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Abstract

The nuclear export of proteins is regulated largely through the exportin/CRM1 pathway, which involves the specific
recognition of leucine-rich nuclear export signals (NESs) in the cargo proteins, and modulates nuclear–cytoplasmic protein
shuttling by antagonizing the nuclear import activity mediated by importins and the nuclear import signal (NLS). Although
the prediction of NESs can help to define proteins that undergo regulated nuclear export, current methods of predicting
NESs, including computational tools and consensus-sequence-based searches, have limited accuracy, especially in terms of
their specificity. We found that each residue within an NES largely contributes independently and additively to the entire
nuclear export activity. We created activity-based profiles of all classes of NESs with a comprehensive mutational analysis in
mammalian cells. The profiles highlight a number of specific activity-affecting residues not only at the conserved
hydrophobic positions but also in the linker and flanking regions. We then developed a computational tool, NESmapper, to
predict NESs by using profiles that had been further optimized by training and combining the amino acid properties of the
NES-flanking regions. This tool successfully reduced the considerable number of false positives, and the overall prediction
accuracy was higher than that of other methods, including NESsential and Wregex. This profile-based prediction strategy is
a reliable way to identify functional protein motifs. NESmapper is available at http://sourceforge.net/projects/nesmapper.
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Introduction

The nuclear export of proteins controls their nuclear or

cytoplasmic functions in response to physiological conditions,

including the cell cycle or extracellular stimuli, and antagonizes

the nuclear import activities mediated by the importin family.

Nuclear export is mediated by the interaction of nuclear export

signals (NESs) with exportin/CRM1 or Msn5p in yeast, members

of the importin beta family. The CRM1–Ran–GTP complex

binds directly to the NES in the cargo protein and directs the

export of the ternary complex from the nucleus. The cargo is

released from the complex by the hydrolysis of Ran–GTP to Ran–

GDP in the cytoplasm [1–3]. Over 200 NESs have been identified

experimentally and their dependence on CRM1 has been

confirmed using leptomycin B (LMB), a specific inhibitor of

CRM1, which binds covalently to the cysteine residue of CRM1

[4]. Eighty-four percent of identified NESs are LMB-sensitive

NESs [5] and the subcellular localizations of 285 proteins in fission

yeast [6] and .100 proteins in HeLa [7] cells were altered after

treatment with LMB, indicating that CRM1 constitutes the major

nuclear export pathway. Moreover, CRM1 is a potential

therapeutic target because the nuclear export of many tumor-

associated proteins has been deregulated in various cancers [8,9].

The CRM1-dependent NESs typically contain conserved large

hydrophobic residues, with several patterns of spacing. The

proposed consensus sequence, designated the ‘‘classical consen-

sus’’, is W–X2,3–W–X2,3–W–X–W, where W represents L, I, V, M,

or F and X2,3 any two or three amino acids [10–13]. This

consensus sequence fits ,70% of the experimentally defined NESs

but is frequently found in many proteins that are not transported

by CRM1. Our previous study using a newly developed NES

screening system with artificial peptide libraries identified two new

classes, class 2 (W–X–W–X2–W–X–W) and class 3 (W–X2–W–X3–

W–X2–W), in addition to the classical class 1 [14]. The class 1 NES

contains subclasses 1a (W–X3–W–X2–W–X–W), 1b (W–X2–W–X2–

W–X–W), 1c (W–X3–W–X3–W–X–W), and 1d (W–X2–W–X3–W–

X–W). More strict consensus sequences proposed are W–X1,2–

[‘P]– W–[‘P]2,3–W–[‘P]– W for class 1, W–[‘P]– W–[‘P]2–W–[‘P]–

W for class 2, and W–X–[‘P]– W–[‘P]3–W–[‘P]2–W for class 3,

where [‘P]2,3 represents any two or three amino acids except

proline and C, W, A, or T are permitted only at one of the four

conserved hydrophobic positions. Because a stretch of hydropho-

bic residues as well as proline in the spacer regions has an

inhibitory effect on the NES function, these consensus sequences

do not include hydrophobic stretches with more than four
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consecutive hydrophobic residues overlapping the second and

third conserved hydrophobic residues [14]. A recent bioinformatic

analysis of NES sequences and structures using a newly generated

NES database proposed refined consensus patterns based on our

consensus sequences, where neither C, W, A, nor T is permitted at

C-terminal hydrophobic positions W3 or W4 [15]. Using structural

analyses for CRM1-NES complexes, Güttler et al (2010)

demonstrated that CRM1 has five pockets for binding the

conserved hydrophobic residues of NES and that one more

hydrophobic position can be extended to the N-terminus of the

class 1a NES consensus, represented as W–X2–W–X3–W–X2–W–

X–W.

The crystal structures of CRM1–NES complexes reveal a

narrow and rigid conformation of the CRM1-binding grooves of

the NES hydrophobic cores, whereas the NESs adopt relatively

flexible structures to bind CRM1 [16–19]. The CRM1-binding

conformation of the prototypic PKI NES is an a-helical structure,

whereas the HIV-1 NES binds in an extended loop conformation

[16]. This structural flexibility of NES binding explains the

different spacings of the NES hydrophobic positions. A bioinfor-

matic analysis of the structures of the NES-containing proteins in

the Protein Data Bank demonstrated that NESs tend to be

exposed on the protein surfaces and form an a-helical conforma-

tion in the N-terminal regions and a loop conformation at the C-

terminus whereas nonfunctional NESs tend to form an a-helix in

the entire regions [15]. However, that study suggested that the

consensus-sequence-based prediction of NESs is difficult to

achieve with improved accuracy even when predictions of their

secondary structures and protein surface exposure are incorpo-

rated into currently available prediction tools [15].

NES prediction from NES consensus sequences produces a

great number of sequences that do not function as NESs, mainly

because of the nature of hydrophobic-residue-rich sequences,

which are frequently present in the internal hydrophobic regions

of modular proteins or membrane-anchoring domains. Three

computational methods for NES prediction have been reported

that do not depend on consensus sequences alone. la Cour et al.

(2004) first reported that NESs are located in flexible, surface-

accessible regions and form a-helical structures in proteins. They

also found that the non-hydrophobic regions of NESs are enriched

in acidic residues. They developed the first NES prediction tool,

NetNES, using a machine learning approach combining neural

networks and hidden Markov models with NESs (NESbase)

collected from the literature [20]. Another NES predictor,

NESsential, uses the meta-features of NESs, including their

disordered structure and solvent accessibility (predicted compu-

tationally) combined with trained modeling with a support

vector machine [21]. It has been shown that the disordered

features around NESs can effectively discriminate functional

NESs from false positives, and NESsential shows better

prediction accuracy than NetNES [21]. Short linear motifs

have been shown to be preferentially located in the intrinsically

disordered regions of proteins, allowing flexible and easily

accessible interactions with their motif-interactors [22]. The

observation that NESs are preferentially present in disordered

regions suggests that the NES functions, at least in part, as a

linear motif, such as the nuclear localization signal (NLS). The

other recently developed tool, Wregex [23], predicts linear

protein motifs including NESs using an approach similar to

MEME [24] and Scansite [25], which use position-specific

scoring matrices (PSSMs) for motif prediction. In Wregex, the

PSSMs of NESs have been created with experimentally verified

NESs, including those from the ValidNES database [5] and the

human deubiquitinase family [26].

In our previous study, we demonstrated that each amino acid

residue comprising the classical NLSs contributes independently

and additively to the entire NLS activity, and that the strength

level of the NLS activity can be predicted using its activity-based

profile generated with mutational assays of NLS activity [27]. In

this study, we applied this method to NES prediction, combined

with scores that were calculated from the features of the amino

acid composition outsides the NES. We show that this approach

more accurately predicts NESs than other current methods.

Design and Implementation

NES data sets
We used three positive NES sets, consisting of 205 NESs from

the ValidNES database (ValidNES dataset) [5], 32 NESs from the

DUB NES dataset [26], and 311 artificial NESs from our studies

(Table S1, Figure 1) (positive artificial NES dataset), including 93

NESs obtained in a previous study by library screening [14]. For

generating training datasets to optimize NES profiles, we prepared

four negative NES datasets consisted of 1,607 potentially

nonfunctional NESs predicted from 424 LMB-unaffected fission

yeast proteins (Sp-proteins) [6], 853 potentially nonfunctional

NESs predicted from regions other than confirmed NES positions

in the positive ValidNES dataset, 78 NESs from the DUB NES

dataset, and 177 artificial NESs from our studies (Table S1,

Figure 1) (negative artificial NES dataset). Detailed descriptions

are provided in Text S1 in Supporting Information, and the

constitution of the datasets used in this study is schematically

represented in Figure 2.

Measurement of nuclear export activities and generation
of NES profiles

Double-stranded oligonucleotides encoding NES variants were

inserted into the XbaI and BamHI sites of pCMV-GFP, as

described previously [14]. Plasmid clones encoding NESs

containing ,19 different amino acid at each position within an

NES template were selected from ,48 randomly selected bacterial

colonies. The template NES sequences for five NES classes were

designed based on the prototypical NES of cyclic AMP-dependent

protein kinase inhibitor (PKI NES) [28], and were LMB-sensitive.

The mouse fibroblast NIH3T3 cell line was transfected with the

plasmids (,1.0 mg each) using 2 ml of jet-PEI (PolyPlus-transfec-

tion, Strasbourg, France) as described previously [29], and the

green fluorescent protein (GFP) fluorescence was observed after

culture for 36–48 h. The nuclear export activities of the NESs

were measured semi-quantitatively according to the observed GFP

localization phenotypes, as shown in Figure S1. An NES profile for

each subclass was generated from the determined NES scores.

Blanks in the NES profiles that remained undetermined were filled

with scores postulated from the amino acid similarities or profiles

of different NES classes.

Optimization of NES profiles by training
To allow the faithful calculation of the NES activities, the scores

in the NES profiles were optimized to fit the calculation for

NESmapper by computational training with positive and negative

NES training datasets. Detailed descriptions are provided in Text

S1.

Amino acid properties in regions flanking NESs
Short linear motifs tend to occur in intrinsically disordered

regions [22]. Although many NESs are also located in disordered

regions, a significant number of NESs are likely to be located in

ordered regions [15,21]. We computed the amino acid compositions

Prediction of Nuclear Export Signals
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of the flanking regions of positive and negative NESs. The

positive dataset consisted of 178 LMB-sensitive NESs from the

ValidNES dataset, and the negative datasets of 1,259 potentially

nonfunctional NESs from the ValidNES dataset and 2,078

NESs from the Sp-protein dataset. Only NESs that had at least

25 amino acid residues at both the flanking sides were selected.

The 25-amino-acid flanking regions, especially the N-terminal

flanking regions, of positive NESs had few hydrophobic amino

acids and were richer in polar amino acids and proline than

were negative NESs (Figure S2A–D). The C-terminal flanking

regions of the positive NESs were also richer in acidic but not

basic amino acids than those of the negative NESs (Figure S2E–

H). We created frequency distribution tables of a hydrophobic-

to-polar amino acid ratio (HPR) in the 25-amino-acid N-

terminal flanking regions and the net charge (NC) of the 25-

amino-acid C-terminal flanking regions of NESs for the positive

and negative NES datasets. We conducted the Fisher’s exact test

for the frequencies of HPR and NC for the positive and

negative NES datasets. The test gave a p-value,0.0001 for the

frequencies of the HPR categorized into #22 and .2, and a

p-value 0.034 for the frequencies of the NC categorized into

#–2 and .2. Then, we calculated the likelihood ratios for each

HPR and NC value (Tables S2 and S3). The likelihood ratio

was decreased linearly as HPR increased, with a threefold

change in the ValidNES dataset and an over 10-fold change in

the ValidNES/Sp-protein dataset (Table S3). The likelihood

ratios for NC exhibited a similar distribution, with changes of

about twofold for both the datasets (Table S3). This observation

suggests that the properties of the amino acids composing the

NES-flanking regions can be one of the classifiers that

discriminate true from false NESs in proteins.

Calculation of nuclear export activities of NESs in
proteins with NESmapper

The NES scores were calculated using the NES profiles, as

described previously [27], but a manual score adjustment

procedure based on experiments with a GFP reporter carrying

double motifs was replaced with a computational profile-optimi-

zation method, as described in the previous section. To calculate

the activity score (Ts) for an NES, the standard score of the

template NES sequence used to generate the profile was

subtracted from the scores in the profiles corresponding to each

position and residue of the NES. The subtracted scores were

summed and the standard score was then added to the summed

score. The above calculation is shown by the following equation.

Ts~
X14

i~p
Sij{Stð ÞzSt

where Sij is the score corresponding to position i and amino acid j
in the profile, St is the standard score, and p is the start position of

the profile (i.e., p = 1–4, depending on the window position on the

query sequence). To reduce false NESs that overlap with the

hydrophobic regions in the proteins, such as membrane-spanning

Figure 1. Nuclear export activity of class 1a and class 1c NES mutants. (A) Class 1a NESs carrying mutations at two hydrophobic positions
and three spacer positions between W2 and W4. (B) Class 1c NESs carrying mutations at three positions within the spacer region between W2 and W3.
These NES mutants were assayed for their nuclear export activity in NIH3T3 cells, and the activities were classified as scores from 1 to 10, as in Figure
S1. The scores are indicated at the right columns of the corresponding sequences. Altered bases are highlighted in blue.
doi:10.1371/journal.pcbi.1003841.g001

Prediction of Nuclear Export Signals

PLOS Computational Biology | www.ploscompbiol.org 3 September 2014 | Volume 10 | Issue 9 | e1003841



regions and regions embedded inside the protein, a hydrophobic-

ity rate (content of hydrophobic residues) in the spacer regions of

an NES was calculated and a penalty score (i.e., 27, which was

based on the observation that the activity of a class 1a NES with

score 8 was decreased in a level of score 1 when three spacer

residues were converted to hydrophobic residues) was added to the

total score for an NES with a hydrophobicity rate $0.4. This

function reduced false positives by 13% in an NES dataset from

the ValidNES database. The NESmapper program scans the

protein sequence with a window size of 14 amino acid residues

(11–13 amino acid residues in the N-terminal region) and a shift

size of one amino acid, and finds NES sequences with a significant

level of scores, which are calculated based on the NES profiles for

class 1b, class 1c, class 2, and extended class 1a. Because the class

1d NESs constitute only a minor proportion of the ValidNES

database and screened artificial NESs, we excluded the class 1d

profile from the calculation to prevent an increase in false

positives.

NESmapper also calculates the HPR of the N-terminal 25-

amino-acid sequence flanking a predicted NES and the NC of the

25-amino-acid C-terminal flanking sequence, as described in the

previous section. The NES score is multiplied by the predeter-

mined likelihood ratios (2.5 for HPR#30, 2 for HPR = 31–40, 1.4

for HPR = 41–50, 1 for HPR = 51–60, 0.6 for HPR = 61–80, 0.5

for HPR.80, 1.8 for !NC#24, and 0.6 for NC.0) corre-

sponding to the calculated HPR and NC values, shown in Tables

S2 and S3. This incorporation resulted in a slight reduction in the

predicted false negatives or false positives, depending on the

threshold score, and produced a robust prediction that was less

affected by the threshold score (Table S4).

Evaluation of NES prediction accuracy
Different positive and negative NES test sets were used to

evaluate the prediction of NESs by NESmapper, NESsential,

Wregex, NetNES, and NES consensus sequences. We used the

same test datasets for the evaluation for each method, and

designed several evaluation experiments with different test

datasets. Detailed descriptions are provided in Text S1.

Results

Creation of activity-based NES profiles by mutational
analysis

The relative activity of a motif can be calculated by adding the

contribution of the corresponding amino acid at every position

represented in an activity-based matrix profile of the motif, if the

effects of the amino acids within the motif on the entire activity are

independent and additive [27]. We investigated whether there are

nonlinear correlations between the conserved hydrophobic resi-

dues within NESs using positive and negative NES datasets (see

Text S1 for the datasets). The calculated frequencies of the amino

acid occurrences at the conserved hydrophobic positions of the

positive dataset of class 1 NES sequences (Table S5) were similar

to those observed previously [13,15]. The frequency of occurrence

of an amino acid pair at two different positions (e.g., Val and Leu

at W1 and W3) is expected to be a multiple of the frequencies at the

two positions if the two amino acids do not interact specifically

during the formation or function of the NES. In the negative

dataset, every combination of two amino acids at the conserved

positions correlated with the expected values (Table S6). In

contrast, in the positive dataset, there were several patterns of

hydrophobic pairs whose frequencies did not correlate with the

expected values (i.e., ,0.77-fold or .1.3-fold of the expected

values, which gave a p-value = 0.0063 for the Fisher’s exact test),

Figure 2. Positive and negative NES datasets obtained from
four different data resources. (A) Artificial NES datasets. (B) DUB
NES datasets. (C) Valid NES datasets. (D) Sp-protein datasets. The
positive and negative datasets (B-P2 and B-N2) of the DUB datasets and
the negative training dataset (D-N2) of the Sp-protein datasets were
always included in the training data for the profile optimization,
whereas the other training datasets were used only when they were not
contained in a test dataset to be used. For example, when we
conducted the prediction test with the test datasets, A-P1 and A-N1, we
used the optimized profiles for NESmapper, that were trained with C-
N2, in addition to B-P2, B-N2, and D-N2.
doi:10.1371/journal.pcbi.1003841.g002
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indicating the presence of non-independent amino acid pairs at

the conserved positions. However, the frequency of the non-

independent pairs was relatively low (approximately 15% of all the

observed frequencies of hydrophobic pairs) and the difference

between the observed and expected frequencies was small (Table

S6), which suggests that many of the amino acids, at least at

hydrophobic positions, within the NES contribute independently

to the entire activity of the NES.

The independence of amino acids within an NES was also

supported by a mutational analysis of the class 1a NESs. This

analysis showed that many of the position-specific amino acids

within an NES independently and additively contribute to the

entire NES activity (Figure 3). We then attempted to create

activity-based profiles for each NES class, as previously conducted

for the classical NLS [27]. For the class 1a NESs, we prepared a

modified sequence of the PKI NES for each NES class as a

template and all the amino acid residues of the template NES were

serially replaced with ,20 other amino acid residues. The relative

nuclear export activities of these altered sequences (a total of 791

sequence) were assayed in NIH3T3 cells and ranked from 1 to 10

based on the localization phenotype of the GFP reporter (see

Figure S1 for details). The template NESs were LMB-sensitive and

had a similar NES activity in yeast, suggesting that the assayed

NES variants are CRM1-dependent NESs that function in diverse

eukaryotic species. The profiles of the five subclasses of NESs were

represented as scoring matrices based on their relative NES

activities (Figure 4). A consensus sequence (W–X2–W-X3–W–X2–

W–X–W) proposed by Güttler et al. [16] has one additional

hydrophobic position at the N-terminal W0. We found that the N-

terminal part of this consensus sequence matches the class 3

consensus, indicating that Güttler’s consensus sequence represents

a fusion of the class 3 and class 1a NESs. Therefore, we generated

a profile for an extended class 1a corresponding to Güttler’s

consensus sequence by merging the results of the mutational assays

of the class 3 NES with the class 1a profile (Figure 4A). The

profiles show that different amino acids in the spacer regions, as

well as those in the hydrophobic positions, contribute to the NES

activity to different extents, depending on their positions. Proline

functioned as a strong repressor in the entire spacer region,

including the C-terminal flanking position, and this effect became

stronger toward the C-terminal end. Acidic amino acids,

asparagine and tryptophan, in the spacer regions act as position-

dependent repressors. Leucine and isoleucine at conserved

positions had a similarly strong effect on the NES activity, and

cysteine, alanine, threonine, and tryptophan also made positive

but weak contributions. The NES profiles suggest that combina-

tions of amino acids with different levels of activity-directed effects

generate various patterns of NESs.

NES prediction performance of NESmapper with
unoptimized and optimized NES profiles

We developed an NES prediction program, NESmapper, that

calculates an NES score using the activity-based profiles for the

class 1b, 1c, and 2, and the extended class 1a NESs. The

performance of NESmapper with optimized NES profiles by

training and unoptimized ones was evaluated using experimentally

verified artificial NES test sets comprising 163 positive and 60

negative NESs (Table 1). NESmapper predictions with unopti-

mized profiles gave a sensitivity of 0.96 and a specificity of 0.85 for

a threshold score of 2. Predictions with optimized profiles reduced

the false positives for any threshold score, whereas predictions with

profiles optimized with datasets excluding the test sets increased

the false negatives. We used another test set, ValidNES-test, which

contains 92 proteins (100 NESs) randomly selected from the

ValidNES dataset. We regarded as false positives potentially

nonfunctional NESs called from regions other than the ranges

corresponding to the true NESs of the ValidNES-test set. For this

test set, NESmapper with unoptimized profiles called 74% of true

NESs for a threshold score of 2, and the predictions with the

optimized profiles reduced the false positives by 40%–68% relative

to those with the unoptimized profiles, at the expense of a slight

increase in false negatives (Table 1). For another negative test set

(Sp-test), which contained 60 proteins randomly selected from the

Sp-protein dataset, predictions with the optimized profiles reduced

the calls of potentially nonfunctional NESs (i.e., false positives) by

approximately 60% relative to those with unoptimized profiles

(Table 1). These results indicate that the optimization of NES

profiles by training significantly reduced the number of false

positives.

Comparison of prediction performance with other
methods

We then compared the prediction performance of NESmapper

using optimized and unoptimized NES profiles with the perfor-

mances of predictions made with the traditional consensus

sequence, the improved consensus sequences [14,15], NetNES

[13], Wregex [23], and NESsential [21]. We used the artificial

NES test sets as the first test set, and the NES sequences were fused

to the C-terminus of GFP for a fair evaluation of NetNES and

NESsential, since NES peptides fused to the C-terminus of GFP

Figure 3. Independent and additive contributions of amino
acids at the conserved hydrophobic positions to the entire NES
activity. One or two leucine residues of a class 1a NES at the W1, W3, or
W4 conserved hydrophobic positions, indicated on the top line, were
replaced with cysteine, phenylalanine, threonine or tryptophan, as
highlighted in blue, and the nuclear export activity was assayed in
NIH3T3 cells. The indicated activity scores were determined as in Figure
S1. Note that the effects of the substituted residues on the NES activity
scores were roughly independent and additive.
doi:10.1371/journal.pcbi.1003841.g003
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are functional in our NES-assay system with mammalian cells and

yeast. NESmapper and NESsential performed better, with higher

sensitivities, than NetNES, Wregex, or the consensus-based

methods, but NESmapper predicted a significantly lower number

of false positives than NESsential (Table 2). As the second test sets,

we used the ValidNES dataset containing 180 distinct proteins

(205 NESs) for positive and negative data, although NESsential

and Wregex have been developed using a subset from the

ValidNES database. For another negative data, we used the Sp-

test set, containing 60 proteins. The results with the second test sets

indicated that the improved consensus sequences and NESsential

(probability score $0.1) gave the best predictive performance in

terms of sensitivity, which were approximately 0.05 or 0.1 higher

than the sensitivity of NESmapper (score 2) (Table 3). However, of

these five methods, NESmapper with optimized profiles predicted

the lowest number of false positives: 16%–45% of the false

positives predicted with the other methods (Table 3). For

evaluation at a protein-level, NESmapper with optimized profiles

predicted the lowest number of false positives for Sp-test set. Of

the five methods, Wregex with the recommended configuration

predicted the lowest number of false positives, but it displayed the

highest number of false negatives (the lowest sensitivity) while using

the PSSM that was created and trained with NESs from the

ValidNES database. Current NES prediction methods, including

NESmapper, still predict many false positives when predicting

NESs from protein sequences. When we conducted an NES

prediction analysis for 500 proteins randomly selected from the

budding yeast protein database, these methods predicted 70,98%

of NES-containing proteins (Table S7). Although NESmapper

predicted a lower number of false positives than other tools,

NESmapper, as well as the other methods, may be more suitable

for selecting candidate NESs from a protein set of interest rather

than directly predicting CRM1-dependent nuclear export proteins

from a proteome set.

We then compared the performances of these methods, by

plotting the receiver operating characteristic (ROC) curves and

measuring the areas under the curves (AUCs) using two different

sets of test NESs, the artificial NES and ValidNES/Sp-test

datasets (Figure 5). For Wregex, only the data obtained with the

relaxed configuration was used for the ROC analysis with the

artificial NES datasets because the false negatives obtained with

the recommended configuration were too high, as shown in

Tables 2. With the artificial test datasets, the performance of

NESmapper with both optimized profiles (AUC: 0.95) and

unoptimized profiles (AUC: 0.94) was significantly better than

that of other methods, the traditional consensus sequence,

NetNES, Wregex (AUC: 0.85) and NESsential (AUC: 0.62).

For also the ValidNES/Sp-test dataset, the performance of

Figure 4. Activity-based profiles of CRM1-dependent NES. (A) Activity-based profile of class 1a/3 NES. Class 1a/3 NES is an extension of class
1a NES, in which the N-terminal region of class 1a and the C-terminal region of class 3 overlap. A single amino acid residue of a class 1a/3 NES
template sequence, indicated at the top of the matrix, was replaced with the various other residues indicated in the left column. The nuclear export
activity of the NES mutant was assayed in NIH3T3 cells. The indicated activity scores were determined as in Figure S1. This template NES has an
activity score of 8. Scores with higher, slightly higher, and lower activities than the average value for each position are shown in red, orange, and blue,
respectively. At several mutational positions, modified templates with a different level of basal activity were used to obtain more dispersed scores.
The conserved hydrophobic positions (W0–W4) are marked on the template sequence. The scores at the W0 position (Pa) were estimated based on the
data of Güttler et al [16]. Blanks represent undetermined scores. (B) NES profile of the spacer region between the W1 and W2 positions of a class 1b
NES. The template sequence has a standard activity score of 4. (PSSELAKLAGLDLN) (C) NES profile for the spacer regions between W1 and W3
positions of the class 1c NES. The template sequence (SELAEKLQAGLDLN) has an activity score of 8. (D) Activity-based profile of class 2 NESs. The
template NES sequence, indicated at the top of the matrix, has a standard activity score of 3.
doi:10.1371/journal.pcbi.1003841.g004
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NESmapper (AUC: 0.78 and 0.75 for optimized and unoptimized

profiles, respectively) was better than that of other methods,

Wregex (AUC: 0.60) and NESsential (AUC: 0.72). The ROC

analysis with combined datasets of the artificial and ValidNES/

Sp-test datasets also showed that the performance of NESmapper

with both optimized profiles (AUC: 0.81) and unoptimized

profiles (AUC: 0.80) was better than that of other methods,

Wregex (AUC: 0.73) and NESsential (AUC: 0.75). These results

Table 2. Prediction accuracies of NetNES, Wregex, NESsential, NESmapper, and consensus-based NES predictions using artificial
NES test data.

Prediction method Parameters NES prediction accuracy

False negatives (Sensitivity) False positives (Specificity)

Traditional consensusa – 21 (0.871) 38 (0.367)

Improved consensusb – 21 (0.871) 9 (0.850)

NetNES – 47 (0.712) 22 (0.633)

Wregex recommended configc 150 (0.080) 0 (1.000)

relaxed configd 9 (0.945) 19 (0.683)

NESsential p$0.1e 8 (0.951) 42 (0.300)

p$0.5f 54 (0.669) 26 (0.567)

NESmapper unoptimized profileg 6 (0.963) 9 (0.850)

optimized profileh 19 (0.883) 6 (0.900)

Prediction accuracies of the indicated methods and tools were determined with the artificial NES sets, as in Table 1.
aTraditional NES consensus sequence, W–X2,3–W–X2,3–W–X–W.
bClass 1a, 1b, 1c, 1d, 2, and 3 NES consensus sequences, not allowing A, C, T, or W at positions W3 and W4 (see Introduction for detail).
cPrediction with recommended PSSM configuration.
dPrediction with relaxed PSSM configuration.
eNESs with the probability values of $0.1 selected.
fNESs with the probability values of $0.5 selected.
gPrediction with unoptimized NES profiles, NESs with a score of $2 were selected.
hPrediction with optimized NES profiles. NESs with a score of $2 were selected.
doi:10.1371/journal.pcbi.1003841.t002

Table 3. Prediction accuracies of NetNES, Wregex, NESsential, NESmapper, and consensus-based NES predictions using the
ValidNES/SpNES test data.

Prediction method Parameters NES prediction accuracy

ValidNES (185 proteins) Sp-test (60 proteins)

False negatives (Sensitivity) False positives False positivese

Traditional consensus – 60 (0.707) 841 231 (93%)

Improved consensus – 39 (0.810) 1,383 351 (98%)

NetNES – 110 (0.463) 193 51 (78%)

Wregex recommended configa 146 (0.288) 165 38 (50%)

relaxed configb 43 (0.790) 1,791 487 (98.3%)

NESsential p$0.1c 38 (0.815) 783 166 (95%)

p$0.5d 163 (0.205) 35 8 (16%)

NESmapper unoptimized, score $2 48 (0.766) 902 199 (93%)

unoptimized, score $4 55 (0.732) 643 121 (85%)

unoptimized, score $6 69 (0.663) 458 81 (72%)

optimized, score $2 58 (0.717) 351 76 (70%)

optimized, score $4 73 (0.644) 270 45 (50%)

optimized, score $6 88 (0.571) 178 31 (40%)

Prediction accuracies were determined with the ValidNES dataset consisting of 185 proteins containing 205 LMB-sensitive NESs, as positive and negative data and the
Sp-test negative dataset, containing 60 proteins from the Sp-protein dataset, as in Tables 1 and 2.
aPrediction with recommended PSSM configuration.
bPrediction with relaxed PSSM configuration.
cNESs with the probability values of $0.1 selected.
dNESs with the probability values of $0.5 selected.
ePercentage of proteins containing predicted NESs is indicated with parentheses.
doi:10.1371/journal.pcbi.1003841.t003
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indicate that NESmapper can predict NESs more accurately than

other NES prediction methods.

Another advantage of NESmapper was its running time. When

an NES search against a set of 200 proteins with each 800 amino

acid length was conducted, NESmapper took only eight seconds,

whereas NESsential took over six hours through two steps of the

sequential processes accompanying SABLE and POODLE-L

(Table S8). Moreover, NESsential has a difficulty in treating

sequences of large proteins, because POODLE-L accepts only

proteins with ,1000 amino acids.

Conclusion
This study reveals the functional contributions of different

amino acids at each position within and flanking an NES class,

and demonstrates that each residue within an NES makes a largely

independent and additive contribution to the entire nuclear export

activity. Our NES prediction method based on activity-based

profiles predicts NESs more accurately than other currently

available methods, which is prominent especially in the context of

linear peptide. Moreover, the fact that the performance of

NESmapper is considerably better than that of Wregex suggests

that the activity-based profiles allows more accurate prediction of

motifs than the PSSMs, which are generated mainly based on the

position-specific amino acid frequency. The accurate prediction of

NESs with the profile-based method argues that many more

important protein motifs can be predicted using the same or

similar strategies.

Availability and Future Directions

NESmapper is a multiplatform command-line Perl application

with activity-based NES profiles, and licensed under the GNU

General Public License version 3.0. The source code, unoptimized

and optimized activity-based NES profiles, a sample dataset, and

an instruction manual are available at http://sourceforge.net/

projects/nesmapper.

We plan to develop a NES/NLS prediction tools by combining

NESmapper and the previously developed cNLS Mapper.

Because many of NES-containing proteins have also NLSs, the

simultaneous prediction of NESs and NLSs should be useful for

not only identifying nucleo-cytoplasmic shuttling-proteins but

also increasing the prediction accuracy for NESs and NLSs. The

combined program will be also provided by a webserver, and

Figure 5. ROC analyses for five NES prediction methods. (A) ROC
curve generated with artificial NES datasets. For the artificial NES sets,
163 positive and 60 negative experimentally verified NESs were used to

plot the ROC curves for the traditional consensus-based prediction,
NetNES, NESmapper, Wregex, and NESsential. The true positive rates
(TPRs) and false positive rates (FPRs) for each tool were measured by
changing the threshold scores for Wregex and NESmapper or the
threshold probability values for NESsential. The curves for the
NESmapper predictions with the optimized and unoptimized profiles
are shown with solid lines with red circles and with dotted lines with
orange triangles, respectively, those for Wregex with solid lines with
green squares, and those for NESsential with solid lines with blue
diamonds. The results for the traditional consensus-based prediction
and NetNES are shown with green and blue asterisks, respectively. (B)
ROC curve generated with ValidNES/Sp-test datasets. We measured the
false positives by counting NESs called from regions other than the
ranges corresponding to true NESs. To calculate the FPRs for the
ValidNES and Sp-test datasets, only called NESs that matched the
traditional consensus sequence were counted as false positives and
divided by the number of sequences that matched the traditional
consensus sequence in each dataset (841 for ValidNES and 231 for Sp-
test). The mean FPRs for both datasets were used for the analysis. (C)
ROC curve generated with the artificial NES and ValidNES/Sp-test
datasets.
doi:10.1371/journal.pcbi.1003841.g005
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possibly integrated with structural information of proteins in the

future.

Supporting Information

Figure S1 Semiquantitative measurement of NES activ-
ity. (A) Two representative phenotypes of GFP localization. The

GFP–NES reporter fusion protein in NIH3T3 cells localized

evenly to both the nucleus and cytoplasm when the fused NES had

no nuclear export activity (NC-phenotype), whereas it localized

exclusively to the cytoplasm when it had strong NES activity (C-

phenotype). (B) Score representation of relative levels of NES

activity. The proportion of cells with the C-phenotype increased as

the activity of the fused NES increased. NES activity was ranked

from 1 to 10 based on the proportion of cells with the GFP C-

phenotype among all the GFP-positive cells. The scoring was

standardized as follows: score 1 (0%–5% of C-phonotype), 2

(6%–10% of C-phonotype), 3 (11%–20% of C-phonotype), 4 (21%–

35% of C-phonotype), 5 (36%–50% of C-phonotype), 6 (51%–60%

of C-phonotype), 7 (61%–70% of C-phonotype), 8 (71%–80% of C-

phonotype), 9 (81%–90% of C-phonotype), and 10 (91%–100% of

C-phonotype). In some cases, the relative difference in the intensity

of the GFP fluorescence in the nucleus and the cytoplasm was used

to determine the final score. Several scores of ,1 and .10 were

estimated based on the activities determined with a different

template with a contrasting level of basal activity.

(PDF)

Figure S2 Amino acid composition of sequences flank-
ing positive and negative NESs. Five-amino-acid flanking

sequences of a 14-amino-acid NES, starting at position 225, 220,

215, 210, 25, 15, 20, 25, 30, or 35 (where the first amino acid of

the NES is regarded as position 1) were extracted and the contents

of the indicated amino acids (A,B: hydrophobic; C,D: polar; E,F:

acidic; G,H: basic; I,J: proline) were calculated for each positive

and negative NES dataset. The positive datasets (blue squares)

consisted of 178 NESs from the ValidNES dataset and the

negative datasets (red circles) consisted of 1,259 NESs from the

ValidNES dataset (A,C,E,G,I) and 2,078 NESs from the Sp-

protein dataset (B,D,F,H,J).

(PDF)

Software S1 The source code of NESmapper, activity-
based NES profiles, instructions, and sample data.
(GZ)

Table S1 Datasets used for profile-optimizations and
performance-tests in this study.
(PDF)

Table S2 Frequency/probability distribution of the
hydrophobic-to-polar amino acid ratio in the flanking
sequences of positive and negative NESs and the
calculated likelihood ratios.

(PDF)

Table S3 Frequency/probability distribution of the net
charge in the flanking sequences of the positive and
negative NESs and the calculated likelihood ratios.

(PDF)

Table S4 Improvement of the prediction performance
of NESmapper by incorporating the properties of the
amino acids composing the NES-flanking sequences.

(PDF)

Table S5 Observed frequencies of amino acid at the
conserved hydrophobic positions of class 1 NESs in
positive and negative datasets.

(PDF)

Table S6 Observed and expected frequencies of an
amino acid pair at the conserved hydrophobic positions
of the class 1 NES in the positive and negative datasets.

(PDF)

Table S7 NES prediction for 500 budding yeast pro-
teins.

(PDF)

Table S8 Running time of NESmapper and NESsential.

(PDF)

Text S1 Detailed description of Design and Implemen-
tation.

(PDF)
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