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Abstract

The APOE gene encoding the Apolipoprotein E protein is the single most sig-

nificant genetic risk factor for late-onset Alzheimer’s disease. The APOE4

genotype confers a significantly increased risk relative to the other two com-

mon genotypes APOE3 and APOE2. Intriguingly, APOE4 has been associated

with neuropathological and cognitive deficits in the absence of Alzheimer’s
disease-related amyloid or tau pathology. Here, we review the extensive litera-

ture surrounding the impact of APOE genotype on central nervous system dys-

function, focussing on preclinical model systems and comparison of APOE3

and APOE4, given the low global prevalence of APOE2. A multi-hit hypothesis

is proposed to explain how APOE4 shifts cerebral physiology towards patho-

physiology through interconnected hits. These hits include the following:
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neurodegeneration, neurovascular dysfunction, neuroinflammation, oxidative

stress, endosomal trafficking impairments, lipid and cellular metabolism dis-

ruption, impaired calcium homeostasis and altered transcriptional regulation.

The hits, individually and in combination, leave the APOE4 brain in a vulnera-

ble state where further cumulative insults will exacerbate degeneration and

lead to cognitive deficits in the absence of Alzheimer’s disease pathology and

also a state in which such pathology may more easily take hold. We conclude

that current evidence supports an APOE4 multi-hit hypothesis, which contrib-

utes to an APOE4 pathophysiological state. We highlight key areas where fur-

ther study is required to elucidate the complex interplay between these

individual mechanisms and downstream consequences, helping to frame the

current landscape of existing APOE-centric literature.
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1 | INTRODUCTION

Apolipoprotein E (ApoE) is a 34 kDa glycoprotein
(299 amino acids) encoded by the �3.6 kb gene on chro-
mosome 19, APOE. The primary physiological role of
ApoE is in lipoprotein homeostasis, though is impli-
cated in multiple diverse roles in both the central ner-
vous system (CNS) and periphery (Mahley, 1988;
Martínez-Martínez et al., 2020). In the CNS, ApoE is
the primary apolipoprotein with expression predomi-
nantly driven by astrocytes (Boyles et al., 1985; Grehan
et al., 2001; Pitas et al., 1987) and also within microglia
(Nakai et al., 1996; Xu et al., 1999), the
neurovasculature (Majacek et al., 1988) and neurons
under conditions of stress (Xu et al., 1996). Typically,
ApoE is secreted from astrocytes and lipidated via mem-
bers of the adenosine triphosphate (ATP) cassette bind-
ing transporter (ABC) family, such as ABCA1. ApoE
mediates the transport of cholesterol and various lipids
in lipoprotein complexes to neurons for internalisation
by interacting with ApoE receptors (ApoER2/LRP8),
members of the low-density lipoprotein receptor (LDLR)
and LDLR-related protein (LRP) families as well as
heparan sulphate proteoglycans (HSPGs) (Bu, 2009;
DeMattos et al., 2001; Hirota et al., 2015; Mahley
et al., 2009; Strasser et al., 2004).

APOE exists as three common allelic isoforms:
APOE2, APOE3 and APOE4 (encoding proteins ApoE2,
ApoE3 and ApoE4), which arise from single nucleotide
polymorphisms (SNPs) conferring single amino acid
substitutions. Relative to ApoE3 (cysteine 112, arginine
158), these SNPs result in C112R substitutions in ApoE4
and R158C in ApoE2 (Mahley & Rall, 2000; Nickerson

et al., 2000; Zannis & Breslow, 1981; Zannis
et al., 1982). Debate concerning the structural conse-
quence of APOE isoform is still ongoing, with data
suggesting either an ApoE4-specific conformational C-N
terminal domain interaction or aggregation and subtle
structural differences (Dong et al., 1994; Dong &
Weisgraber, 1996; Raffaï et al., 2001; Raulin et al., 2019;
Weisgraber, 1994; Xu et al., 2004). Ultimately, APOE
isoform profoundly impacts lipoprotein transport and
metabolism. ApoE4 exhibits a preference for larger, tri-
glyceride rich very low-density lipoprotein (VLDL) parti-
cles in the periphery (Mahley, 1988; Mahley &
Huang, 1999; Mahley & Rall, 2000), instead of the
smaller phospholipid rich high-density lipoprotein
(HDL) particles preferred by ApoE2 and ApoE3 (Dong
et al., 1994; Dong & Weisgraber, 1996). In the cerebro-
spinal fluid (CSF) however, ApoE4 is associated with
smaller and less lipid-rich lipoprotein particles
(Heinsinger et al., 2016; Lanfranco et al., 2020; Mahley,
2016). Furthermore, circulating levels of ApoE4 in the
CNS are the lowest of the three main isoforms (Riddell
et al., 2008; Ulrich et al., 2013), likely as a consequence
of increased endosomal accumulation (Chen
et al., 2010; Morrow et al., 2002; Xian et al., 2018) and
proteolytic degradation (Brecht et al., 2004; Harris
et al., 2003; Huang et al., 2001).

At a population level, APOE3 has an allelic fre-
quency of �77%, APOE4 of �15% and APOE2 of �7%
(Huang & Mahley, 2014). APOE4 is the single strongest
genetic predictor for late onset (LO) non-familial
Alzheimer’s disease (AD, LOAD), the most common
form of AD. APOE4 increases LOAD risk by �2 to �8
times for heterozygotic and homozygotic carriers,
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relative to APOE3-carriers, respectively (Corder
et al., 1993, 1994; Gureje et al., 2006; Mayeux
et al., 1998; Raber et al., 2004; Saunders et al., 1993).
The primary pathological hallmarks of AD include
extracellular senile plaques comprising complex aggre-
gations of beta-amyloid (Aβ) species and intraneuronal
neurofibrillary tangles formed of the microtubule associ-
ated protein tau.

Crucially, a growing body of evidence points towards
an emerging APOE4 phenotype, in which APOE4 can
both interact with these AD-dependent Aβ and tau-
related processes while also independently contributing
to cellular pathophysiology (e.g., Dose et al., 2016;
Flowers & Rebeck, 2020; Huang, 2010; Huang &
Mahley, 2014). Much of the supporting work has been
performed in cell and animal model systems such as the
targeted replacement (TR) mice, in which the mouse
Apoe gene is replaced with human APOE (Knouff
et al., 1999; Sullivan et al., 1997, 1998, 2004). Impor-
tantly, classic AD pathology is absent in many of these
animals, allowing the study of APOE function in isola-
tion. Evidence from these systems is converging on a
series of APOE4-dependent ‘hits’ that we propose are
interlinked to induce an APOE4-mediated pathophysio-
logical state, independent of AD pathology.

This review focuses on the preclinical evidence
supporting individual APOE4 hits and their underpin-
ning mechanisms, before considering how these func-
tional disruptions converge to place the CNS in a state
vulnerable to cellular stressors that further increase
LOAD risk. We focus on comparing APOE4 function to
the population norm, APOE3, primarily in preclinical
systems due to the challenge of studying these path-
ways in humans. However, where appropriate, refer-
ences are made to supporting or contradicting human
literature. We then suggest how future research should
aim to investigate the mechanistic interplay between
these hits in combination rather than in isolation to
understand systems-level interactions. Specifically, we
describe eight key APOE4 hits: neuronal maturation
and neurodegeneration, neurovascular integrity and
function, inflammation and glial function, oxidative
stress, endosomal trafficking, lipid and cellular metab-
olism, calcium homeostasis and transcriptional dys-
regulation. Throughout the described hits, the
influence of contextual factors including ageing, bio-
logical sex and injury are considered. Ultimately, we
suggest that a multi-hit hypothesis promotes under-
standing of a complex APOE4-pathophysiology and
emphasises the importance of cross modal approaches
to study life-long CNS vulnerability which may initially
arise independent of, but subsequently contribute to,
AD-pathology.

2 | HIT 1: NEURODEGENERATION
AND NEURODEVELOPMENT

Neuronal cell death and loss of neuronal structural integ-
rity are typical pathologies of neurodegenerative disor-
ders. However, the events preceding gross cell loss
including subtle changes to neuronal morphology and
synaptic density as well as susceptibility of specific neuro-
nal subtypes have been implicated in the aetiology of
multiple neurodegenerative conditions (Najm et al., 2019;
Stranahan & Mattson, 2010). ApoE is recognised to have
a key role in the regulation of neuronal morphology and
response to CNS injury (Boyles et al., 1989; Mahley, 1988;
Nathan et al., 1995). However, an extensive body of evi-
dence implicates APOE4 in the dysfunction of these path-
ways, promoting age-dependent gross neurodegeneration
within the hippocampus and cortex in E4-TR mice
(Speidell et al., 2019; Yin et al., 2011, 2014). Here we
summarise the broad evidence that APOE4 plays a major
role in driving neurodegeneration, altering proliferation,
cell fate and damage repair processes with particular
focus on the susceptibility of inhibitory interneurons as
the first major hit in a multihit hypothesis.

2.1 | APOE4-mediated GABA-
interneuron selective cell loss

Multiple lines of evidence suggest that APOE4 drives a
sex-dependent neurodegenerative phenotype in dentate
gyrus (DG) hilar gamma aminobuyric acid (GABA)-ergic
interneurons (GABA-INs) without necessitating pre-
existing AD-related pathology. Firstly, female E4-TR mice
exhibit reductions in GABAergic terminals in the DG,
followed by significant loss of DG hilar GABA-INs across
the lifespan, suggesting an excitatory: inhibitory imbal-
ance which correlated with spatial learning and memory
defects (Andrews-Zwilling et al., 2010; Jones et al., 2019;
Knoferle et al., 2014; Leung et al., 2012; Li et al., 2009;
Tong et al., 2016). Interestingly, these deficits were not
detected in male E4-TR mice, although GABA-IN loss
was inducible following cumulative environmental stress
(Lin et al., 2016; Zhang et al., 2021) but not following
toxic lead exposure (Engstrom et al., 2017). This likely
suggests a general increased susceptibility of GABA-INs
to APOE4-mediated neurodegeneration. Importantly, the
GABAergic and spatial memory phenotypes were rescued
via restoring GABAergic signalling through multiple
methods (Andrews-Zwilling et al., 2010; Knoferle
et al., 2014; Tong et al., 2016) including via knock out of
APOE4 specifically within all neurons or interneurons
alone (Knoferle et al., 2014). This evidence suggests a
gain of toxic function role for APOE4 in driving

5478 STEELE ET AL.



GABAergic-specific neurodegeneration, mediated by an
unclear sex-dependent mechanism.

Strong evidence supports a causative role for ApoE4
proteolytic fragmentation within neurons and subsequent
neurotoxicity, particularly within GABAergic interneu-
rons (Figure 1, Path A). Elevated neuronal ApoE4, but
not ApoE3, fragmentation is exacerbated by injury and
ageing (Brecht et al., 2004), is associated with tau inclu-
sions (Brecht et al., 2004; Harris, Brecht, et al., 2004) and
tau-dependent GABAergic cell death in vitro and in vivo
(Andrews-Zwilling et al., 2010; Li et al., 2009; Wang
et al., 2018). ApoE4 exhibits enhanced mitochondrial and
ER sequestration, while ApoE4 fragments cause neuronal
mitochondrial dysfunction and astrocytic ER stress

in vitro (Hit 6; Brodbeck et al., 2011; Chang et al., 2005;
Chen et al., 2011; Huang & Mahley, 2014). The ApoE4
fragmentation process is likely regulated by a putative
C-N terminal domain interaction between Glu255 and
Arg61 (Dong & Weisgraber, 1996; Huang, 2010; Wang
et al., 2018; Xu et al., 2004). Importantly, preventing the
ApoE4 domain interaction via pharmacological inhibi-
tion (Brodbeck et al., 2011; Wang et al., 2018) or gene
editing (Chen et al., 2011; Wang et al., 2018) rescued
ApoE4 trafficking, reduced neurotoxic ApoE4 fragmenta-
tion, mitochondrial dysfunction and tau-associated
GABA-IN degeneration. Similarly, knockout of endoge-
nous tau rescued GABA-IN loss in vivo in an ApoE4 frag-
ment mouse model (Andrews-Zwilling et al., 2010). Thus,

F I GURE 1 APOE4 drives a neurodegenerative phenotype via fragmentation, microtubule depolymerisation and somal ApoE4

sequestration. Path A: Under conditions of cellular stress and injury, neuronal ApoE expression is upregulated, and there is an increased

propensity of ApoE4 to undergo proteolytic fragmentation which results in enhanced intracellular ApoE4 fragment accumulation. ApoE4

fragments disrupt mitochondrial function and induce ER stress, to which, GABA-Ins are particularly sensitive and exhibit exacerbated cell

death. Path B: Somal sequestration of ApoE4 and its associated lipoproteins alongside away from the dendritic cell surface poorer lipid

availability inhibits effective dendritic repair, remodelling and maintenance. Path C: In addition, through action at surface LRP/HSPGs

ApoE4 enhances microtubule depolymerisation in a mechanism thought to be driven by enhanced ERK signalling. The culmination of these

pathways is a heightened state of neuronal vulnerability and dendritic degeneration, and thus a neurodegenerative phenotype.

Abbreviations: ApoE4, apolipoprotein E4; ER, endoplasmic reticulum; ERK, extracellular signal-related kinase; GABA-INs, gamma

aminobutyric acid (GABA) interneurons; LRP-HSPG, low-density lipoprotein receptor-related protein;. Created with BioRender.com
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evidence strongly suggests that ApoE4 fragments gener-
ated in neurons are key mediators of hippocampal
GABA-IN degeneration via a tau-dependent process and
of disruption of mitochondrial function which is exacer-
bated by exogenous stressors.

2.2 | APOE4 disrupts maintenance of
neuronal morphology

In addition to neuronal cell loss, there is a clear link
between APOE genotype and both the establishment and
maintenance of neuronal morphology. Decreases in den-
dritic spine and neurite density have been observed
across the lifespan in the cortex layers II/III, hippocam-
pus, entorhinal cortex and amygdala of E4-TR and other
APOE4 mouse models (Bell et al., 2012; Dumanis et al.,
2009; Jain et al., 2013 Ji et al., 2003; Neustadtl et al.,
2017; Rodriguez et al., 2013; Sun et al., 2017; Veinbergs
et al., 1999; Wang et al., 2005; Xu et al., 1996), although
there are some reports of no changes in these measures
(Dumanis et al., 2009; Jain et al., 2013; Jones et al., 2021;
Klein et al., 2014). These differences are exacerbated in
multiple APOE4 mouse models following excitotoxic and
deafferentation injury, with increased neuronal ApoE
expression (Xu et al., 1996), impaired post-injury
sprouting responses and reduced neuronal integrity rela-
tive to APOE3 controls (Bott et al., 2016; Buttini et al.,
1999; White et al., 2001). Other sources of cellular stress
such as environmental stress, chronic high-fat diet, envi-
ronmental toxicants and neuroinflammation appear to
have their effects exacerbated in E4-TR mice, including
reducing dendritic complexity (Engstrom et al., 2017),
glutamatergic synaptic integrity (Lin et al., 2016) and
neurotrophic BDNF signalling (Maioli et al., 2012). As
observed for GABA-INs, evidence suggests that morpho-
logical impairments are most aggressive when ApoE4
expression occurs in neurons themselves (e.g., Jain
et al., 2013), particularly following injury (Buttini
et al., 1999, 2010).

Evidence points to several mechanisms by which
ApoE4 may impair the development and maintenance of
neuronal integrity. First, a reduction in the total or mem-
brane associated levels of ApoE4 (DiBattista et al., 2016;
Nathan et al., 1995) and reduced lipidation state of
ApoE4 (Heinsinger et al., 2016; Hu et al., 2015; Lanfranco
et al., 2020) may impair its ability to effectively mediate
trafficking of lipids required to support neurite
remodelling as shown in vitro (DeMattos et al., 1998;
Holtzman et al., 1995; Mahley, 2016; Nathan et al., 1994,
1995; Figure 1, Path B). Second, evidence suggests that
ApoE4 exhibits reduced microtubule binding and
impaired microtubule polymerisation (Nathan et al.,

1995) and contributed to via aberrant HSPG/LRP signal-
ling, ERK1/2 (Extracellular signal regulated kinase)
activation and downstream tau phosphorylation (Brecht
et al., 2004; Harris, Brecht, et al., 2004, Figure 1, Path C).
Reduced binding may also be contributed to via increased
somal ApoE4 sequestration (Harris, Tesseur, et al., 2004;
Nathan et al., 1995; Figure 1, Path B). Third, neuronal
ApoE4 expression (Dumanis et al., 2009; Teter et al.,
2002) and neurotoxic proteolytic fragmentation (Figure 1,
Path A; Brodbeck et al., 2008) impair neuronal sprouting
and are partially rescued by targeting the ApoE4 domain
interaction pharmacologically (Brodbeck et al., 2011).
ApoE4 fragmentation is suggested to be regulated by ser-
ine and chymotrypsin-like proteases (Chu et al., 2016;
Harris et al., 2003; Muñoz et al., 2018; Tamboli
et al., 2014), and expression of a chymotrypsin inhibitor
SERPINA3 (α1 antichymotrypsin) was recently shown to
be upregulated in the E4-TR mouse brain in vivo
(J. Zhao et al., 2020). This may represent an attempted
compensatory response to ameliorate elevated ApoE4
fragmentation. Finally, ApoE4 may also enhance
calcineurin-mediated spine collapse, which was rescued
in vivo in E4-TR mice via calcineurin inhibition
(Neustadtl et al., 2017).

Therefore, evidence to date supports the view that
ApoE4 in its basal state mediates disruption of neuronal
architecture and is exacerbated when combined with
stressors. However, while this evidence provides compel-
ling explanatory mechanisms, the relative physiological
contribution of each of these pathways during ageing
remains to be fully understood.

2.3 | APOE4 alters synaptic integrity and
synaptogenesis

Synapse loss is a salient marker of disease progression
that precedes gross degeneration and predicts impaired
neuronal function in multiple neurodegenerative condi-
tions, including AD (LeBlanc, 2005; Clare et al., 2010).
APOE4 may contribute to synapse degradation prior to
larger-scale neurodegeneration, although evidence is con-
tentious (e.g., see Tzioras et al., 2019).

Some evidence suggests an age-dependent reduction
in pre- or post-synaptic proteins in multiple APOE4
mouse models, at a young age in cortex and hippocampus
(Bell et al., 2012; Liu et al., 2015; Zhu et al., 2012) and at
late age in the hippocampus (Zalocusky et al., 2021)
accompanied by reduced synapse number and increased
synaptic size (Cambon et al., 2000). In contrast, no basal
changes were detected in synaptic markers including syn-
aptophysin at mid-age across APOE models (Buttini
et al., 1999, 2010; Chouinard-Watkins et al., 2017; Nichol
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et al., 2009; Veinbergs et al., 1999). However, as with
overall morphology, APOE4-related synaptic protein loss
is exacerbated by stressors, injury, and neuronal ApoE4
expression (Buttini et al., 1999, 2000, 2010; Lin
et al., 2016; Zhang et al., 2021). Similarly, in vitro studies
suggest a possible loss of excitatory and inhibitory synap-
ses and impaired maturational rate via glial-derived
ApoE4 (Konings et al., 2021; Nwabuisi-Heath et al.,
2013), supporting the importance of both glial and neuro-
nal ApoE in synapse formation and maintenance.

Conversely, other studies using human-induced plu-
ripotent stem cell (hiPSC)-derived neuron systems sug-
gest that ApoE4 may, in fact, exert an acute synaptogenic
influence, without affecting gross dendritic morphology
or necessitating AD pathology. This was suggested to
occur via an ApoE receptor to CREB-dependent (cAMP
response element binding protein) signalling pathway
(Huang et al., 2017, 2019; Lin et al., 2018). However,
another study found only synaptic protein reductions
in APOE4-carrier AD patient derived-, but not healthy
APOE4-carrier derived-, hIPSC-derived organoids
(N. Zhao et al., 2018). Ultimately, the reason for this con-
flict between an inhibitory and stimulatory effect of
ApoE4 on synaptogenesis is unclear. It possibly reflects a
dissociation between acute and chronic ApoE-mediated
signalling or variation between model systems and the
techniques resolution (Tzioras et al., 2019). More in-
depth research is needed to tease apart physiological
effects of acute and chronic ApoE signalling on synaptic
structural dynamics.

2.4 | APOE4 alters neurogenesis and
maturation

ApoE also influences neurogenesis and newborn neuron
maturation into existing neuronal circuitry. ApoE
appears to promote neuronal proliferation by negatively
regulating astrogenesis cell fate and maintaining
progenitor cell pools in the DG subgranular zone via a
Noggin-dependent signalling pathway (Li et al., 2009;
Yang et al., 2011). The directionality of an APOE isoform
difference remains uncertain, however. An increase (Li
et al., 2009; Rijpma et al., 2013), decrease (Koutseff
et al., 2014) or no change (Tensaouti et al., 2018) in new-
born neuron proliferation in the DG has been reported in
young or adult E4-TR mice compared with E3-TRs.
However, dendritic maturation in newborn neurons
(reflecting circuit integration) was generally diminished
by APOE4 in females with or without toxicant stress
(Engstrom et al., 2017; Li et al., 2009) but was also
observed in both sexes following injury (Tensaouti
et al., 2020).

Mechanistically, ApoE4 may impair newborn neuron
maturation via disruption of GABAergic network func-
tion and is rescued by GABAA receptor potentiation in
female E4-TR mice (Li et al., 2009). The role of GABA-
INs in neurogenesis also hints at involvement of ApoE4
fragmentation (Huang & Mahley, 2014; Li et al., 2009)
and supports a circuit level mechanism by which ApoE4
can indirectly influence neurogenesis via loss of
GABAergic control (Section 2.2; Figure 1, Path A).
Together, these data suggest that ApoE4 mediates a disso-
ciation between enhancement of neuronal proliferation
and disruption of effective circuit maturation.

Evidence from human APOE4-carriers somewhat
supports these findings. Gross anatomical magnetic reso-
nance imaging data suggest that APOE4 is associated
with late-age reductions in regional brain volume in the
hippocampus and medial temporal lobe, although this is
not always replicated and the influence of APOE isoform
at younger age remains unclear (e.g., Bussy et al., 2019;
Cherbuin et al., 2007; Evans et al., 2020; Flowers &
Rebeck, 2020). Additionally, reductions in white matter
integrity (Heise et al., 2011) and changes in microstruc-
ture (Slattery et al., 2017; Westlye et al., 2012) have been
reported in APOE4-carriers but again not consistently
(e.g., Evans et al., 2020). Whether APOE4 affects synap-
tic and GABAergic function in humans is also unclear,
due in part to the difficulty in dissociating even low-
level AD pathological load (e.g., Kanekiyo et al., 2014).
Some evidence suggests that APOE4 is associated
with dysregulation of the synaptic proteome (Hesse
et al., 2019), excitatory and inhibitory synapse number
(Koffie et al., 2012; Kurucu et al., 2021), possible loss of
GABA-synthesising enzymes (Grouselle et al., 1998) and
elevated APOE4 fragmentation (Huang et al., 2001) in
the post-mortem AD patient brain. Further, poorer
neurological outcomes for APOE4-carriers after trau-
matic brain injury (TBI) are consistent with findings
reported in animal models (e.g., Buttini et al.,
1999, 2010; White et al., 2001), although again between
studies results vary (e.g., Kassam et al., 2016; Lawrence
et al., 2015).

Overall, an expansive set of literature suggests that
ApoE4 disrupts neuronal development and maintenance
in an age-dependent manner, which appears to push cells
towards a degeneration-prone state and is accelerated by
exogenous stressors. This likely involves impaired
GABAergic signalling, altered ApoE availability, toxic
fragmentation, mitochondrial dysfunction and microtu-
bule dynamics. While neurodegeneration is likely conse-
quent to APOE4 disrupting other cellular processes (Hits
2 to 8), we posit that APOE4 also uniquely contributes to
disrupting neuronal integrity via overlapping pathways
within a multihit hypothesis.
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3 | HIT 2: NEUROVASCULAR
DYSFUNCTION

Neuronal circuitry is reliant on the provision of adequate
blood supply to meet its high metabolic demands. This
delivery and facilitation is mediated via the process of
neurovascular coupling (Hall et al., 2014; Iadecola, 2017),
whereby active neurons signal to dilate local blood ves-
sels. Increasingly, compromised brain perfusion, neuro-
vascular coupling and blood–brain barrier (BBB)
integrity are observed as key pathological features of dis-
ease progression in multiple neurodegenerative condi-
tions, including LOAD (Bell & Zlokovic, 2009;
Erickson & Banks, 2013; Huang et al., 2020). Addition-
ally, vascular damage may be induced by both acute and
chronic activation of the neuroinflammatory and oxida-
tive stress response, driving neurodegeneration and
poorer outcomes during ageing (Cechetto et al., 2008;
Grammas, 2011; Zhang & Jiang, 2014). APOE4 is a risk
factor for peripheral cardiovascular complications (Belloy
et al., 2019; Lahoz et al., 2001) alongside having a direct
impact on the structural and functional integrity of the
BBB in clinical populations. Preclinical studies have
started to untangle the mechanisms through which
APOE4 impacts the structure and function of the cerebral
vasculature, which we review here.

3.1 | APOE4 disrupts microvascular
integrity and induces BBB degeneration

The maintenance of the BBB is vital for protecting the
brain from toxic blood-borne molecules while supplying
it with required nutrients and clearing waste products. It
comprises a semipermeable border of capillary endothe-
lial cells, pericytes and astrocyte endfeet that allow for
regulation and movement of molecules, ions and cells
between the blood, CSF and central nervous system
(Zlokovic, 2008). Ageing and disease can reduce BBB
integrity and nutrient transporters, including GLUT1
(glucose transporter 1) and tight junction proteins such
as ZO-1 (Zonula Occludens 1; Sweeney et al., 2018;
Montagne et al., 2021).

APOE4 appears to contribute to both developmental
and age-dependent microvascular and BBB defects.
E4-TR mice exhibit decreased microvascular length and
density, as well as BBB degeneration from 2 weeks of age
linearly declining across lifespan and precedes gross neu-
rodegeneration (Bell et al., 2012; Koizumi et al., 2018;
Montagne et al., 2021). Enhanced BBB permeability and
a consequent infiltration of blood-borne proteins
(e.g., haemosiderin; Bell et al., 2012) in APOE4 mouse
models are likely linked to loss of tight junction and

basement membrane proteins, critical for regulating BBB
permeability (Alata et al., 2015; Montagne et al., 2021).
Similarly, BBB degeneration has been observed in APOE-
knock-out (APOE-KO) mice (Soto et al., 2015) or at late
age in E4-TR mice with cerebral Aβ challenge (Hawkes
et al., 2012). Thus, there is evidence of life-long, progres-
sive BBB degeneration linked to APOE4, which may be
mechanistically driven by a loss of function.

Inflammatory mechanisms are thought to be the pri-
mary pathways through which APOE4 disrupts vascular
and BBB integrity. In pericytes in vitro, APOE4 expres-
sion and calcineurin-nuclear factor of activated T cells
(NFAT) signalling are both specifically upregulated, lead-
ing to pericyte degeneration (as illustrated in Figure 2,
Path A) and cerebral amyloid angiopathy. Critically, cere-
bral amyloid angiopathy, and both NFAT and APOE4
upregulation in pericytes, were rescued by calcineurin
inhibition via the shared Cyclophilin A (CypA) inhibitor,
cyclosporine (Blanchard et al., 2020). Upregulated cal-
cineurin activity in E4-TR mice has also been linked to
dendritic abnormalities (Section 1; Neustadtl et al., 2017),
suggesting a possible conserved target in vascular and
neuronal degeneration.

Degeneration of the BBB observed in E4-TR mice has
been attributed to pro-inflammatory CypA activating an
NF-ĸB-dependent (nuclear factor kappa-light-chain-
enhancer of activated B cells) pathway, culminating in
elevation of matrix metalloproteinases (MMP) 9 in brain
microvessels (Bell et al., 2012; Montagne et al., 2021).
ApoE3 is thought to signal via its receptor, LRP1 (LDLR-
related protein-1) to suppress the NF-ĸB pathway,
whereas ApoE4 was shown to exhibit reduced LRP1
binding in pericytes and thus reduced pathway suppres-
sion (Bell et al., 2012). The failure to suppress CypA
inflammatory activation in brain microvessels correlates
with tight junction degeneration and subsequent neu-
rodegeneration in ageing E4-TR mice, which is partially
rescued by CypA inhibition (Montagne et al., 2021). This
provides compelling evidence that ApoE4 loss of function
promotes an inflammatory cascade of neurovascular
degeneration (Montagne et al., 2021; Main et al., 2018;
Figure 2, Path B).

3.2 | APOE4 impairs neurovascular
function

Another key function of the cerebral microvasculature is
the control of blood flow, to match energy supply with
demand. This is achieved through the coordinated
responses of pericytes and smooth muscle to signals from
active neurons and astrocytes to spread dilation signals
through the endothelium (Howarth et al., 2021). As
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APOE4 impairs BBB integrity and microvascular density
(see Section 3.1), it might be expected that cerebral blood
flow and volume (CBF and CBV, respectively) would also
be impacted by APOE isoform.

However, there is some conflict in the effect of
APOE4 in the extent and age of onset for changes in basal
or stimulus-evoked CBF/CBV. Reductions in CBF in
APOE4 mouse models have been reported across the
lifespan, from as early as 2 weeks (Bell et al., 2012), to
adult maturity (Koizumi et al., 2018) and late age,
although it is unclear whether these late changes vary by
brain region (Montagne et al., 2021; Wiesmann
et al., 2016; Zerbi et al., 2014). Additionally, evidence is
more equivocal in APOE4 mouse models at mid age, with

demonstrations of a decrease (Bell et al., 2012) or no iso-
form differences (Wiesmann et al., 2016; Zerbi
et al., 2014). Interestingly, more subtle changes were
reported in a recent preprint, including decreased arteri-
ole vasomotion and responsivity to sensory stimulation in
young to mid-aged E4-TR mice (Bonnar et al., 2021, Pre-
print). Finally, one study also demonstrated enhanced
CBV in the entorhinal cortex of late-age E4-TR mice,
associated with neuronal hyperactivity, highlighting a
complication in dissociating the effects of APOE4 on neu-
ronal and neurovascular function (Nuriel, Angulo,
et al., 2017). This evidence suggests that APOE4 may be
associated with subtle early life impairments in vascular
function while more global changes emerge at late age.

F I GURE 2 ApoE4 drives neurovascular impairment. Path A: Increased NFAT drives APOE expression in pericytes, ultimately resulting

in the accumulation of ApoE within pericytes, promoting pericyte degeneration. Path B: A reduced ability of ApoE4 to associate with LRP

results in impaired suppression of CypA activity. Disinhibited CypA drives MMP9 activity through an NF-kB dependant pathway. Elevated

MMP9 activity has been directly linked to decreased microvascular length and degeneration of the blood brain barrier. Combined, these

pathways represent significantly reduced maintenance of both the wider neurovascular system and result in a ‘leaky BBB’ phenotype. This
leaky BBB in turn causes an increase in blood born proteins in the CSF, increasing neuroinflammation and oxidative stress. In addition, net

cerebral blood flow and volume reductions have been observed likely linked to impaired oxidative responsivity and microvascular integrity

Abbreviations: ApoE4, apolipoprotein E4; BBB, blood brain barrier; CNS, central nervous system; CSF, cerebrospinal fluid; CypA,

cyclophilin A; LRP, low-density lipoprotein receptor; MMP9, matrix metalloproteinase 9; NFAT, nuclear factor of activated T cells; NF-kB,

nuclear factor kappa B. Created with BioRender.com
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APOE4 may induce reductions in CBF/CBV by
increasing oxidative stress leading to endothelial dysfunc-
tion, rather than aberrant neuronal activity or
vasodilatory responsivity, with CBF rescue achieved with
an ROS scavenger in vivo (Koizumi et al., 2018). Further,
recent evidence has shown a strong correlation between
reductions in capillary length and reduced CBF in old-
aged E4-TR mice, independent of Aβ deposition. This
suggests a link between APOE4-induced microvascular
loss and subsequent ineffective CBF regulation
(Montagne et al., 2021). However, it is unclear what may
drive discrepancies in the effect of APOE4 on CBF/CBV
at mid-age and further lifespan characterisation is
needed. Finally, E4-TR mice exhibited impaired recovery
of neurovascular, cognitive and myelination deficits fol-
lowing hypoperfusive injury, indicating an interaction
between APOE4 and severity of neurovascular insult
(Koizumi et al., 2018).

Evidence from human studies appears to support
these observations. Firstly, multiple reports highlight
reductions in regional CBF in APOE4-carriers
(e.g., Filippini et al., 2011; Rhea et al., 2020;
Thambisetty et al., 2010). However, debate surrounding
potential age-related compensation in cerebrovascular
reactivity is ongoing (e.g., Tai et al., 2016; Trachtenberg
et al., 2012). Additionally, recent evidence linked ele-
vated BBB permeability in the hippocampal complex to
exacerbated cognitive decline in older APOE4-carriers.
This association proved independent of Aβ and tau
accumulation, supporting a plausible interspecies con-
servation of BBB disruption by APOE4 (Montagne
et al., 2020). Further, elevated CSF levels of the putative
pericyte marker sPDGFRβ correlate with cognitive
decline in APOE4 but not E3-carriers, suggesting that
degenerative loss of pericytes is a conserved early patho-
logical event independent of pre-existing AD pathology
(Montagne et al., 2020; Nation et al., 2019). Strikingly,
neurovascular aberrations have been noted as some of
the earliest to emerge during the development of LOAD
(Iturria-Medina et al., 2016), highlighting the impor-
tance in identifying neurovascular phenotypes associ-
ated with APOE4.

Together this evidence places neurovascular dysfunc-
tion as a central hit of the multihit hypothesis. This dys-
function appears early, with life-long BBB degeneration
which appears driven by pro-inflammatory action within
the vasculature. Additionally, while APOE4-associated
BBB degeneration and neurovascular coupling likely
interact (Figure 2, Path B), impairments in ROS handling
and hypoxic stress sensitivity may contribute to disrup-
tions of the haemodynamic response and warrants fur-
ther investigation.

4 | HIT 3: NEUROINFLAMMATION

Pro- and anti-inflammatory signalling and activation of
glia are critical components of the immune response
within the CNS, playing important roles in responding to
pathogenic stimuli. These responses mediate both neuro-
nal apoptotic and phagocytic processes, as well as repara-
tive roles of glia. The delicate balance of these processes
is crucial for normal immune function, while dys-
regulation is associated with multiple neurodegenerative
disorders (Schain & Kreisl, 2017; Shabab et al., 2016).
Evidence has outlined multiple roles for APOE in regulat-
ing immune responses under basal and immune-
stimulated conditions in both the periphery and CNS
(Kloske & Wilcock, 2020). This section of the review will
focus on the evidence of isoform-dependent effects of
APOE on immune function, its associated pathways and
consequences for normal CNS function.

4.1 | APOE4 impacts the homeostatic
control of the inflammatory state

The role of ApoE in the regulation of immune responses
is generally thought to involve anti-inflammatory action
via suppression of pro-inflammatory signalling pathways
(Figure 2, Path B and Figure 3, Path A). ApoE4, however,
demonstrates a loss of anti-inflammatory function. Spe-
cifically, ApoE4 fails to suppress the basal activation of
macrophages and microglia and the response to pro-
inflammatory stimuli including lipopolysaccharide,
resulting in stimulation of JNK (c-Jun N-terminal
kinase), p38 MAPK (p38 mitogen activated protein
kinase) (Maezawa, Nivison, et al., 2006; Cash et al., 2012)
and NF-ĸB signalling (Jofre-Monseny et al., 2007). Subse-
quently, ApoE4 promotes upregulation of pro-
inflammatory cytokines, nitric oxide (NO) release and
macrophage cell death in vitro (Brown et al., 2002;
Colton et al., 2002, 2004; Grainger et al., 2004; Jofre-
Monseny et al., 2007; Laskowitz et al., 2001; Lynch
et al., 2003, 2005; Pocivavsek, Burns, & Rebeck, 2009;
Zhu et al., 2010). ApoE4 was also associated with oppos-
ing cell-specific effects in pro-inflammatory cytokine
release, increasing in microglia and decreasing in astro-
cytes (Maezawa, Maeda, et al., 2006; Maezawa, Nivison,
et al., 2006). Similarly, in APOE4 and APOE-KO mouse
models, increased pro-inflammatory cytokine release,
NF-ĸB signalling and astrogliosis are observed across
age and may precede neurodegeneration (Maezawa,
Nivison, et al., 2006; Maezawa, Zaja-Milatovic, et al.,
2006; Ophir et al., 2005; Vitek et al., 2009; Yin
et al., 2011; Zhu et al., 2012).
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Impaired action of ApoE4 at LDL family receptors,
particularly LRP1, appears primarily responsible for the
loss of anti-inflammatory signalling (Figure 3, Path A,
Baitsch et al., 2011; Laskowitz et al., 2001; Lynch
et al., 2005; Maezawa, Nivison, et al., 2006; Mikhailenko,
et al., 2009; Pocivavsek, Burns, & Rebeck, 2009;
Pocivavsek, Vitek et al., 2009; Zhu et al., 2010). Moreover,
agonism of PPARɣ/COX2 (peroxisome proliferator-
activated receptor gamma; cyclooxygenase 2), indirectly
inhibiting NF-ĸB, rescued abnormal ApoE4 cellular dis-
tribution and dendritic degeneration in adult E4-TR mice
(DiBattista et al., 2016). This may point to a mechanistic
bridge between chronic dysregulation of a pro-

inflammatory NF-ĸB pathway, ApoE4 somal sequestra-
tion and aberrant neuronal morphology.

An alternate mechanism may exist via activation of
lipid-sensitive inflammatory pathways. Cholesterol accu-
mulation in lipid rafts is crucial for toll-like receptor
(TLR) inflammatory signalling, converging on activation
of NF-ĸB (Fessler & Parks, 2011; Gale et al., 2014; Ito
et al., 2015; Zhu et al., 2010). Additionally, nuclear liver/
retinoid X receptors normally suppress NF-ĸB transcrip-
tion and can upregulate both ApoE and ABCA1 expres-
sion upon lipid loading to promote lipid efflux
(Geyeregger et al., 2006; Liang et al., 2004; Yassine &
Finch, 2020). However, ApoE4 impairs cholesterol efflux

F I GURE 3 An elevated pro-inflammatory state is caused by ApoE4. Path A: ApoE4 fails to suppress pro-inflammatory activation via a

loss of activation of LDLR/LRP family signalling, resulting in chronic activation of JNK and P38 culminating in activation of the NF-kB

pathway, driving the release of pro-inflammatory factors such as TNFa, while reducing anti-inflammatory cytokine release. ApoE also

interacts with TREM2 to induce a phagocytic state, although the isoform interaction is unclear. Path B: ApoE4 drives activation of lipid-

sensitive inflammatory pathways. L/RXR can supress NF-kB activation, while promoting lipid efflux via increasing APOE and ABCA1

expression upon lipid loading. ApoE4 impairs lipid efflux and excessive lipid accumulation may subsequently increase activation of

inflammatory factors including NF-kB. TLR signalling is similarly sensitive to lipid loading, with the net effect being elevated NF-kB.

Impaired lipid trafficking likely mediated in part by endosomal accumulation as discussed in hit 5 of the review. These imbalances result in

an overall pro-inflammatory state that is also associated with aberrant glial behaviour including reduced clearance of cellular debris and

microglia entering an aberrant amoeboid state. Abbreviations: ABCA1, adenosine triphosphate (ATP)-binding membrane cassette

transporter A1; ApoE4, apolipoprotein E4; JNK, c-Jun N-terminal kinase; L/RXR, liver/retinoid X receptors; LRP, low-density lipoprotein

receptor-related protein; NF-kB, nuclear factor kappa B; TLR, toll-like receptor; TREM2, triggering receptor expressed on myeloid cells

2. Created with BioRender.com
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(Lin et al., 2018; Okoro et al., 2012; Rebeck, 2017) which
may therefore indirectly contribute to enhanced inflam-
matory NF-ĸB activation. Thus, ApoE4 may contribute to
toxic feedback via loss of function in acute inflammatory
suppression (Figure 3, Path A) and activation of lipid-
sensitive inflammatory responses (Figure 3, Path B; see
Section 7.2).

4.2 | APOE4 causes dysfunctional
immune cell behaviour

In addition to altering acute inflammatory signalling,
APOE4 is associated with abnormal immune cell behav-
iour. APOE4-expressing macrophages and microglia
exhibit impaired migration, phagocytosis and clearance
of cellular debris including Aβ, increased amoeboid struc-
ture and enhanced risk of cell death and promote neuro-
toxicity (Cash et al., 2012; Cudaback et al., 2015;
Grainger et al., 2004; Lin et al., 2018; Muth et al., 2019;
Vitek et al., 2009). APOE4 also appears to impair astrocytic
support for neurite regrowth (Maezawa, Maeda, et al.,
2006). Recent evidence further suggests that ApoE4
undergoes differential post-translational modifications in
astroglia, with impaired ApoE4 secretion from microglia
following TLR stimulation. This suggests that impaired
ApoE4 circulation may contribute to deficient immuno-
modulation (Figure 3, Path A; Lanfranco et al., 2021;
Rebeck, 2017). Thus, ApoE4 impairs normal astroglial
behaviour including debris clearance and phagocytosis
while impairing support for neuronal repair from inflam-
matory damage.

4.3 | APOE interacts with TREM2 and
regulates disease-associated microglial
state

APOE has also been specifically linked to regulation of
the disease/damage-associated microglia (DAM) state.
DAM activation is regulated by the triggering receptor on
myeloid cells 2 (TREM2) receptor, subsequent ApoE
upregulation and activation of a ‘DAM state’ transcrip-
tional response (Castranio et al., 2017; Keren-Shaul
et al., 2017; Kloske & Wilcock, 2020; Krasemann
et al., 2017; Tay et al., 2018). Loss of APOE or TREM2 in
microglia reduces neuronal apoptosis in injury models,
although it is unclear whether this interaction is depen-
dent on APOE isoform (Atagi et al., 2015; Bailey
et al., 2015; Kloske & Wilcock, 2020; Wolfe et al., 2019).
For example, ApoE4 potentiated signalling downstream
of TREM2, without a consequent change in phagocytic
activity in vitro (Yao et al., 2019), while transcriptomic

studies show discrepancies in the relationship between
APOE4 and TREM2 (Lin et al., 2018; Shi & Holtzman,
2018; J. Zhao et al., 2020). However, lipid metabolism
may link APOE and TREM2 function, as loss of either
gene (Damisah et al., 2020; Nugent et al., 2020) or expres-
sion of APOE4 (Lin et al., 2018) results in increased glial
cholesterol accumulation, including following injury.
These data highlight that there may be an indirect effect
of ApoE4 on TREM2 signalling to support neuronal
repair via lipid efflux, but the mechanistic underpinning
remains unresolved.

There is evidence for an immunomodulatory role of
APOE in human studies, with APOE4-carrier AD-patients
exhibiting elevated gliosis in post-mortem brain tissue
and shifts in expression of microglial markers
(Egensperger et al., 1998; Jofre-Monseny et al., 2008;
Minett et al., 2016; Tai et al., 2015; Tzioras et al., 2019).
Further, peripheral inflammatory studies similarly sug-
gest a pro-inflammatory influence of APOE4, although
debate remains over the definition and the consequences
of ‘inflammatory profile phenotypes’ (Gale et al., 2014;
Tai et al., 2015). One key limitation is the debated
animal-to-human translatability of glial transcriptional
signatures such as DAM state (Serrano-Pozo et al., 2021;
Srinivasan et al., 2020). Such pathways require thorough
investigation using a combination of human and preclini-
cal models to assess conservation of APOE-dependent
immunoregulation.

In summary, ApoE has a complex role in modulating
immune homeostasis and neuroinflammation,
summarised in Figure 3. ApoE4 displays loss of anti-
inflammatory function, likely via impaired receptor-
mediated signalling, and promotes inflammatory glial cell
behaviour via common regulatory targets such as NF-ĸB.
Additionally, an APOE-TREM2 pathway regulates the
microglial DAM state and phagocytic microglial activity,
although an APOE isoform-specific role is unclear.
Ultimately, APOE4 disruption of immunomodulation
represents a pivotal hit of the multihit hypothesis, in
which chronic immune stimulation may ‘set the stage’
for neuronal and neurovascular degeneration.

5 | HIT 4: OXIDATIVE STRESS

Oxidative stress occurs when the production of oxidants
outweighs the antioxidant defence system of the cell.
Overproduction of reactive oxygen species (ROS) and
nitrogen species can lead to extensive oxidation of bio-
molecules including lipids, proteins and DNA. The brain
is particularly vulnerable to oxidative damage as it is rich
in highly oxidizable lipids and has a high oxygen
consumption rate alongside relatively low levels of
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antioxidants (Salim, 2017). ApoE has been linked to the
oxidative stress lifecycle (Butterfield & Mattson, 2020),
and evidence for an APOE isoform-specific role in oxida-
tive stress as a hit to cellular function will be discussed.

5.1 | APOE4 alters basal and induced
antioxidant responses

Firstly, evidence from multiple in vitro studies suggests
that ApoE4 regulates the oxidative stress response.
ApoE4 expression or acute application causes an
upregulation of NO and subsequent cell death in neuro-
nal cell lines compared with ApoE3 (Dose et al., 2016;
Miyata & Smith, 1996; Pocernich et al., 2004), while no
effect was observed in macrophages (Jofre-Monseny
et al., 2007, 2008). ApoE4 may interact with sex in
effecting oxidative stress, with elevated NO only in male

E4-TR-derived macrophages but comparable NO eleva-
tion of E4-TR microglia (Brown et al., 2002). Further,
proteomic profiling in female E4-TR synaptosomes rev-
ealed a reduction in oxidative stress response proteins
including SOD (Superoxide dismutase) and HSP (heat-
shock protein) families, which was greater in synapto-
somal than somal compartment mitochondria (Shi
et al., 2014).

In vivo evidence also suggests that basal antioxidant
protein levels are reduced by APOE4, with E4-TR mice
demonstrating downregulation of cortical and hippocam-
pal anti-oxidative proteins including nuclear factor ery-
throid 2-related factor 2, thioredoxin (Persson
et al., 2017), SOD2, cytochrome oxidase 4 (COXIV) and
glutathione levels suggesting a global enhancement of
oxidative stress (Figure 4, Path A; Shi et al., 2014). Some
effects were also exacerbated in female E4-TR mice, again
suggesting sex-dependent modulation of oxidative risk

F I GURE 4 ApoE4 associated oxidative stress. Path A: The presence of APOE4 impairs the basal expression of antioxidant proteins such

as SOD, HSP, TRX1 and COXIV and may impair ability to buffer oxidative challenge. Path B: ApoE4 exhibits a reduced affinity for reactive

oxygen species and lipid peroxidation byproducts, likely due to a decreased number of ROS binding cysteine residues relative to that of

ApoE2 and ApoE3. Combined, these pathways result in elevated ROS accumulation causing lipid peroxidation enhanced oxidative toxicity,

ultimately increasing susceptibility to cell death. Abbreviations: ApoE4, apolipoprotein E4; COXIV, cytochrome oxidase subunit 4; HSP, heat

shock protein; SOD, superoxide dismutase; TRX, thioredoxin; ROS, reactive oxygen species. Created with BioRender.com
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(Shi et al., 2014). In contrast, responses to environmental
oxidative challenge are more mixed. Reductions in TBI-
induced SOD2 expression were reported in E4-TR mice
(Ferguson et al., 2010). Paradoxically, however, multiple
studies show environmental oxidative challenge elicits
and enhanced redox protein response, decreased
astrogliosis, synaptic integrity and attenuated memory
impairment in E4-TR mice (Basaure et al., 2018; Jiang
et al., 2019; Peris-Sampedro et al., 2015; Villasana
et al., 2016; Yeiser et al., 2013), although with some
inconsistency (Basaure et al., 2019).

These data suggest that APOE4 downregulates critical
antioxidant proteins likely in multiple cell types
(Figure 4, Path A). However, conflicting evidence sur-
rounding the effect of APOE4 on the response to oxida-
tive challenge may hint at a potential compensatory
mechanism for basal impairments in ROS handling capa-
bilities (Persson et al., 2017; Shea et al., 2002).

5.2 | ApoE4 structure confers reduced
intrinsic antioxidant function

Aside from altering the basal and stress-induced antioxi-
dant responses, ApoE may also impact oxidative stress
via its own intrinsic antioxidant activity. An early obser-
vation that APOE-KO mice had increased lipid peroxida-
tion linked ApoE to oxidative resistance (Hayek
et al., 1994), and further studies have investigated the
antioxidant potential of individual isoforms. ApoE
protected against hydrogen peroxide cytotoxicity and
showed antioxidant activity in the order
ApoE2 > ApoE3 > ApoE4 (Figure 4, Path B; Jolivalt
et al., 2000; Miyata & Smith, 1996). How exactly ApoE
exerts its direct antioxidant effects remains unclear,
although there are several proposed mechanisms. One
such mechanism is through the binding and sequestra-
tion of metals, with ApoE4 having the lowest efficiency
for inhibition of copper-mediated lipoprotein oxidation
(Miyata & Smith, 1996). ApoE may also act directly as an
ROS scavenger. 4-hydroxynonenal (HNE) is a by-product
of lipid peroxidation which can cross-link more effec-
tively with ApoE3 than ApoE, with HNE cross-linking
protecting against cell death (Jiang et al., 2019; Montine
et al., 1996; Pedersen et al., 2000). Further, direct oxida-
tive modifications to ApoE can decrease its hydrophobic-
ity and reduce binding efficacy to phospholipids,
indicating that both physiological structure and function
of ApoE would be affected by oxidation (Jolivalt
et al., 2000). All APOE isoforms possess potential antioxi-
dant activity, owing to possession of seven methionine
residues open to oxidation (Levine et al., 1999), particu-
larly within the receptor binding domain (Pham

et al., 2005). However, the increased cysteine residues
because of the corresponding allelic SNP sites in ApoE2
and ApoE3 may confer ApoE4 with poorer antioxidant
capacity (Figure 4, Path B; Jolivalt et al., 2000; Miyata &
Smith, 1996; Pham et al., 2005).

Reductions in multiple antioxidant proteins, includ-
ing SOD and glutathione peroxidase, have also been
noted in APOE4-carrier brain tissue from mixed AD, MCI
and healthy patient cohorts (Kharrazi et al., 2008;
Ramassamy et al., 2000; Yin et al., 2020), alongside
enhanced lipid peroxidation (Jofre-Monseny et al., 2008;
Ramassamy et al., 2000). Post-mortem cortical tissue from
APOE4-carrier AD patients also showed dysregulation of
multiple antioxidant and mitochondrial function genes,
alongside lipid homeostasis and inflammatory pathways
including NF-ĸB (Caberlotto et al., 2016). Further, a coop-
erative enhanced risk of AD diagnosis has been shown in
APOE4 carriers possessing mutations within genes
involved in the oxidative stress response, including the
uncoupling protein family (UCPs, Montesanto et al.,
2016; Butterfield & Mattson, 2020). This suggests that
APOE4 may similarly impair antioxidant protein levels
and induce dysregulation of interconnected inflammatory
and oxidative stress pathways as observed in preclinical
systems. However, more research is needed to establish
the extent of oxidative stress load conferred by APOE4
across the lifespan.

Overall, accumulating evidence supports a role of
ApoE4 in oxidative stress and increasing vulnerability to
cellular lipid peroxidation. ApoE4 may act both directly
by sequestering oxidative derivatives and indirectly
through altering activity of endogenous antioxidant sys-
tems. However, discrepancies in the literature remain
unexplained and appear modulated by both sex and oxi-
dative challenge. Therefore, further work is needed to
understand these complex interactions and interplay with
other cellular hits. For example, ApoE4 elevation of
inflammatory NF-ĸB is a redox-sensitive transcription
factor, while oxidative stress can accumulate as a by-
product of respiratory dysfunction (Hit 6; Dose
et al., 2016; Singh et al., 2019).

6 | HIT 5: ENDOSOMAL
TRAFFICKING IMPAIRMENTS

Endosomal trafficking in the CNS facilitates receptor
recycling, processing of neurotoxic protein fragments and
the integration of phospholipids amongst other functions
(Elkin et al., 2016). When ApoE binds to its receptor,
ApoER2, the resulting complex is endocytosed into an
early endosome where sorting is thought to occur (Jovic
et al., 2010), before the receptor complex is recycled. This
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recycling is necessary to maintain levels of ApoER2 on
the cell surface for further activation and threatens a
cycle of impaired signalling when disrupted.

Recent evidence suggests that ApoE4 disrupts
endosomal trafficking within the CNS, with predominant
mechanisms thought to involve changes in endosomal
pH (Figure 5). The additional Arginine in ApoE4 (Arg-
112) relative to ApoE3 raises its isoelectric point from 6.1
to 6.4. The isoelectric point of ApoE4 is thus closer to the
pH of the early endosome (Xian et al., 2018), increasing
the propensity of internalised ApoE4 to deform into a
‘molten globule’ state (Morrow et al., 2002). This state
then prevents the efficient recycling of ApoE receptor
complexes evidenced by the reduced surface expression

of ApoER2 with ApoE4 (Chen et al., 2010; Feng et al.,
2020; Xian et al., 2018). The reduction in surface ApoER2
consequently limits the ability of its alternative ligand,
Reelin, to enhance long-term potentiation of excitatory
synaptic transmission (Chen et al., 2010). Surface expres-
sion of other membrane receptors, important for pro-
cesses including cell signalling and synaptic transmission
(Figure 5, path A), is also reported to be directly impaired
by ApoE4-mediated endosomal trafficking defects. Specif-
ically, surface levels of both AMPAR (α-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor)
and NMDARs (N-methyl-D-aspartate receptor) are
reduced rapidly following exposure to ApoE4 (Chen
et al., 2010), while total levels of these protein levels are

F I GURE 5 ApoE4 impairs endosomal trafficking. In both neurons and astrocytes, normal endosomal trafficking is stalled by

accumulation of ApoE4 in endosomes, preventing not only their recycling but also the surface expression of multiple receptors including

AMPAR, NMDAR, IR, APOER and ABCA1. However, cell-specific differences are evident as described below; Path A: In neurons,

endosomal pH is thought to be close to the altered isoelectric point of ApoE4 resulting in denaturation to a molten globule state promoting

subsequent accumulation. Path B: In astrocytes, excessive HDAC4 activity prevents expression of the Na+/H + exchanger NHE6, lowering

the endosomal pH and resulting in similar endosomal accumulation as seen in neurons. Inset box: Endosomal pH is regulated by the

opposing actions of Na+/H + exchangers and V-ATPases. Abbreviations: ABCA1, adenosine triphosphate binding cassette transporter A1;

AMPAR, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor; APOER, ApoE receptor; ApoE4, apolipoprotein E4; HDAC4,

histone deacetylase 4; IR, insulin receptor; NHE6, Na+/H + exchanger 6; NMDAR, N-methyl-D-aspartate receptor. Created with BioRender.

com
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unaffected. In addition to glutamatergic synaptic recep-
tors, neuronal insulin receptors (IR) (N. Zhao
et al., 2017), astrocytic ABCA1 receptor (Rawat
et al., 2019) and ApoER2 itself (Chen et al., 2010; Feng
et al., 2020; Xian et al., 2018) have all also been shown to
exhibit reduced surface expression levels when exposed
to ApoE4. Crucially, this suggests that ApoE4 can induce
a multifaceted disruption of cell signalling function and
subsequent intracellular trafficking.

Strategies to alleviate the ApoE4-mediated deficits in
endosomal trafficking have centred around altering early
endosome pH away from the isoelectric point of ApoE4
to prevent aggregation of ApoE4-receptor complexes
(Xian et al., 2018). Endosomal pH is regulated by the bal-
ance of pH lowering proton pumps and the pH raising
Na/H + exchangers (NHEs) (Figure 5, inset box;
Fuster & Alexander, 2014). NHE6 disruption has previ-
ously been shown to lower endosomal pH (Brett
et al., 2002), while proton pump inhibition is associated
with impaired lipid release from endosomes (Goldstein
et al., 1985). Targeted inhibition of NHE6 rescued surface
ApoER2 levels following ApoE4-mediated trapping,
while increasing endosomal pH impaired ApoER2 sur-
face trafficking, again illustrating the pH sensitivity of
the endosomal pathway and the inherent importance of
NHE6. It has been suggested that following aggregation,
ApoE4 would not travel past the early endosome where
NHE6 is predominantly localised. Crucially, it was also
noted that pharmacological rescue of normal endosomal
trafficking in ApoE4-treated neurons restored aberrant
surface expression of glutamatergic receptors and pur-
portedly relieved the previously described
ApoE4-mediated insensitivity of long-term potentiation
to Reelin (Xian et al., 2018).

Intriguingly, a conflicting study in the same year sug-
gests an alternate process operating in astrocytes raising
possible cell type-specific mechanisms. APOE4-
expressing cultured astrocytes had higher levels of the
histone deacetylase HDAC4, which was linked to signifi-
cantly reduced expression of NHE6 (Figure 5, Path B;
Prasad & Rao, 2018). Consequently, hyperacidification of
astrocytic endosomes was observed, leading to decreased
LRP1 surface expression and impaired Aβ clearance,
which proved rescuable by HDAC4 inhibition. Recent
evidence suggested that not only is endosomal acidifica-
tion able to restore receptor trafficking and synaptic defi-
cits but also improve Aβ clearance in brain sections from
E4-TR mice, linking Aβ-related and unrelated pathways
(Pohlkamp et al., 2021). These differences between find-
ings could be accounted for both by cell type-specific pro-
cesses (Wong, 2020) and different model systems (APOE
overexpressing astrocyte cultures vs tissue from APOE-
TR mice). However, combined these studies highlight the

importance of APOE isoform interactions with
endosomal compartments and highlight how subtle
manipulations to pH balance can alter trafficking effi-
ciency. It is likely that an optimal window exists for
endosomal pH and perturbation too far in either direc-
tion from this window can stall endosomal trafficking,
particularly in the case of ApoE4 (Prasad & Rao, 2018;
Xian et al., 2018). Interestingly, carnosic acid treatment
can reduce ApoE4-mediated receptor trafficking and
Reelin signalling defects pH-independently by promoting
cell surface LDLR localisation via sorting nexin 17 (Feng
et al., 2020; Stockinger et al., 2002).

Finally, ApoE4 has been suggested to perturb the for-
mation and secretion of exosomes, vesicles produced
from late-endocytic multivesicular bodies (Peng
et al., 2019). Exosomes are reported to be critical for cel-
lular clearance of TDP-43 (Iguchi et al., 2016), a patholog-
ical protein related to frontotemporal dementia (Tan
et al., 2015), and likely other forms of neurotoxic mate-
rial. This impairment in normal exosome trafficking thus
posits another risk to protein aggregation and cell death
(see Hit 1).

While the study of endosomal trafficking mechanisms
in humans is challenging due to technical limitations,
some studies provide supporting evidence for its involve-
ment in pathophysiology linked to APOE4. In post-
mortem brain tissue of AD patients, carrying one or two
copies of APOE4 was associated with endosomal enlarge-
ment, which preceded Aβ-associated neuropathology
(Cataldo et al., 2000). This may be due to the accumula-
tion of ApoE4 and subsequent stalling of the endosomal
recycling pathway (Nixon & Yang, 2011; Small
et al., 2017). Further, APOE4 was associated with
impaired endocytic trafficking in hiPSC-derived astro-
cytes, which proved rescuable with elevated expression of
PICALM, a modifier of APOE4-associated defects
(Narayan et al., 2020). Taken together, the limited
human-specific evidence should motivate further work to
establish the role of APOE4 in endosomal trafficking and
on the therapeutic efficacy of manipulating
endosomal pH.

ApoE4 driven impairments to endosomal trafficking
represent a significant factor in the multihit hypothesis
that may drive some of the other hits described in this
review. For example, surface receptor depletion will
result in deficits to synaptic transmission, insulin signal-
ling and lipoprotein trafficking (Hit 6). Subsequent intra-
cellular accumulation of receptors and ApoE will stall
the clearance of toxic Aβ fragments and cellular waste
and may increase neurodegenerative vulnerability (Hit
1). However, further work is needed to understand the
interactions between endosomal trafficking and other
APOE4-related cellular hits.
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7 | HIT 6: LIPID AND CELLULAR
METABOLISM DISRUPTION

The homeostatic regulation of cellular lipid content
and the metabolic processes underpinning cellular
respiratory pathways are critical to ensure the energetic
demands of the cellular environment are met (Martínez-
Reyes & Chandel, 2020). Glucose uptake and metabo-
lism, mitochondrial function and lipid homeostasis are
essential components of cellular health and allow the
maintenance of optimal concentrations of metabolic
respiratory precursors, ATP synthesis and supporting
cellular membrane synthesis, amongst many other func-
tions (Martínez-Reyes & Chandel, 2020; Reddy, 2009).
APOE is primarily implicated in lipoprotein trafficking

but has been demonstrated to play a role in each of
these cellular processes, with isoform specific differ-
ences. This section of the review will focus on the evi-
dence for these isoform disparities in lipid and cellular
metabolism.

7.1 | APOE4 disrupts normal glucose
metabolism

Preclinical evidence suggests that APOE isoform modu-
lates cerebral glucose uptake but with unclear direction-
ality. Reports of increased brain glucose uptake (Venzi
et al., 2017) are contradicted by decreased CNS-wide
glucose uptake following dietary/cognitive challenge

F I GURE 6 Metabolic dysfunction caused by ApoE4. Path A: ApoE4 impairs the activity of IDE, resulting in elevated extracellular

levels of insulin. This causes receptor internalisation, that is, exacerbated by the previously described endosomal trafficking defects and leads

to reduced surface expression of GLUT4 and impaired glucose uptake. This is likely exacerbated by reduced PPARy and GLUT4 expression,

associated with ApoE4. Path B: ApoE4 shifts the mitochondrial metabolome away from effective oxidative phosphorylation while promoting

intracellular lipid accumulation and lipid droplet formation through impaired lipid efflux. Path C: ApoE4 escaping the secretory pathway

within neurons undergo proteolytic fragmentation. ApoE4 fragments accumulate in the mitochondria and ER, impairing mitochondrial

complex function and inducing cellular toxicity. Abbreviations: ApoE4, apolipoprotein E4; GLUT4, glucose transporter 4; IDE, insulin

degrading enzyme; PPARy, peroxisome proliferator-activated receptor y.Created with BioRender.com
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(Johnson et al., 2019) or environmental stress in aged
E4-TR mice (Fang et al., 2021). Further, young E4-TR
mice demonstrated impaired brain glucose metabolic
rate which was rescuable with rapamycin treatment,
which also reduced CypA expression (Lin et al., 2017),
hinting at a potential conserved target between the
APOE4-mediated vascular impairment (Hit 2), neu-
roinflammation (Hit 3) and metabolic disruption (Hit 6).
Cell and region-specific glucose modulation may contrib-
ute to these conflicting observations, with some studies
demonstrating decreased glucose uptake specifically in
astrocytes (Williams et al., 2020; Zhong et al., 2009) or
neurons (Li et al., 2021) in vitro. While further investiga-
tion is needed, these studies trend towards an APOE4
decrease in glucose utilisation.

The mechanism by which APOE genotype modu-
lates glucose utilisation within the CNS is likely
insulin-mediated. Insulin is critical for promoting glu-
cose transport, metabolism and glycolysis (Petersen &
Shulman, 2018). Insulin is maintained at physiological
levels in part by the insulin degrading enzyme (IDE),
disruption of which leads to chronically elevated
insulin, receptor internalisation and insulin resistance
(Hulse et al., 2009; Petersen & Shulman, 2018). Neuro-
nal IDE expression was significantly impaired in the
presence of ApoE4 (Figure 6, path A; Du et al., 2009;
Keeney et al., 2015) or APOE-KO which was rescued by
ApoE3 but not ApoE4 exposure (Du et al., 2009). This
effect is likely mediated by an LDLR family dependent
signalling pathway. In E4-TR mice, LDLR family recep-
tors, as well as the insulin receptor itself (N. Zhao
et al., 2017), exhibit lower neuronal surface levels
due to ApoE4 disrupting endosomal trafficking (Hit 5;
Chen et al., 2010; Nuriel, Angulo, et al., 2017; Xian
et al., 2018). In addition, adult E4-TR female mice show
reduced expression of multiple genes involved in glu-
cose and insulin regulation including glucose trans-
porter 4 (GLUT4) and PPARɣ than their E3-TR
counterparts (Keeney et al., 2015). Combined, these
results suggest that ApoE4 has a complex but disruptive
relationship with glucose metabolism, likely via altered
glucose uptake and use caused by impaired insulin sig-
nalling (Figure 6, Path A). However, mixed evidence as
to the direction of these effects highlights the need for
further investigation and consideration of diet appears
an important factor (Yassine & Finch, 2020). Glucose
availability is critically linked to efficient mitochondrial
respiratory function (Section 7.3) and as such,
ApoE4-mediated disruptions of glucose availability may
subsequently exacerbate shifts in energy supply–demand
dynamics.

7.2 | APOE4 impairs lipid homeostasis
and metabolism

Intracellular lipid efflux, sequestration and accumulation
in the CNS are critically dependent on APOE isoform
(Flowers & Rebeck, 2020; Huang & Mahley, 2014).
In vitro evidence suggests that ApoE4 displays a reduced
affinity for phospholipids (Xu et al., 2004) and a reduced
lipidation state, which may be due to reduced affinity for
HDL, resulting in smaller lipid complexes in the CNS
(Hatters et al., 2006; Heinsinger et al., 2016; Hu
et al., 2015; Lanfranco et al., 2020; Rawat et al., 2019).
This shifts towards an unlipidated ApoE4 pool which is
more prone to aggregation and exhibits neurotoxicity,
particularly following fragmentation (Figure 6, Path C;
Flowers & Rebeck, 2020; Hatters et al., 2006; Hubin
et al., 2019; Raulin et al., 2019; Rawat et al., 2019). In
addition, ApoE4 appears to impact effective lipid han-
dling and efflux. ApoE4 increases cholesterol accumula-
tion and impairs lipid sensitivity in primary E4-TR or
APOE4 hIPSC-derived astrocytes (Larramona-Arcas
et al., 2020; Lin et al., 2018) and primary neurons (Gong
et al., 2007; Michikawa et al., 2000). This is likely
mediated by impaired cholesterol efflux (Figure 6, Path
B), although some contradiction is present with either
no difference or even an enhancement of cholesterol
efflux by ApoE4 observed dependent on cell type
(Lanfranco et al., 2020; Lee et al., 2021; Michikawa
et al., 2000). Structural analyses of ApoE4 have demon-
strated that the putative C-N domain interaction, the
amino terminal region or lack of self-dimerization rela-
tive to ApoE3 may all contribute a loss of lipid efflux
function (Flowers & Rebeck, 2020; Frieden et al., 2017;
Minagawa et al., 2009).

Further, intracellular lipid stores known as lipid drop-
lets are also implicated in ApoE4 metabolic dysfunction.
Lipid droplets serve as energy dense reserves for mem-
brane synthesis and metabolic processes including mito-
chondrial beta-oxidation (Walther & Farese, 2012;
Welte & Gould, 2017). However, excessive lipid droplet
formation has been associated with multiple neurodegen-
erative conditions, enhances the risk of insulin resistance
and can stimulate pro-inflammatory signalling such as
the complement cascade (Yin et al., 2019; Farmer
et al., 2020). Importantly, E4-TR astrocytes exhibit greater
lipid droplet number but smaller size following lipid-rich
challenge, alongside an increase in endogenous: exoge-
nous fatty acid oxidation (Farmer et al., 2019). Overall,
this evidence converges on a failure of ApoE4-mediated
glial lipid efflux, decreased lipoprotein complex size, lipid
sensitivity, and disrupted lipid storage. This predicts a
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multilevelled impairment of normal lipid handling and
delivery to neurons, while promoting lipid-sensitive pro-
inflammatory responses (Hit 3; Martínez-Martínez
et al., 2020; Rebeck, 2017).

7.3 | APOE4 induces mitochondrial
dysfunction

In conjunction with lipid homeostasis and glucose han-
dling, experimental evidence implicates APOE isoform in
mitochondrial dysfunction; similarly, a common target of
neurodegenerative disease (Cenini & Voos, 2019). The
association between ApoE and mitochondrial dysfunction
appears regulated both via its role in lipid homeostasis,
crucial for metabolite synthesis (Lanfranco et al., 2020;
Huang & Mahley, 2014), and via directly inducing mito-
chondrial toxicity (Huang & Mahley, 2014; Liu
et al., 2013). Indeed, transcriptional profiling studies in
various models demonstrate APOE4-mediated dys-
regulation of genes involved in cholesterol biosynthesis
(Zalocusky et al., 2021; J. Zhao et al., 2021), lipid transport
(Lin et al., 2018), the electron transport chain (Area-
Gomez et al., 2020; Nuriel, Angulo, et al., 2017) and oxida-
tive phosphorylation (Farmer et al., 2021). However,
recent metabolomic and respiratory function analyses are
more conflicted. Astrocytes from E4-TR mice exhibited
elevated lactate, decreased oxidative tricarboxylic acid
(TCA)-cycle activity (Williams et al., 2020) and decreased
exogenous fatty acid oxidation (Farmer et al., 2019). How-
ever, entorhinal cortex samples from aged E4-TR mice
instead showed increased oxidative phosphorylation,
decreased free fatty acids and an opposing sex-isoform
effects in state 3 respiration (Area-Gomez et al., 2020;
Nuriel, Peng, et al., 2017). Therefore, interactions between
sex hormones and ApoE4 may drive separable metabolic
profiles, with ApoE4 contributing to unstable respiratory
function in hyper or hypometabolic states (Arnold
et al., 2020; Farmer et al., 2019).

The effect of ApoE4 on mitochondrial function may
be mediated by mitochondrial toxicity and ER stress.
Neuronally expressed ApoE4 and its proteolytic frag-
ments (see Hit 1) escape the secretory pathway, accumu-
late at the mitochondria and ER and disrupt
mitochondrial complex function inducing neurotoxicity
(Brodbeck et al., 2011; Chang et al., 2005; Chen
et al., 2011; Nakamura et al., 2009; Figure 6, Path C).
Importantly, the complexity of ApoE4 fragmentation
extends beyond this and has been reviewed elsewhere
(Muñoz et al., 2018). ER stress also is elevated in E4-TR
mouse brains (Segev et al., 2013) and predominately in
astrocytes and macrophages in vitro (Brodbeck
et al., 2011; Cash et al., 2012; Zhong et al., 2009). Chronic

ER stress, including via calcium accumulation, activates
the unfolded protein response (UPR). The UPR can
reduce ER protein folding load by inhibiting global pro-
tein translation, but chronic activation can stimulate pro-
inflammatory signalling converging on NF-ĸB and apo-
ptosis (Dose et al., 2016). Interestingly, UPR activation
has been linked to ApoE4 expression in E4-TR mouse
brain (Zalocusky et al., 2021; N. Zhao et al., 2020) and
ApoE4 fragment accumulation in vitro (Zhong
et al., 2009), while in parallel ApoE4 may suppress global
translation via prolonged neuronal calcium influx
(Ramakrishna et al., 2021). Speculatively, ApoE4 may
converge on ER stress and mitochondrial dysfunction via
direct ApoE4 fragment accumulation and indirectly via
chronically elevated intracellular calcium levels (Hit 7).

Evidence for metabolic disturbance associated with
APOE4 in patient populations is growing. Disrupted
brain glucose metabolism has been reported in asymp-
tomatic young and old APOE4-carriers (Jagust & Landau,
2012; Reiman et al., 1996, 2004; Small et al., 1995) and is
associated with both LOAD and cognitive decline
(Arn�aiz et al., 2001; Dong et al., 2021; Ouchi et al., 1998).
While difficult to dissect, these findings may indicate
impaired glucose utilisation and consequent mitochon-
drial dysfunction. Additionally, case studies discussing
the consequences of an altered ApoE-insulin-glucose
axis are beginning to appear (Stoykovich and
Gibas, 2019), and insulin delivery has shown promise in
cognitive outcomes for APOE4 LOAD patients (Claxton
et al., 2013, 2015; Reger et al., 2006). Young female
APOE4-carriers may also exhibit impaired glucose oxi-
dation, hinting at an APOE4–sex interaction in energy
expenditure (Farmer et al., 2021). Finally, ApoE lipid
particle size in CSF is reportedly reduced in APOE4-
carriers (Heinsinger et al., 2016) alongside increased
fractions of lipid-depleted ApoE4 (Hanson et al., 2013)
supporting observations of impaired ApoE4 lipidation in
preclinical models.

Together evidence suggests a complex, multifaceted
role for ApoE4 in driving metabolic dysfunction at the
level of glucose metabolism, lipid handling and mito-
chondrial function. The effects of ApoE4 include
impaired lipid binding and efflux; shifts in glucose flux
and insulin signalling; defects in respiratory function,
mitochondrial and ER toxicity caused by ApoE4 fragmen-
tation; and possible UPR activation. Ultimately, these
events may impair the ability of the cell to effectively
respond to metabolic demands such as sustained synaptic
function, while increasing vulnerability to oxidative stress
(Hit 4) and chronic metabolic inefficiency. However, con-
flicts between studies around the effects of cell type, sex,
age and brain region remain unresolved and require
thorough investigation.
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8 | HIT 7: CALCIUM
DYSHOMEOSTASIS

Homeostatic control of cellular calcium levels is crucial
for regulating neuronal activity and a myriad of processes
including cell signalling cascades, organelle function and
gene expression (Foster, 2007; Lane-Donovan et al., 2014;
Lane-Donovan & Herz, 2017). Numerous studies have
implicated ApoE in the regulation of calcium homeosta-
sis, and here we review the evidence of an APOE
isoform-dependent effect on these processes.

Early observations demonstrated that the direct appli-
cation of full length or truncated ApoE to neuronal cells

resulted in an increase in intracellular calcium (Ohkubo
et al., 2001; Qiu et al., 2004; Tolar et al., 1999; Wang &
Gruenstein, 1997) and calcium bursting responses
(Konings et al., 2021). Further, ApoE4 specifically ele-
vated intracellular calcium levels relative to ApoE3 and
was shown to be likely mediated by ApoE receptor acti-
vation of L-type voltage gated calcium channels (VGCCs)
and NMDARs, which may involve prolonged calcium
influx dynamics (Ohkubo et al., 2001; Qiu et al., 2003;
Ramakrishna et al., 2021; Veinbergs et al., 2002; Figure 7,
Path A). Further, NMDAR-dependent accumulation of
intracellular calcium and induced cell death was also
shown to be exacerbated by injury in the presence of

F I GURE 7 ApoE4 mediated impaired calcium homeostasis. Path A: Elevated calcium influx through L-VGCCs and NMDARs results in

an elevated level of intracellular calcium. A Dab1/SFK mediated pathway downstream of ApoE binding to APOERs promotes NMDAR

mediated calcium influx. ApoE4 binding to LDLR/LRP family receptors upregulates MAPK signalling activation and is linked to activation

of cFos/CREB synaptogenic signalling which may be chronically dysregulated. Path B: In astrocytes ApoE4 has been shown to induce the

release of calcium from intracellular stores such as the mitochondria and endo/lysosomal compartments. The net effect of these pathways is

a prolonged increase in intracellular calcium concentration, calcium signalling and subsequent cell death. Abbreviations: APOER,

apolipoprotein E receptor; ApoE4, apolipoprotein E4; cFos, FBJ osteosarcoma oncogene; CREB, cyclic adenosine monophosphate (cAMP)

response element binding protein; Dab1, disabled 1; L-VGCCs, L type voltage gated calcium channels; LRP1, Lowdensity lipoprotein

receptor-related protein 1; MAPK, mitogen activated protein kinase; NMDAR, N-methyl-daspartate receptor; SFK, serine family kinases.

Created with BioRender.com
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APOE4 or APOE-KO but was rescued by APOE3 in vitro
(Jiang et al., 2015). This suggests that ApoE4 has
impaired ability to suppress both basal and injury
induced calcium accumulation.

A recent study also suggested that ApoE4 impaired
calcium homeostasis in astrocytes via an alternative
mechanism. Immortalised astrocytes from E4-TR mice
exhibited elevated spontaneous and ATP-induced intra-
cellular calcium levels, while in vivo male, but not
female, E4-TR astrocytes showed increased calcium event
frequency and amplitude (Larramona-Arcas et al., 2020).
Furthermore, elevated lysosomal vATPase (Vacuolar-type
ATPase) activity was associated with increased basal cal-
cium in APOE4-expressing astrocytes, indicating that
enhanced calcium efflux from organelle stores is another
likely mechanism (Larramona-Arcas et al., 2020;
Figure 7, Path B). This was also suggested to reflect
greater calcium accumulation in the endolysosomal com-
partments driven by ApoE4. Finally, whereas ApoE3 was
shown to increase astrocytic calcium influx in lipid-poor
conditions, ApoE4 retained enhanced calcium influx dur-
ing both lipid-rich and poor conditions, while increasing
perinuclear lysosome accumulation (Larramona-Arcas
et al., 2020).

While calcium dyshomeostasis is a persistent hypoth-
esis surrounding the aetiology of AD (Guan et al., 2021;
Magi et al., 2016; Puzianowska-Kuznicka &
Kuznicki, 2009), evidence for a direct association
between APOE isoform and calcium homeostasis in
humans is limited. A demonstration of elevated calcium
serum levels in APOE4-carriers, correlating with
impaired cognitive performance (Van Vliet et al., 2009),
supports a role for APOE4 in disrupting calcium homeo-
stasis. Aβ-dependent dysregulation of calcium homeosta-
sis has been linked to the induction of ER stress and cell
death in multiple models in vitro (Magi et al., 2016), but
there is growing interest in the amyloid-dependent role
of APOE in calcium homeostasis (Guan et al., 2021).
However, further investigation is needed during ageing
in both healthy and AD states to validate preclinical
findings.

In summary, calcium dysregulation is apparent across
cell types in the presence of ApoE4, largely thought to be
through VGCC and NMDAR mediated responses in neu-
rons while intracellular calcium stores appear perturbed
in astrocytes. Elevated intracellular calcium poses as
threat to general organelle function and enhances the
risk of cell death, thus forming another APOE4-
dependent hit. Future studies should replicate and
expand these findings to clarify the extent to which APOE
isoforms influence calcium accumulation across cell
types and the mechanisms that may underpin interac-
tions with lipid handling.

9 | HIT 8: ALTERED
TRANSCRIPTIONAL REGULATION

There is mounting evidence of APOE isoform specific
modulation of both direct and indirect transcriptional
regulation thus providing another hit to cellular function.
These pathways appear to be mediated by both calcium-
dependent and independent pathways, including a puta-
tive direct DNA binding role for APOE in mediating tran-
scriptional control.

9.1 | APOE4-associated transcriptomic
signatures

Transcriptomic studies are elucidating the extent to
which transcriptional dysregulation is induced by
APOE4. Both bulk brain tissue and single cell ribonucleic
acid (RNA) sequencing from E4-TR mice and hIPSC-
derived cells are converging on a dysregulated signature
of gene expression in multiple cellular pathways includ-
ing immune responses, synaptic function, metabolic
function, lysosomal processing and deoxyribonucleic acid
(DNA)/RNA processing (Lin et al., 2016; Nuriel, Peng,
et al., 2017; N. Zhao, et al., 2020). Levels of neuronal
APOE expression have isoform-independently been
correlated with a similar signature, specifically within
DG-CA1 pyramidal neurons and interneurons but not
astroglia (Zalocusky et al., 2021). Further, a conserved sig-
nature of dysregulated synaptic and immune function
genes in hIPSC-derived neurons and glia from both
APOE4-carrier AD and healthy patients correlated with
Aβ plaque density and clinical dementia score. Impor-
tantly, this may hint at an APOE4-specific transcriptomic
phenotype occurring prior to AD-pathology (Lin
et al., 2016). This evidence suggests not only that APOE4
modulates the transcriptomic signatures of numerous cel-
lular processes but that these processes may be directly
influenced as a function of the levels of neuronal APOE
expression itself.

9.2 | APOE4 influences calcium-sensitive
transcriptional control

APOE isoform has been further associated with dys-
regulation of calcium-dependent intracellular signalling
cascades involved in transcriptional regulation. Key signal-
ling proteins elevated downstream of ApoE-ApoER inter-
actions include ERK1/2, Akt (AKT serine/threonine
kinase 1), Src (SRC non-receptor tyrosine kinase) and
eEF2 (Eukaryotic elongation factor 2) (Huang
et al., 2017, 2019; Korwek et al., 2009; Ohkubo et al., 2001;
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Yong et al., 2014), although one study demonstrated an
ApoE4-dependent decrease in signalling activation (Hoe
et al., 2005). These proteins are central regulators of the
activity-dependent transcription response and are involved
in downstream synaptogenic signalling. Recent in vitro
evidence in hIPSC-derived neurons also provided direct
evidence for ApoE4-ApoER-mediated potentiation of a
Fos/CREB synaptogenic signalling pathway (see also Hit
1), although the physiological relevance of this is unclear
(Huang et al., 2017, 2019). Intriguingly, one study
suggested that ageing may interact with APOE4 and sig-
nalling, with an initial upregulation during adulthood
(including pCREB and pERK) before pathological down-
regulation in old age in female E4-TR mice (Yong
et al., 2014).

The mechanisms underpinning these perturbations in
signalling may fall downstream of elevated intracellular
calcium influx by ApoE4 (Hit 7). Indeed, ApoE4 applica-
tion to cultured neurons led to sustained calcium influx
both basally and with stimulation, followed by a greater
p-eEF2-mediated inhibition of global translation but pref-
erential upregulation of multiple synaptic gene targets
(Ramakrishna et al., 2021). As discussed in ‘Hit 1’, it is
unclear what may mediate acute synaptogenic to chronic
synaptotoxic signalling involving APOE4, although spec-
ulatively this may involve gradual compensatory changes
in kinase-phosphatase activation.

9.3 | A role for APOE in microRNA-
mediated and direct transcriptional control

Some limited evidence also suggests that ApoE may
directly regulate gene expression via action as a transcrip-
tion factor or by modulating pre-/post-transcriptional
machinery. In culture, it was demonstrated that ApoE3
and ApoE4 binds dsDNA at low nanomolar affinities.
However, ApoE4 bound diverse gene promoter sites in
the order of twofold that of ApoE3. Validation demon-
strated that the ApoE4 interaction with multiple gene
promoters led to dysregulation of genes including
SIRT1/2 (Sirtuin 1/2) and MADD (MAPK activating
death domain; Theendakara et al., 2016), important for
cell survival (Theendakara et al., 2013). This suggests that
transcription-like activity of ApoE4 could be an impor-
tant mechanism in neurodegenerative risk (Theendakara
et al., 2016, 2018).

One recent study also suggested that astrocytic
ApoE-bound lipoproteins deliver micro-RNAs (miRs)
targeted to downregulating cholesterol biosynthesis in
neurons. The miR-mediated downregulation of choles-
terol synthesis was associated with increased histone

acetylation and both immediate-early and synaptic gene
expression. Crucially each component of the pathway
was attenuated by ApoE4 both in vitro and in E4-TR
mice (Li et al., 2021). This supports an indirect role for
ApoE4 in transcriptional control via impaired lipopro-
tein miRNA delivery, contributing to cholesterol accu-
mulation (Hit 6), but again, these novel findings require
further validation.

In humans, data from post-mortem AD brain samples
provide some convincing support for APOE4-mediated
disruption of transcriptional regulation. Studies have
shown differential expression of genes involved in pro-
cesses including metabolism, immunity, DNA damage,
synaptic integrity, cell signalling and transcription
associated with APOE4 (Bossers et al., 2010; Panitch
et al., 2022; Simpson et al., 2011). Further, the association
between elevated neuronal APOE expression and a
unique transcriptional signature observed E4-TR mice
(outlined in Section 9.1) was replicated in both AD and
healthy aged patient brains (Zalocusky et al., 2021). How-
ever, the mechanistic origins of these transcriptomic
changes remain unknown.

In summary, ApoE likely regulates transcription
indirectly through receptor-mediated activation of
calcium signalling and possible direct DNA binding
activity. Evidence from both pathways converge to sug-
gest that APOE4 expression may induce dysregulation of
transcriptional signatures for numerous cellular pro-
cesses, including immune function, metabolism, RNA
processing, UPR, endo/lysosomal trafficking and
neuronal function. This dysregulation poses a hit to
multiple pathways, and future studies should investigate
mechanisms by which ApoE action on pre-/post-
transcriptional regulation may drive both AD-dependent
and AD-independent processes under physiological
circumstances.

10 | DISCUSSION

Predominantly focussing on preclinical models, in this
review, we have highlighted evidence associating APOE4
with the disruption of multiple cellular processes that
converge on a pathophysiological state independent of
typical AD-pathology. Next, we will summarise and pre-
dict the consequences of the APOE4 multihit hypothesis,
explain how it can be used to frame future research and
consider its implications for understanding APOE4 as a
risk factor for LOAD and other neurodegenerative disor-
ders. Importantly, we stress that this includes predictions
of the directionality of interactions between hits which
will require further validation.
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10.1 | The APOE4 multihit hypothesis

In summary, APOE4 in its basal state promotes cellular
‘susceptibility’ with initially low-level dysfunction that
accumulates with age. Further, this state is exacerbated
by multiple sources of endogenous and exogenous stress
including physical injury, pro-inflammatory and oxida-
tive challenge and metabolic disturbances. This suscepti-
bility appears to be determined consequent to structural
and regulatory features of ApoE4. Generally, ApoE4
exhibits reduced expression, impaired oxidative scaveng-
ing capabilities, intracellular sequestration, impaired
lipid efflux and trafficking, an increased propensity for
fragmentation, reduced lipid binding affinity, less effi-
cient receptor-ligand interactions and altered DNA bind-
ing activity. These features ultimately result in global loss
of normal and gain of toxic functions for ApoE4 across
multiple cellular processes, or ‘hits’. The ways we

envisage these multiple hits converge, and predictions of
their functional consequences are outlined below and
illustrated in Figure 8.

10.2 | Predictions of the APOE4 multihit
hypothesis

As the primary role of ApoE is in lipoprotein trafficking,
reduced ApoE4 lipidation and lipid efflux will enhance
astrocytic lipid loading, lipid droplet formation and
impair lipid delivery capacity from glia to neurons. This
failure to meet the lipid-rich demands of neuronal
membrane remodelling will impair neurite growth and
enhance sensitivity to injury-induced neurodegeneration.
Additionally, somal/endosomal sequestration of ApoE4
away from neurites will similarly reduce effective
repair and microtubule dynamics. Importantly, the

F I GURE 8 The multihit hypothesis. APOE4 genotype promotes a pathophysiological state of vulnerability to further damage through

multiple interacting hits. Cellular stress, ageing and an altered transcriptional landscape act as key moderators of many of the hits described

and are thus highlighted in their own box (top right). There are multiple points of crosstalk between APOE4-mediated hits (as described in

Section 10). Including the following: lipid and metabolic homeostasis and neuronal maintenance; calcium homeostasis and transcriptional

regulation; neuroinflammation, oxidative stress and neurovascular dysfunction; and endosomal trafficking, lipid homeostasis and

neurodegeneration. Abbreviations: ApoE4, apolipoprotein E4; CNS, central nervous system. Created with BioRender.com
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developmental consequences of this are likely minor in
the absence of exogenous stressors but will accumulate
with age.

Reductions in effective ApoE4 interaction with its
cognate receptors will result in loss of anti-
inflammatory signalling including enhancing NF-ĸB
signalling, while lipid loading will contribute to the
lipid-sensitive glial inflammatory responses such as
priming TLR activation. Additionally, reduced antioxi-
dant functions of ApoE4 will promote lipid peroxida-
tion and act in concert with lower ApoE4 anti-
inflammatory function to generate an environment of
chronic low-level inflammatory stress. Inflammatory
and oxidative stress pathways will subsequently pro-
mote chronic blood vessel and BBB degeneration via
loss of supporting tight junction proteins. BBB break-
down across age will also be accelerated by peripheral
pro-inflammatory factor infiltration and impaired clear-
ance of toxic products, generating a toxic feedback loop
between ApoE4-induced inflammation and BBB degen-
eration. Cumulative action of this inflammatory state
will also crosstalk with neuronal integrity, promoting
synaptic engulfment and impairment of overall mor-
phology, reflected during adulthood and ageing. Larger-
scale inflammatory disruption of the neurovascular unit
will interact with oxidative stress disruption of neuro-
vascular signalling, contributing to a neuronal energy
supply–demand mismatch, resulting in impaired meta-
bolic neuronal support, synaptic dysfunction and fur-
ther degenerative risk.

In parallel, disruptions to intracellular trafficking
pathways and toxic ApoE4 fragmentation will contribute
to multiple downstream impairments. Firstly, enhanced
endosomal sequestration of ApoE4, ApoE receptors and
synaptic receptors will prevent continual receptor
recycling, effective signalling, and promote synaptic dys-
function. Second, reductions in neuronal lipid availability
and enhanced endosomal sequestration of the insulin
receptor will impair glucose handling and induce oxida-
tive phosphorylation supply–demand deficits. In concert,
the intracellular accumulation of ApoE4 and its toxic
truncated fragments, particularly within neurons, will
disrupt critical mitochondrial complex function and
stimulate ER/UPR stress responses. Disruption of mito-
chondrial complex function will then alter metabolite
utilisation via electron transport chain/tricarboxylic acid
cycle flux, shifting away from effective oxidative phos-
phorylation. These metabolic shifts and disruption of
mitochondrial function will be exacerbated by ROS
by-product accumulation and elevated endogenous
oxidative stress. Thus, chronic ApoE4 fragmentation will
promote neuronal cell death via accumulation of these
disruptions.

Additionally, aberrant ApoE4 signalling will promote
activation of calcium channels and organelle store release
to induce chronic intracellular calcium accumulation,
contributing to both mitochondrial and ER/UPR dysfunc-
tion. Elevated calcium will also stimulate calcium-
dependent signalling pathways, activating transcription
factors such as AP-1 and CREB, of which chronic activa-
tion may lead to a compensatory shift towards syn-
aptotoxic signalling. Finally, both via signalling and
possible direct DNA interactions, ApoE4 will induce tran-
scriptional dysregulation which will contribute to multi-
ple hits through altered expression of genes related to
cellular trafficking, metabolism and immune function
amongst others.

Ultimately, these parallel hits promote convergence
on a chronic state of cellular vulnerability, increasing
degenerative risk that acts cumulatively with age,
stressors or injury. These features will be modified by sys-
temic contextual factors such as biological sex, cell type
and brain region, with regions (e.g., the hippocampal
complex) and cell types (e.g., GABAergic interneurons)
particularly vulnerable to pathology at higher risk of
dysfunction. Finally, the multihit hypothesis predicts
that the convergence of individual hits onto common
pathways will manifest in disruptions of higher-order
processing, which in some cases results in top-down
systems-level dysfunction. For example, ApoE4 fragment-
induced mitochondrial dysfunction is linked to
GABAergic degeneration, which subsequently leads to a
systems-level defect in GABAergic signalling, disrupting
neuronal maturation.

10.3 | Utility of the APOE4 multihit
hypothesis and its relation to APOE4 as a
risk factor for neurodegenerative disease

The APOE4 multihit hypothesis provides a framework to
understand the temporality and interaction between the
APOE4 hits and environmental variables. The interplay
between the different APOE4 hits is increasingly more
pertinent in the era of multi-omics, with recent studies
yielding associations between APOE and simultaneous
dysregulation of multiple pathways (Lin et al., 2018;
Nuriel, Peng, et al., 2017; Zalocusky et al., 2021; N. Zhao
et al., 2020). There is a need to consider these complex
interactions as we generate models of APOE4-mediated
pathophysiology, independent of, and also in the context
of causing an increased risk of LOAD (Lewandowski
et al., 2020).

While we have explicitly presented evidence of AD
pathology-independent roles for APOE4, we emphasise
that within the multihit hypothesis, pathological load
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(e.g., Aβ accumulation, tauopathy) can be viewed as
sources of cellular stress that would be predicted to coop-
eratively exacerbate an APOE4-related pathophysiologi-
cal state. We therefore argue that this does not conflict
with the well-established mechanisms by which ApoE4
can interact with AD pathology directly (e.g., enhanced
amyloid beta aggregation, tau phosphorylation). That
APOE4 has also been implicated as a risk factor for multi-
ple neurological disorders including Parkinson’s disease,
frontotemporal dementia, as well as LOAD suggesting a
diverse involvement in the aetiology of disease-related
CNS dysfunction (Forero et al., 2018; Huang &
Mahley, 2014).

Previous thematic reviews and hypotheses have
placed APOE at the interface between insult and inflam-
mation, neuronal dysfunction, degeneration and gene–
environment interactions, noting APOE as a risk or
‘homeostatic frailty’ gene (Bu, 2009; Gerdes et al., 2000;
Huang & Mahley, 2014; Liu et al., 2013; Mahley &
Huang, 2012; Najm et al., 2019; Tzioras et al., 2019;
Yassine & Finch, 2020). The multihit hypothesis is con-
gruent with these views but places emphasis on the
accumulation and interplay between multiple disrup-
tions of cellular physiology without necessitating AD
pathology. It is perhaps less compatible with the theory
of antagonistic pleiotropy, which posits age-dependent
detrimental but beneficial early and latest-age roles for
APOE4 (Han & Bondi, 2008; Han & Tuminello, 2011).
The multihit hypothesis predominantly predicts a trajec-
tory of cumulative APOE4 burden supported by much
of the preclinical evidence base reviewed here, but we
are unable to discount the possibility of some systems-
level benefits of APOE4 under specific circumstances.
Potentially, antagonistic pleiotropy could be accommo-
dated as a mechanism for accelerating late-life vulnera-
bility and multihit cascade. We acknowledge, however,
the common criticism of the inconsistency with which
APOE4 is associated with a clear cognitive phenotype.
We posit that the multihit hypothesis is better suited to
deal with this limitation with injury and stressors as
conditional modifiers for neurocognitive risk rather than
placing specific ageing constraints on expected cognitive
outcome.

Finally, some crucial limitations. There is an abso-
lute necessity to compare findings from preclinical
model systems with human studies and neurodegenera-
tive conditions. This review has focussed on preclinical
data to derive APOE4 ‘hits’ and provided some specific
examples of where these media are or are not congruent,
but we must be wary of overinterpretation in the
absence of direct evidence of pathway conservation.
Alignment between the questions and aims using pre-
clinical and human systems is essential to improve

understanding of APOE and the translational value of
our research. Further, while we have discussed the
modifying role of sex in APOE4 pathophysiology, the
influence of ethnicity has received attention in human
studies but cannot be addressed by animal models.
Ethnicity has been suggested to be a mediator in the
effect of APOE isoform on multiple outcomes, including
neurocognitive decline (Makkar et al., 2020), AD (Belloy
et al., 2019; Farrer et al., 1998) and modifying environ-
mental risk factors (Trumble & Finch, 2019; Yassine &
Finch, 2020). How the multihit hypothesis could account
for this is not clear, and valid criticisms may be raised
concerning the bias towards interpretation of APOE4
phenotype on a Western genetic background. Specula-
tively, if considering translation, protective genetic
variations associated with ethnicity may offer resilience
against APOE4 pathophysiology and may help offset a
multihit cascade. It is difficult to study such effects in
preclinical models, but novel hIPSC-based techniques
modelling ethnic genetic diversity will be useful going
forward.

11 | CONCLUSION

In this review, we have presented evidence to support a
multihit model of APOE4 pathophysiology, whereby
basal alterations in ApoE4 function contribute to aber-
rant activation of multiple cellular pathways including
neuronal maintenance, neurovascular function, inflam-
mation and oxidative stress, lipid and cellular metabo-
lism, endosomal trafficking, calcium homeostasis and
transcriptional regulation. Cumulative perturbation in,
and interactions between, these pathways converge on
age-dependent synaptic dysfunction, neurovascular
impairment, neurodegeneration and presumptive even-
tual cognitive impairment. We have highlighted the criti-
cal role of contextual biological variables including
cellular stressors, ageing and sex. We have also described
briefly how the multihit hypothesis may compare to
some key existing hypotheses of APOE function. Future
work is required to better understand the physiological
relevance, temporality, and crosstalk between these path-
ways. Indeed, studies demonstrating mutual exacerbation
between the described APOE4-dependent hits are emerg-
ing, supporting crosstalk between inflammation, lipid
metabolism and neurotoxicity (e.g., de Leeuw et al., 2022;
Zalocusky et al., 2021). We propose that some of the key
outstanding questions to understand the role of APOE
from low-level cellular dysfunction to neurodegenerative
disease are ‘how’ and ‘to what extent’ do APOE-
mediated pathways contribute and interact to form an
APOE4 pathophysiological state.
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