the length

of these regions in other TPE strains. A total of 640 genes (57.0%)

encoded proteins with predicted function, 139 genes encoded

treponemal conserved hypothetical proteins (TCHP, 12.4%), 141

genes encoded conserved hypothetical proteins (CHP, 12.6%), 145

genes encoded hypothetical proteins (HP, 12.9%) and 3 genes

(0.3%) were annotated as pseudogenes. When compared to the

Nichols genome (AE000520.1), 9 additional genes (orthologous to

TP0129, TP0132, TP0180, TP0266, TP0318, TP0370, TP0532,

TP0671 and TP1030) can be considered as pseudogenes in the

Fribourg-Blanc genome (the same genes were also considered

pseudogenes in other TPE strains). When compared to TPE

strains, 2 additional genes (orthologous to TPE_0012, TPE_0896;

Table 2) can be considered pseudogenes in the FB genome.

Whole genome fingerprinting
The in silico identified restriction target sites (RTS) within the FB

genome were compared with experimental restriction digest

patterns of individual TPI regions covering the entire TPE

genome [24]. Altogether, 1,773 RTSs representing more than

10.6 kb of analyzed sequence were experimentally tested [24].

Since no discrepancies between in silico and experimental RTS

analyses of the FB genome were found, the estimated sequencing

error rate for the FB genome was therefore 1024 or less.

Sequence relatedness of the FB genome to other
pathogenic treponemal genomes

Sequence relatedness of the FB genome to other TP genomes

based on available whole genome sequences is shown in Figure 1.

The FB genome clustered with other TPE strains (especially with

the TPE CDC-2 strain), while TPA strains, as well as the genome

of the T. paraluiscuniculi (TPc) strain Cuniculi A, each clustered

separately. Calculated nucleotide diversity among currently

sequenced T. pallidum and T. paraluiscuniculi strains are shown in

Table 3. Detailed characterization of nucleotide diversity between

TPE strains and the FB isolate is shown in Table 4. The FB

genome was found to be 99.97% identical to other TPE genomes.

The lowest calculated nucleotide diversity (p) 6 standard deviation

among TPE strains and the FB isolate was found between the

Fribourg-Blanc and CDC-2 strain (0.0001660.00008), which is

identical to nucleotide diversity between Samoa D and CDC-2

genomes. In contrast, the highest calculated nucleotide diversity

was found between the Fribourg-Blanc and Gauthier strain

(0.0004460.00022), which was similar to the difference between

the Samoa D and and Gauthier strains (0.0004460.00022). For

Genome of Simian Isolate Treponema Fribourg-Blanc
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comparison, calculated p values between Fribourg-Blanc and TPA

strains were one order of magnitude higher than p values between

Fribourg-Blanc and TPE strains (Table 3).

Genome differences specific for the FB genome
To define genome differences specific to the FB genome, the

whole genome sequence of this strain was compared to the

available genome sequences of TPE strains [15]. In coding

regions, 6 deletions, 5 insertions and 117 substitutions differenti-

ated FB from TPE genomes (Table 5, Table S2). Frameshift

mutations (three deletions and two insertions) resulted in an

ommitted annotation of TPFB_0012 (encoding hypothetical

protein), in gene truncation (TPFB_0040, mcp coding for methyl-

accepted chemotaxis protein; TPFB_0347 encoding hypothetical

membrane protein; TPFB_0484, encoding conserved hypothetical

protein) or in gene elongation (TPFB_0461a, encoding hypothet-

ical protein). Other major changes were located in genes

TPFB_0548 (containing 42-bp deletion), TPFB_0303 fused with

TPFB_0304, TPFB_0126b (truncated as a result of a start codon

mutation), TPFB_0896 (not annotated because of a nonsense

mutation), TPFB_0433 encoding acidic repeat protein Arp

(containing 15 tandem repeat units of 60-bp compared to 12, 4,

and 10 repeat units in Samoa D, CDC-2, and Gauthier,

respectively) and TPFB_0470 (containing 22 tandem repeat units

of 24-bp, compared to 12, 37, and 25 tandem repeat units in

Samoa D, CDC-2, and Gauthier, respectively). A set of 117

substitutions resulted in one nonsense mutation, one mutation

affecting the start codon, one mutation affecting the stop codon

and in 88 nonsynonymous mutations (82 nonconserved). Most of

the changes were found in tprC (TPFB_0117) and tprI

(TPFB_0620) genes. Mutations causing changes larger than 5

amino acid replacements or protein truncations and elongations

are listed in Table 2.

Discussion

The complete genome sequence of the simian isolate Fribourg-

Blanc (FB) was determined and compared to five syphilis-causing

(TPA) and three human yaws-causing T. pallidum ssp. pertenue (TPE)

strains. Previous reports have shown that the FB strain (isolated

from Papio cynocephalus in 1966 in West Africa) was morphologically

indistinguishable from other TPA or TPE strains [2]. Moreover,

the ability of FB strain to attach to mammalian cells was similar to

TPE but different from TPA strains [36]. In addition to these

studies, several other genetic studies showed a close relationship

between FB strain and TPE strains of human origin

[18,19,21,22,24].

Experimental human and monkey (monkeys of the genus

Macaccus) infection with the FB strain resulted in symptoms similar

to yaws [3,37]. Conversely, primate infection with TPE strains of

human origin resulted in detectable lesions in at least a subset of

infected monkeys of the genus Macacus and Semnopithecus [38]. In

addition, several other reports demonstrated that TPE strains of

human origin can experimentally infect monkeys [39,40]. These

Table 1. Summary of genomic features of the FB genome and three T. pallidum ssp. pertenue strains (Samoa D, CDC-2 and
Gauthier).

Genome parameter
Fribourg-Blanc
isolate Samoa D CDC-2 Gauthier

GeneBank accession number CP003902.1 CP002374.1 CP002375.1 CP002376.1

Genome size 1,140,481 bp 1,139,330 bp 1,139,744 bp 1,139,417 bp

G+C content 52.80% 52.80% 52.80% 52.80%

No. of fused genesa 25 (52 corresponding
genes in the Nichols
genome)

25 (52 corresponding
genes in the Nichols
genome)

24 (50 corresponding
genes in the Nichols
genome)

24 (50 corresponding genes
in the Nichols genome)

Sum of the intergenic region lengths
(% of the genome length)

52,785 bp (4.63 %) 52,844 bp (4.64%) 52,963 bp (4.65%) 53,300 bp (4.68%)

Average/median gene length 982.6/831.0 bp 980.3/831.0 bp 980.4/831.0 bp 979.3/831.0 bp

No. of predicted protein-encoding genes 1065 1068 1068 1068

No. of genes encoded on plus/minus DNA
strand

599/523 600/525 600/525 600/525

No. of genes coding for proteins with
predicted function

640 640 640 640

No. of genes coding for treponemal
conserved hypothetical proteins

139 140 140 140

No. of genes coding for conserved
hypothetical proteins

141 141 141 141

No. of genes coding for hypothetical
proteins

145 147 147 147

No. of annotated pseudogenes (no. of all
pseudogenes compared to Nichols
sequencea)

3 (14) 3 (12) 3 (12) 3 (12)

No. of tRNA loci 45 45 45 45

No. of rRNA loci 6 (2 operons) 6 (2 operons) 6 (2 operons) 6 (2 operons)

No. of ncRNAs 3 3 3 3

aNumber of genes in a particular genome which sequence include at least 2 genes predicted in the Nichols genome AE000520.1.
doi:10.1371/journal.pntd.0002172.t001

Genome of Simian Isolate Treponema Fribourg-Blanc
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data indicate that both TPE and FB strains have overlapping or

identical host range suggesting a close relationship among these

strains.

As shown by this study, the genome of the FB simian isolate

[1,2] was very similar to TPE strains of human origin. Although

the FB genome was most closely related to the African TPE

Figure 1. An unrooted tree constructed from whole genome sequence alignments of 10 complete genome nucleotide sequences.
An unrooted tree constructed from whole genome sequence alignments using the Maximum Parsimony method and MEGA software [34]. The bar
scale corresponds to 1000 nt changes. Bootstrap values based on 1,000 replications are shown next to the branches. All positions containing
deletions in at least one genome sequence were omitted from further analysis. The analysis comprised 10 complete genome nucleotide sequences
including 5 strains of TPA (Treponema pallidum ssp. pallidum), 3 strains of TPE (Treponema pallidum ssp. pertenue), one TPc (Treponema
paraluiscuniculi) strain and the FB strain. There were a total of 1,129,016 nucleotide positions aligned in the final dataset. Note the clustering of the FB
genome with other TPE strains. The branch of TPc was shortened (//).
doi:10.1371/journal.pntd.0002172.g001

Table 2. Mutations causing gene changes resulting in protein truncations and elongations in comparison with TPE strains.

Gene (predicted protein
function) Nucleotide change

Coordinates of change
in the FB genome
(CP003902.1) Result of nucleotide change

TPFB_0012 (HP) 1 bp deletiona 12479–12487 gene shortened by 47 bp to 129 bp, gene was not
annotated in the FB genome

TPFB_0040, mcp
(methyl-accepting
chemotaxis protein)

5 bp insertiona 49359–49373 gene shortened by 17 bp to 2433 bp

TPFB_0126b (HP) 3 bp substitution in
the start codon

148982–148984 gene shortened by 42 bp to 366 bp

TPFB_0303 (TCHP) 1 bp substitution in the
stop codon

319012 gene fusion of genes ortologous to TPE_0303 and
TPE_0304, gene was annotated as TPFB_0303 (5076 bp)

TPFB_0347 (HMP) 2 bp insertiona 373747–373761 gene shortened by 35 bp to 711 bp

TPFB_0433, arp (Arp
protein)

15 tandem repeat units,
one unit was 60 bp long

462777–463676 Samoa D, CDC-2, and Gauthier, contains 12, 4, and 10 repeat
units, respectively

TPFB_0461a (HP) 1 bp deletiona 493013–493022 gene elogation by 61 bp to 243 bp

TPFB_0470 (CHP) 22 tandem repeat units,
one unit 24 bp long

499435–499962 Samoa D, CDC-2, and Gauthier, contains 12, 37, and 25
repeat units, respectively

TPFB_0484 (CHP) 1 bp deletiona 517701–517708 gene shortened by 309 bp to 1707 bp

TPFB_0548 (TCHP) 42 bp deletion 594092–594093 gene shortened by 42 bp to 1257 bp

TPFB_0896 (HP) 2 bp substitution leading
to nonsense mutation

977039, 977041 gene shortened by 99 bp to 54 bp, gene was not annotated
in the FB genome

HP- hypothetical protein, CHP – conserved hypothetical protein, TCHP – treponemal conserved hypothetical protein, HMP – hypothetical membrane protein.
achanges in homopolymeric regions.
doi:10.1371/journal.pntd.0002172.t002

Genome of Simian Isolate Treponema Fribourg-Blanc
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CDC-2 strain (isolated in Akorabo, Ghana in 1980 [41]), its

relatedness to another TPE strain of African origin, strain

Gauthier (isolated in Brazzaville, Congo in 1960 [42]) was lower

compared to the TPE Samoa D strain (isolated in Western Samoa

in 1953 [43]). Thus, the Gauthier strain was the most distinct

among the TPE strains. Compared to TPA strains (Nichols, SS14,

DAL-1, Chicago, Mexico A), the calculated nucleotide diversity

between individual TPE strains and the FB isolate was one order

of magnitude lower than between TPA strains and the FB isolate.

These data suggest that the FB isolate is in fact another TPE

strain.

Several previous studies described partial FB sequences [17–26].

Altogether, 38 Fribourg-Blanc sequences comprising 55066 bp

(4.83% of the FB genome sequence) were found when searching

databases. Altogether, 7 nucleotide discrepancies in our genomic

sequence were identified, and most of them were located in tpr

genes or their vicinity (n = 4) and in homopolymeric regions

(n = 2). Analysis of individual sequencing reads in these regions in

Illumina, 454-pyrosequencing and Sanger raw data (except for

homopolymeric regions where 454 pyrosequencing reads were not

considered relevant) supported the sequences presented by our

research. Besides differences in tpr regions and in homopolymeric

regions that are likely results of intrastrain heterogeneity [31,44–

46], a single remaining difference was found in the gene

TPFB_1038 (tpF-1, GenBank acc. no. EU102242, [22]). This

difference may represent a genetic difference between different

passages of the FB strain, locus with intrastrain heterogeneity or

sequencing error.

Specific changes (deletions, insertions, and substitutions) com-

prising 185 nucleotides in 68 genes differentiated the FB strain

from other TPE strains. Major genetic changes between FB and

TPE genomes resulting in protein truncations or elongations were

located in 9 genes. These genes encoded hypothetical proteins

with the exception of TPFB_0040 (encoding methyl-accepting

chemotaxis protein, Mcp). Moreover, the genome of the FB strain

contained a different number of tandem repeat units in genes

TPFB_0433 (encoding the acidic repeat protein, Arp) and

TPFB_0470 (encoding a conserved hypothetical protein) com-

pared to orthologous genes in individual TPE strains. The number

and sequence of 60-bp tandem repeat units within the arp gene, in

the FB genome, revealed the same pattern as previously described

for this strain [23]. Variability in the number of tandem repeat

units in genes orthologous to TPFB_0470 was also described in

TPE and TPA strains [15,24]. A relatively high expression rate of

the TP0470 gene, a TPFB_0470 ortholog, in the Nichols genome

during experimental rabbit infection was found [47]. This fact

together with the variable number of tandem repeat units in this

gene indicates that this gene may be involved in pathogen-host

interactions. In bacterial pathogens, highly synthesized proteins

with a variable number of tandem repeats are often involved in

interaction with the host, e.g. an abundant outer membrane

protein, secretin PilQ, of Neisseria meningitidis contains four to seven

octapeptide copies and is a potential vaccine candidate for

serogroup B of N. meningitidis [48]. In all genes with affected

length in the FB genome (except for TPFB_0484 and

TPFB_0347), major sequence differences were also found in the

orthologous genes in TPE, TPA, and Cuniculi A genomes [29].

Moreover, the TPFB_0304 gene was also found variable among

orthologous genes in TPE strains [15]. In addition, the highest

number of substitutions between the FB and TPE genomes was

located in tpr genes (tprC, tprI, tprF), which are known to be variable

among T. pallidum subspecies. Therefore, genetic differences

specific for the FB genome appears to be predominantly localized

in the variable genomic regions thus suggesting that the observed

differences between the FB genomes and other TPE genomes

likely do not result in considerable changes in the host range and

pathogenicity. In the FB genome, 117 substitutions resulted

(except for one nonsense, one start codon and one stop codon

mutation) in 88 (75.2%) nonsynonymous mutations (82 noncon-

served, 75.1%). A similar percentage of nonsynonymous mutations

were also found in other strain-specific changes in TPE genomes

(ranging from 66.1 to 80.5%). In this respect, the FB strain is very

similar to other TPE strains.

TPE strains appears to be the most ancient treponemes based

on the skeletal changes typical for yaws that were identified in

bones dated to 1.6 million years ago [49,50]. Based on whole

genome alignments, the FB genome clearly clustered with other

TPE strains. Moreover, TPE strains including Fribourg-Blanc

clustered separately from TPA strains. Interestingly, almost the

same number of nucleotide changes evolutionary separated the

Treponema paraluiscuniculi Cuniculi A strain from TPE and TPA

strains. Assuming that the TPE strains represent ancestral strains,

and since it has been suggested that the Cuniculi A genome

evolved by genome decay [29], it is possible that this rabbit

Table 3. Calculated nucleotide diversity (p6 standard
deviation) between FB isolate and individual TPA strains, TPE
strains and the Cuniculi A strain.

Strain Nucleotide diversity

TPA Nichols 0.0020660.00103

TPA DAL-1 0.0020960.00104

TPA Chicago 0.0020360.00102

TPA SS14 0.0018060.00090

TPA Mexico A 0.0017260.00086

TPE Samoa D 0.0002360.00012

TPE CDC-2 0.0001660.00008

TPE Gauthier 0.0004460.00022

TPc Cuniculi A 0.0104460.00518

doi:10.1371/journal.pntd.0002172.t003

Table 4. Calculated nucleotide diversity (p6 standard deviation) between individual TPE strains and the FB isolate.

Fribourg-Blanc Gauthier CDC-2 Samoa D

0.0002360.00012 0.0004460.00022 0.0001660.00008 *** Samoa D

0.0001660.00008 0.0003760.00018 *** CDC-2

0.0004460.00022 *** Gauthier

*** Fribourg-Blanc

doi:10.1371/journal.pntd.0002172.t004
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pathogen evolved sometime during the early evolution of TPA

strains (Figure 1) while the FB strain evolved along a similar path

as TPE strains; potentially as a result of the close relatedness of its

hosts with humans. However, there are several evolutionary

scenarios explaining genetic similarity of the Fribourg-Blanc and

TPE strains including i) hypothesis that TPE was acquired by

humans from nonhuman primates, ii) hypothesis that the

Fribourg-Blanc and TPE exchanged regularly between humans

and other primates and even iii) possibility that the Fribourg-Blanc

represent adaptation of TPE to nonhuman primates. An

additional sequence information from other nonhuman primate

isolates will be needed to address this question. Moreover, such

studies on treponemes isolated from nonhuman primates could

help to clarify if TPA evolved from TPE.

Several molecular genetic studies previously suggested that the

Fribourg-Blanc strain was very closely related or identical to T.

pallidum ssp. pertenue [18,19,21,22,23,24]. A principal finding of this

work was the demonstration that the FB genome has similar

genetic characteristics as other TPE strains and that the differences

specific to the FB genome are similar to those differentiating other

TPE strains and located mainly in variable genomic loci. From the

results mentioned above, we can infer that the unclassified simian

isolate Fribourg-Blanc belongs to the Treponema pallidum ssp.

pertenue. The FB strain was shown to cause experimental infection

in human hosts and TPE strains can infect primates. Although the

human and animal diseases may be epidemiologically indepen-

dent, it is likely that a reservoir for yaws exists among primate

populations and/or humans serve as a reservoir for baboon

infection, especially in Africa. This could considerably complicate

recent efforts to eradicate yaws [51]. However, further sequence

data on treponemes isolated from nonhuman primates will reveal

if these treponemes show molecular signatures similar to FB or

human TPE strains. Nevertheless, knowledge of specific FB

genetic changes could be useful to the epidemiological aspect of

yaws eradication.

Supporting Information

Table S1 List of primers used for amplification of TP intervals

for Fribourg-Blanc strain (primer coordinates, primer sequence,

primer length, and TP interval size according to the Nichols strain,

GenBank # AE000520.1).

(XLS)

Table S2 List of specific differences between the Fribourg-Blanc

(FB) genome and genomes of 3 strains of Treponema pallidum ssp.

pertenue (TPE; Samoa D, CDC-2 and Gauthier).

(XLS)
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47. Šmajs D, McKevitt M, Howell JK, Norris SJ, Cai WW, et al. (2005)

Transcriptome of Treponema pallidum: gene expression profile during experimen-
tal rabbit infection. J Bacteriol 187: 1866–1874.

48. Haghi F, Peerayeh SN, Siadat SD, Zeighami H (2012) Recombinant outer
membrane secretin PilQ(406–770) as a vaccine candidate for serogroup B

Neisseria meningitidis. Vaccine 30: 1710–1714.

49. Rothschild BM, Hershkovitz I, Rothschild C (1995) Origin of yaws in the
Pleistocene. Nature 378: 343–344.

50. de Melo FL, de Mello JC, Fraga AM, Nunes K, Eggers S (2010) Syphilis at the
crossroad of phylogenetics and paleopathology. PLoS Negl Trop Dis 4: e575.

51. Maurice J (2012) WHO plans new yaws eradication campaign. Lancet 379:

1377–1378.

Genome of Simian Isolate Treponema Fribourg-Blanc

PLOS Neglected Tropical Diseases | www.plosntds.org 8 April 2013 | Volume 7 | Issue 4 | e2172


