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Abstract The lectin from Canavalia ensiformis (Conca-
navalin-A, ConA), one of the most abundant lectins known,
enables one to mimic biological lectin/carbohydrate inter-
actions that regulate extracellular matrix protein recogni-
tion. As such, ConA is known to induce membrane type-1
matrix metalloproteinase (MT1-MMP) which expression is
increased in brain cancer. Given that MT1-MMP correlated to
high expression of cyclooxygenase (COX)-2 in gliomas with
increasing histological grade, we specifically assessed the
early proinflammatory cellular signaling processes triggered
by ConA in the regulation of COX-2. We found that treatment
with ConA or direct overexpression of a recombinant MT1-
MMP resulted in the induction of COX-2 expression. This
increase in COX-2was correlatedwith a concomitant decrease
in phosphorylatedAKTsuggestive of cell death induction, and
was independent of MT1-MMP’s catalytic function. ConA-
and MT1-MMP-mediated intracellular signaling of COX-2
was also confirmed in wild-type and in Nuclear Factor-
kappaB (NF-κB) p65−/− mutant mouse embryonic fibroblasts
(MEF), but was abrogated in NF-κB1 (p50)−/− and in I
kappaB kinase (IKK) γ−/− mutant MEF cells. Collectively,
our results highlight an IKK/NF-κB-dependent pathway

linking MT1-MMP-mediated intracellular signaling to the
induction of COX-2. That signaling pathway could account
for the inflammatory balance responsible for the therapy
resistance phenotype of glioblastoma cells, and prompts for
the design of new therapeutic strategies that target cell
surface carbohydrate structures and MT1-MMP-mediated
signaling. Concise summary Concanavalin-A (ConA) mimics
biological lectin/carbohydrate interactions that regulate the
proinflammatory phenotype of cancer cells through yet
undefined signaling. Here we highlight an IKK/NF-κB-
dependent pathway linking MT1-MMP-mediated intracellu-
lar signaling to the induction of cyclooxygenase-2, and that
could be responsible for the therapy resistance phenotype of
glioblastoma cells.
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Abbreviations
ConA concanavalin-A
COX cyclooxygenase
ECM extracellular matrix
IKK I kappaB kinase
MEF mouse embryonic fibroblasts
MT1-MMP membrane type-1 matrix metalloproteinase
NF-κB nuclear factor kappaB

Introduction

Membrane-type matrix metalloproteinases (MT-MMP) con-
stitute a growing subclass of MMP (Fillmore et al. 2001). The
expression levels of several members of the MMP family
have been shown to correlate with the graded level of
gliomas, including that of MT1-MMP, the best-characterized
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MT-MMP. While most of the MMPs are secreted, the MT-
MMPs are membrane-associated and a number of these have
cytoplasmic domains which were recently shown to bear
important functions in cellular signaling (Gingras et al. 2001;
Annabi et al. 2004; Belkaid et al. 2007). Aside from its well-
known roles in the activation of proMMP-2 and in intrinsic
proteolytic activity towards extracellular matrix (ECM)
molecules, many new functions of MT1-MMP have recently
been associated with PGE2-induced angiogenesis (Alfranca
et al. 2008), platelet-mediated calcium mobilization (Fortier
et al. 2008a), regulation of cell death/survival bioswitch
(Belkaid et al. 2007; Fortier et al. 2008b), and radioresistance
in both glioma cells (Wild-Bode et al. 2001; Wick et al.
2002) and endothelial cells (Annabi et al. 2003a). The recent
demonstration that MT1-MMP also plays a role in medul-
loblastoma CD133(+) neurosphere-like formation (Annabi et
al. 2008) and in CD133(+) glioblastoma invasiveness
(Annabi et al. 2009) reinforces the need to design new
therapeutic strategies that either directly target MT1-MMP
expression/functions or its associated downstream signaling.

Tetra- and hexavalent mannosides were recently demon-
strated to specifically target MT1-MMP pleiotropic func-
tions in cell survival, proliferation, and ECM degradation
(Fortier et al. 2008b). These glycocluster constructions may
therefore serve in carbohydrate-based anticancer strategies
since transformed cells express selective carbohydrate motifs
in the form of glycoproteins or glycolipids (Danishefsky and
Allen 2000; Roy 2004; Verez-Bencomo et al. 2004).
Interactions between carbohydrate-binding proteins (lectins)
and the oligosaccharide moieties of glycoprotein at the cell
surfaces are, in fact, involved in extensive cellular recogni-
tion processes including development, differentiation, mor-
phogenesis and cell migration. The lectin from Canavalia
ensiformis (Concanavalin-A, ConA), one of the most
abundant lectins known (Lin and Levitan 1991), enables
one to mimic biological lectin/carbohydrate interactions that
regulate extracellular matrix (ECM) protein recognition and,
as such, is routinely used to trigger MT1-MMP-mediated
activation of latent proMMP-2 (Yu et al. 1997; Zucker et al.
2002; Lafleur et al. 2006). ConA was also found to increase
the sub-G1 cell cycle phase as well as cell death; indicative
of a potential role in cell surface clustering that affects cell
survival (Currie et al. 2007; Fortier et al. 2008b). Further-
more, MT1-MMP gene silencing significantly abrogated
chemotaxis in response to the tumorigenic growth factor
sphingosine 1-phosphate in mesenchymal stromal cells,
again suggesting a crucial role for that MMP in transducing
intracellular signaling processes (Currie et al. 2007; Annabi
et al. 2003b).

In human glioblastoma, COX-2 performs important
functions in tumorigenesis (Deininger et al. 1999) and
inhibitors of eicosanoid biosynthesis have been shown to
suppress cell proliferation and to promote astrocytic

differentiation (Wilson et al. 1990). Since the COX-2
protein is overexpressed in the majority of gliomas, it is
therefore considered an attractive therapeutic target (New
2004; Sminia et al. 2005). Paradoxically, the effectiveness
of direct COX-2 inhibitors on glioma cell proliferation and
radioresponse enhancement was also found to be indepen-
dent of COX-2 protein expression (Kuipers et al. 2007).
This evidence suggests that alternate initiator molecules,
possibly involving some cell surface transducing mecha-
nisms, are associated with therapy resistance and are
involved in the regulation of COX-2 expression. Whether
any cell surface carbohydrate structures are involved in
such regulation remains unclear.

In the present study, we provide evidence of cell surface
carbohydrate involvement and identified MT1-MMP as a
candidate in the early signaling cascade regulating COX-2
expression. As such, the use of the lectin ConA, as a MT1-
MMP-inducing agent, further documents an IKK/NF-κB-
dependent pathway linkingMT1-MMP-mediated intracellular
signaling to proinflammatory COX-2 expression that could
mimic for the cell survival and inflammatory balance
responsible of the therapy resistance phenotype of glioblasto-
ma cells.

Materials and methods

Materials

Sodium dodecylsulfate (SDS) and bovine serum albumin
(BSA) were purchased from Sigma (Oakville, ON). Cell
culture media was obtained from Invitrogen (Burlington,
ON). Electrophoresis reagents were purchased from Bio-
Rad (Mississauga, ON). The enhanced chemiluminescence
(ECL) reagents were from Amersham Pharmacia Biotech
(Baie d’Urfé, QC). Micro bicinchoninic acid protein assay
reagents were from Pierce (Rockford, IL). The polyclonal
antibody against COX-2 was from Advanced Immunochem-
ical Inc. (Long Beach, CA). The polyclonal antibody against
MT1-MMP (AB815) was from Chemicon (Temecula, CA).
The polyclonal antibodies against AKT and phosphorylated-
AKT were purchased from Cell Signaling (Danvers, MA).
Horseradish peroxidase-conjugated donkey anti-rabbit and
anti-mouse IgG secondary antibodies were from Jackson
ImmunoResearch Laboratories (West Grove, PA). All other
reagents were from Sigma-Aldrich Canada.

Cell culture

The human U87 glioblastoma cell line was purchased from
American Type Culture Collection (Manassas, VA) and was
maintained in Eagle’s Minimum Essential Medium (EMEM)
containing 10% (v/v) calf serum (CS) (HyClone Laboratories,
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Logan, UT), 2 mM glutamine, 100 units/ml penicillin and
100 mg/ml streptomycin. Cells were incubated at 37°C with
95% air and 5% CO2. Murine embryo fibroblasts (MEFs)
were maintained in Dulbecco’s modified Eagle medium
containing 10% fetal bovine serum, 2 mM L-glutamine,
100 U/ml of penicillin, 100 μg/ml streptomycin, and 25 ng/ml
of amphotericin B (Invitrogen, Carlsbad, CA). MEFs deficient
in IKKα (Hu et al. 1999), IKKβ (Li et al. 1999), and IKKγ/
Nemo (Makris et al. 2000) were described previously and
were kindly provided by Dr Terence Dermody (Vanderbilt
University, USA).

Cell transfection method

Sub-confluent U87 cell monolayers were transiently trans-
fected with 10 μg of a vector containing cDNA encoding
full length (Wt) MT1-MMP fused to GFP (Belkaid et al.
2007) using Lipofectamine 2000 (Invitrogen, Burlington,
ON). Mock transfections of U87 cultures with the empty
vector, pcDNA (3.1+), were used as controls. Transfected
cells were left to recuperate and were used 48 h post-
transfection. MT1-MMP specific gene expression and
function was evaluated by immunoblotting procedures,
and was validated by assessing MT1-MMP-mediated
proMMP-2 activation using gelatin zymography.

Gelatin zymography

Gelatin zymography was used to assess the extracellular
levels of proMMP-2 and MMP-2 activities. Briefly, an
aliquot (20 μl) of the culture medium was subjected to
SDS-polyacrylamide gel electrophoresis (SDS-PAGE) in a
gel containing 0.1 mg/ml gelatin. The gels were then
incubated in 2.5% Triton X-100 and rinsed in nanopure
distilled H2O. Gels were further incubated at 37°C for 20 h
in 20 mM NaCl, 5 mM CaCl2, 0.02% Brij-35, 50 mM Tris–
HCl buffer, pH 7.6 and then stained with 0.1% Coomassie
Brilliant blue R-250 and destained in 10% acetic acid, 30%
methanol in H2O. Gelatinolytic activity was detected as
unstained bands on a blue background.

Immunoblotting procedures

Proteins from control and treated cells were separated by
SDS-PAGE. After electrophoresis, proteins were electro-
transferred to polyvinylidene difluoride membranes which
were then blocked for 1 hr at room temperature with 5%
non-fat dry milk in Tris-buffered saline (150 mM NaCl,
20 mM Tris–HCl, pH 7.5) containing 0.3% Tween-20
(TBST). Membranes were further washed in TBST and
incubated with the primary antibodies (1/1,000 dilution) in
TBST containing 3% bovine serum albumin, followed by a
1 hr incubation with horseradish peroxidase-conjugated

anti-rabbit or anti-mouse IgG (1/2,500 dilution) in TBST
containing 5% non-fat dry milk. Immunoreactivematerial was
visualized by enhanced chemiluminescence (Amersham Bio-
sciences, Baie d’Urfée, QC).

Results

Concanavalin-A triggers proMMP-2 activation, MT1-MMP
and COX-2 expression

Concanavalin-A (ConA) is a well-documented lectin
which, through its binding to carbohydrate moieties on cell
surface proteins, elicits very efficient in vitro induction of
MT1-MMP expression (Belkaid et al. 2007; Fortier et al.
2008b; Sina et al. 2009). Serum-starved U87 glioblastoma
cells were therefore treated with increasing concentrations
of ConA and the levels of proMMP-2 activation were
assessed in the conditioned media by gelatin zymography
as described in the “Materials and methods” section.
ProMMP-2 activation into MMP-2 was observed (Fig. 1a),
and this was accompanied by MT1-MMP and COX-2
protein expression, as assessed in the cell lysates by
Western Blotting (Fig. 1a). When MT1-MMP expression
was plotted against that of COX-2, positive linear correla-
tion (r2=0.92) was observed following treatment of the
cells with the different ConA concentrations (Fig. 1b).
Immunodetection of total and phosphorylated AKT was
also performed on those same ConA-treated cells. ConA
dose-dependently decreased the basal levels of phosphory-
lated AKT, though not the total AKT protein expression
(Fig. 1a). AnnexinV-PI staining and flow cytometry
analysis following treatment with ConA confirmed cell
death induction through necrosis (data not shown) in
agreement with previous reports (Belkaid et al. 2007;
Currie et al. 2007). An inverse correlation (r2=0.91) was
also observed between the extent of AKT phosphorylation
status and COX-2 expression (Fig. 1c).

Concanavalin-A-induced COX-2 expression is independent
of MT1-MMP’s catalytic function

In order to address which MT1-MMP protein domain is
responsible for the ConA-induced COX-2 expression, U87
cells were treated with or without Ilomastat, a broad range
MMP inhibitor known to target the MT1-MMP extracellu-
lar domain catalytic functions (Currie et al. 2007). While
Ilomastat, as expected, inhibited the MT1-MMP-mediated
proMMP-2 activation into MMP-2 (Fig. 2a), it was unable
to significantly reverse ConA-induced MT1-MMP and
COX-2 expression (Fig. 2b). These observations suggest
that MT1-MMP’s extracellular catalytic domain is not
involved in the COX-2 induction process. Cell-based
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evidence for the aminopeptidase N/CD13 inhibitor actino-
nin’s targeting of MT1-MMP-mediated proMMP-2 activa-
tion was also recently demonstrated (Sina et al. 2009).
Similar to Ilomastat, actinonin was found to dose-
dependently inhibit ConA-induced proMMP-2 activation
(Fig. 3a), while it had no effects on ConA-induced MT1-
MMP and COX-2 expression (Fig. 3b).

Constitutive recombinant MT1-MMP expression triggers
COX-2 expression

In order to rule out any alternative signaling driven by
ConA, we transiently transfected U87 cells with a cDNA
plasmid encoding recombinant MT1-MMP/GFP (Belkaid et
al. 2007). Efficient overexpression of the MT1-MMP
recombinant form yielded a higher molecular weight band
(Fig. 4, top panel) and led to COX-2 expression (Fig. 4,

middle panel). Again, the MMP catalytic function inhibitors
were unable to reverse MT1-MMP-mediated COX-2
expression although they were still efficient in inhibiting
MT1-MMP-mediated proMMP-2 activation (Fig. 4). This
demonstrates an alternate role, i.e. in intracellular signaling
inducing COX-2, as a new function for the cell surface
MT1-MMP.

Concanavalin-A- and recombinant MT1-MMP-mediated
COX-2 induction requires an intact NF-κB p50 and IKKγ
signaling axis

COX-2 transcriptional expression is thought to be regulat-
ed, in part, through NF-κB-mediated signaling involving
nuclear translocation of the NF-κB heterodimer p50:p65
(Tsatsanis et al. 2006). In an attempt to elucidate the NF-κB
signaling axis needed to trigger COX-2 expression, wild-type

Fig. 1 Concanavalin-A triggers proMMP-2 activation, MT1-MMP
and COX-2 expression. a U87 glioblastoma cells were cultured as
described in the “Materials and methods” section until they reached
∼75–90% confluence. They were then serum-starved for 24 h prior to
the addition of increasing concentrations of concanavalin-A (ConA).
Gelatin zymography (upper panel) was performed to assess the extent
of proMMP-2 activation levels, as described in the “Materials and
methods” section, using conditioned media isolated from each of the

serum-starved cells conditions. Cell lysates were isolated and SDS-
PAGE performed (20 μg protein/well). MT1-MMP, COX-2,
phosphorylated-AKT, and total AKT expression were assessed by
Western blotting and immunodetection was performed as described in
the “Materials and methods” section. Scanning densitometry data of
the (b) MT1-MMP vs COX-2 and (c) pAKT/AKT vs COX-2
autoradiograms were plotted and are from a representative experiment

Fig. 2 Concanavalin-A-induced COX-2 expression is independent of
MT1-MMP’s catalytic function. a Cell lysates were isolated from U87
glioma cells that had been treated with or without ConA, 10 μM
Ilomastat, or a combination of both. Gelatin zymography (upper
panel) was carried out to assess the extent of proMMP-2 activation
levels, as described in the “Materials and methods” section, using

conditioned media isolated from each of the serum-starved cell
conditions. The extent of MT1-MMP and COX-2 expression were
assessed as described in the legend to Fig. 1. b Scanning densitometry
data of MMP-2, MT1-MMP, COX-2 and GAPDH expression were
plotted and are from 3 independent experiments
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mouse embryonic fibroblasts (MEF), p50−/− and p65−/− NF-
κB MEF mutants were used, as were IKKα−/−, IKKβ−/−, and
IKKγ−/−. Cells were either treated with ConA or transfected
with a cDNA plasmid encoding MT1-MMP. Cell lysates as
well as conditioned media were isolated following these
treatments. ConA triggered a strong activation of proMMP-2
in Wt, p50−/−, p65−/−, and IKKγ−/− cells, while it was lower
in IKKα−/− and IKKβ−/− cells (Fig. 5a). ConA treatment
concomitantly induced COX-2 expression in all cell lines
except the p50−/− and IKKα−/− MEF mutants (Fig. 5a).
Expression and cell surface activity of the recombinant MT1-
MMP were also confirmed in transfected cells as Wt, p50−/−,
p65−/−, and IKKγ−/− cells all exhibited significantly in-
creased proMMP-2 activation into active MMP-2 form, as
judged by gelatin zymography (Fig. 5b). Low but detectable
proMMP-2 activation was achieved in IKKα−/− and IKKβ−/−

cells (Fig. 5b). When COX-2 protein expression was
measured, we observed the induction of COX-2 by
recombinant MT1-MMP in Wt-MEF (Fig. 5b), confirming
the results observed in U87 glioma cells (Fig. 4a). Similar
MT1-MMP-mediated COX-2 induction was also observed in
p65−/−, IKKα−/−, and IKKβ−/− mutant MEF, while COX-2
expression was completely abrogated in p50−/− and in
IKKγ−/− mutant MEF (Fig. 5b). This cell-based evidence
directly demonstrates the specific involvement of p50 and of
IKKγ in NF-κB-mediated MT1-MMP regulation of COX-2
expression.

Discussion

Dysregulated NF-κB activity occurs in a number of chronic
inflammatory diseases and certain types of cancers, making
NF-κB signaling an attractive target for the development of
anti-inflammatory and anti-cancer drugs. A pivotal regula-

tor of all inducible NF-κB signaling pathways is the IκB
kinase (IKK) complex that consists of two kinases (IKKα
and IKKβ) and a regulatory subunit named NF-κB
essential modulator (NEMO, or IKKγ). In the present
study, we have identified an IKKγ/NF-κB-dependent
pathway that links ConA-induced MT1-MMP intracellular
signaling to COX-2 expression in two cellular models, the
U87 glioblastoma cells and the Wt mouse embryonic
fibroblasts. An NF-κB-mediated induction of MT1-MMP
had already been demonstrated in human dermal fibro-
blasts, and this was promoted by TNF-α (Han et al. 2001).
More recently, IKKγ was shown to regulate an early NF-
κB-independent cell-death checkpoint during TNF signal-
ing (Legarda-Addison et al. 2009), supporting molecular
signaling interplay between MT1-MMP and COX-2 and
which likely regulates cell survival status.

Aside from glioblastoma cells, such a link has also been
observed in cells derived from malignant fibrous histiocy-
toma, one of the highest-grade sarcomas arising in bone and
soft tissue, where concomitantly increased levels of
expression of COX-2 and MT1-MMP were described
(Maeda et al. 2008). Co-distribution of MT1-MMP,
MMP-2 and COX-2 was also demonstrated in grade IV
atheroma, again indicating a possible link between these
enzymes in the destabilization of atherosclerotic plaques
(Kuge et al. 2007). Altogether, these published data support a
molecular signaling convergence linking MT1-MMP to
COX-2 expression through an NF-κB-mediated pathway
which may constitute the point of convergence of many
oncogenic pathways by virtue of its ability to regulate the
expression of genes involved in cell apoptosis, differentiation,

Fig. 4 Constitutive recombinant MT1-MMP expression triggers
COX-2 expression. U87 glioblastoma cells were either Mock-
transfected or transfected with a cDNA plasmid encoding recombinant
MT1-MMP/GFP (MT1-MMP-Wt). Cells were then incubated in
serum-free media in the presence or absence of Ilomastat (Ilo) or
Actinonin (Acti). Gelatin zymography was performed to monitor the
extent of latent proMMP-2 and active MMP-2 expression from the
conditioned media of the serum-starved cells (lower panel). Cell
lysates were isolated and SDS-PAGE performed (20 μg protein/well),
followed by Western blotting and MT1-MMP, COX-2 and GAPDH
immunodetection

Fig. 3 Actinonin is unable to antagonize concanavalin-A-induced
COX-2 expression. a Gelatin zymography (upper panel) was carried
out to assess the extent of proMMP-2 activation levels, as described in
the “Materials and methods” section, using conditioned media isolated
from serum-starved U87 glioblastoma cells that had been treated with
increasing actinonin concentrations in the presence of ConA. The
extent of MT1-MMP and COX-2 expression was assessed in cell
lysates as described in the legend to Fig. 1. b Scanning densitometry
data of the respective MMP-2, MT1-MMP, COX-2 and GAPDH
expression were plotted and are from a representative experiment
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adhesion, and survival (Dolcet et al. 2005). Aside from
its critical role in the development of human cancer, NF-
κB has also been implicated at the molecular level in the
promotion of angiogenesis, which is of particular interest
since malignant astrocytomas are highly vascular tumors
(Korkolopoulou et al. 2008). NF-κB is also a transcrip-
tional regulator in the inducible expression of numerous
genes including COX-2 (Lim et al. 2001). Interestingly, a
consensus binding site for NF-κB p65 (TGGAGCTTCC)
was found in the 5′-flanking region of the human MT1-
MMP gene (Han et al. 2001) and NF-κB-mediated
induction of MT1-MMP was confirmed in murine mela-
noma cells (Philip et al. 2001) and in human fibrosarcoma
cells (Park et al. 2007). Further studies also implicated
NF-κB as a potentially critical factor in astrocytic
tumorigenesis and astrocytoma progression through anal-
ysis of cell lines and preclinical models (Nagai et al. 2002;
Hayashi et al. 2001; Yamamoto et al. 2000). In the current
study, we provide evidence for an MT1-MMP-mediated
signaling cascade that leads to activation of COX-2
expression and that is independent of MT1-MMP’s
catalytic function. We also demonstrate that this new
MT1-MMP/COX-2 signaling axis absolutely requires
IKKγ/NF-κB p50. In support of our results, an increase

in NF-κB p50 was recently found to rapidly induce MT1-
MMP expression in trabecular meshwork cells (Miller et
al. 2007).

Gliomas remain a great challenge in oncology as they
account for more than 50% of all brain tumors and are by
far the most common primary brain tumors in adults
(Stewart 2002). More importantly, the mechanisms respon-
sible for the resistance of migrating glioblastoma cells to
chemotherapy or to radiation-induced cell death have long
been recognized (Berens and Giese 1999) and still receive
much attention in order to optimize future cellular targets
for the treatment of glioblastomas (Lefranc et al. 2005). In
addition, tissue necrosis is a characteristic feature of
malignant gliomas, in particular glioblastoma, and is most
likely the consequence of rapidly increasing tumor mass
that is inadequately oxygenated by the pre-existing vascu-
lature (Raza et al. 2002). At the cellular level, maintenance
of cytoarchitecture is required for cell survival, since its
perturbation by Cytochalasin-D- or ConA-mediated MT1-
MMP mechanisms diminishes cell survival and has been
correlated with proMMP-2 activation (Belkaid et al. 2007;
Hinoue et al. 2005; Preaux et al. 2002; this study).
Accordingly, MT1-MMP’s intracellular domain was shown
to be an absolute requirement for transducing the intracel-

Fig. 5 Concanavalin-A- and recombinant MT1-MMP-mediated
COX-2 induction necessitates an intact NF-κB1 p50 and IKKγ−

signaling axis. Wild-type (Wt), p65−/−, p50−/−, IKKα−/−, IKKβ−/−, and
IKKγ−/− mouse embryonic fibroblasts (MEF) were either treated with
ConA (a), Mock-transfected or transfected with a cDNA plasmid
encoding MT1-MMP (b). Gelatin zymography was used to monitor

the extent of latent proMMP-2 and active MMP-2 expression from the
conditioned media of the serum-starved cells (upper panels of a and
b). Cell lysates were isolated and SDS-PAGE performed (20 μg
protein/well), followed by Western blotting and immunodetection of
COX-2 and GAPDH

36 A. Sina et al.



lular signaling that leads to cell death since overexpression
of a membrane-bound catalytically active but cytoplasmic
domain-deleted MT1-MMP was unable to trigger necrosis
(Belkaid et al. 2007). Although the exact identity of the
amino acid residues from the MT1-MMP intracellular
domain remain to be identified, speculation about Tyr-
573, Cys-574, and Val-582 have been put forward as
important for MT1-MMP signaling (Labrecque et al. 2004;
Anilkumar et al. 2005). Similarly, a caspase-dependent
mechanism has recently been associated with MT1-MMP
function in endothelial cell morphogenic differentiation
(Langlois et al. 2005). This suggests that MT1-MMP acts
as a potential cell death sensor/effector that signals ECM
degradation processes to be activated.

In summary, the use of ConA proves that cell surface
carbohydrate structures account for MT1-MMP intracellu-
lar signaling that regulates COX-2 expression through an
IKKγ/NF-κB-dependent pathway in U87 glioblastoma
cells. By revealing such a new signaling axis in tumor
cells, profiling studies will be needed in order to enable
drug developers to more efficiently target those pathways,
thus aiding the identification of new anti-cancer lead
compounds.
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