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Positive feedback is a common mechanism enabling biological systems to respond to stimuli in a
switch-like manner. Such systems are often characterized by the requisite formation of a
heterodimer where only one of the pair is subject to feedback. This ASymmetric Self-UpREgulation
(ASSURE) motif is central to many biological systems, including cholesterol homeostasis (LXRa/
RXRa), adipocyte differentiation (PPARg/RXRa), development and differentiation (RAR/RXR),
myogenesis (MyoD/E12) and cellular antiviral defense (IRF3/IRF7). To understand why this motif is
so prevalent, we examined its properties in an evolutionarily conserved transcriptional regulatory
network in yeast (Oaf1p/Pip2p). We demonstrate that the asymmetry in positive feedback confers a
competitive advantage and allows the system to robustly increase its responsiveness while precisely
tuning the response to a consistent level in the presence of varying stimuli. This study reveals
evolutionary advantages for the ASSURE motif, and mechanisms for control, that are relevant to
pharmacologic intervention and synthetic biology applications.
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Introduction

Positive feedback systems are ubiquitous in biology. They play
critical regulatory roles in signaling, transcription, metabolism
and molecular assembly. In positive feedback systems, input
signals trigger a chain of signaling or regulatory events, which
loop back and amplify the system response. In biological
networks they serve to transform environmental signals to all-
or-none switches (Ferrell and Machleder, 1998; Xiong and
Ferrell, 2003) and can slow ‘switch on’ times (Maeda and
Sano, 2006) and ‘switch off’ times (Siciliano et al, 2011). In
combination, fast and slow positive feedback loops can buffer
against a noisy input to produce a reliable response
(Brandman et al, 2005). A common feature of biological
positive feedback systems is that they contain an element
where two factors combinatorially (e.g. as a heterodimeric
complex) regulate the expression level or activity of their
targets and only one factor is upregulated by the heterodimer
(Figure 1). Several examples of networks with this feature are
listed in Table I; we term this network motif ASSURE for
ASymmetric Self-UpREgulation. As suggested for nuclear
receptors, many ASSURE motifs appear to have evolved,
through gene duplications followed by specialization, from
regulators that previously acted as homodimers (Laudet et al,
1992).

An additional, common feature of these network motifs is
that one of the proteins of the heterodimeric regulatory
complex is responsible for sensing the input signal. In such
cases, there are two possible variations of the ASSURE
network motif that are defined based on the direction of
the feedback loop. In ASSURE I, the heterodimer upregulates
the synthesis of the signal sensor partner; in ASSURE II,
the heterodimer upregulates the synthesis of the signal
sensor itself. The core of the fatty acid-responsive gene
regulatory network in the budding yeast Saccharomyces
cerevisiae is an example of ASSURE I. A heterodimer of
Oaf1p and Pip2p (Phelps et al, 2006; Smith et al, 2007), is
activated by the direct binding of fatty acid (oleate) to the
Oaf1p ligand binding domain (Phelps et al, 2006). The active
Oaf1p/Pip2p hetorodimer upregulates the expression of the
PIP2 gene but not the OAF1 gene (Figure 1A) (Rottensteiner
et al, 1997).

Peroxisome proliferators in mammals exemplify the
ASSURE II network motif. For example, the nuclear receptors
peroxisome proliferator-activated receptor g (PPARg) and its
partner protein retinoid X receptor a (RXRa) form a hetero-
dimer which is activated by ligand binding (e.g., certain
arachidonic acid metabolites or oxidized fatty acids) to PPARg
and the active PPARg/RXRa heterodimer upregulates the
expression of the PPARg gene (Figure 1B) (Wakabayashi
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Figure 1 Schematic representations of three examples the ASSURE biomolecular regulatory systems composed of asymmetric positive feedback loops. (A) Fatty acid
response and peroxisome biogenesis in budding yeast; (B) Adipocyte differentiation; (C) Myogenesis. Each system leads to the production of a heterodimer, which feeds
back on one arm of the network conferring self-upregulation and control of the biological response. In each case a signal (represented by a filled circle) activates a
transcription factor (oval). The factor forms a heterodimer with its partner (circle) and together this complex positively feeds back (dashed arrow) and activates genes
involved in the biological response (dashed arrow).

Table I Examples of biomolecular systems with the asymmetric positive feedback network motif

System Asymmetric positive feedback Type References

Fatty acid response and peroxisome
biogenesis in budding yeast

Fatty acidþOaf1p2Oaf1p*
Oaf1p*þPip2p2heterodimer-PIP2 gene

I (Phelps et al, 2006;
Rottensteiner et al, 1997;
Smith et al, 2007)

Adipocyte differentiation AgonistþPPARg2 PPARg*
AgonistþRXRa2RXRa*
PPARg*þRXRa(RXRa*)2heterodimer-PPARg gene

I/II (Westin et al, 1998;
Wakabayashi et al, 2009)

Cholesterol homeostasis in human
macrophages

Agonistþ LXRa2LXRa*
LXRa*þRXRa2heterodimer-LXRa gene

I/II (Whitney et al, 2001)

Early development and
differentiation (human)

AgonistþRAR2RAR*
RAR*þRXR2heterodimer-RAR gene

I/II (de The et al, 1990)

Early development and
differentiation (mice)

AgonistþRAR2RAR*
RAR*þRXR2heterodimer-RAR gene

I/II (Hoffmann et al, 1990;
Leroy et al, 1991a;
Leroy et al, 1991b)

Early development and
differentiation (zebrafish)

AgonistþRAR2RAR*
RAR*þRXR2heterodimer-RAR gene

I/II (Linville et al, 2009)

Cellular antiviral defense Signalþ IRF3-IRF3*
Signalþ IRF7-IRF7*
IRF3*þ IRF7*2heterodimer-IFNb gene-IFNb-STAT1,
STAT2, IRF9-IRF7 gene

I/II (Honda and Taniguchi, 2006;
Tamura et al, 2008)

Myogenesis SignalþMyoD-MyoD*
MyoD*þE122heterodimer-MyoD gene

II (Benayoun et al, 1998)

Control of the synaptic
plasticity in Drosophila

Signalþ Fos-Fos*
Signalþ Jun-Jun*
Fos*þ Jun*2heterodimer-CREB gene
CREB-CREB and Fos genes

I/II (Sanyal et al, 2002;
Sheng and Greenberg, 1990)

Filamentous growth
regulation in yeast

Signal (low nitrogen, butanol, etc.)þTec1-Tec1*
Signalþ Ste12-Ste12*
Tec1*þ Ste12*-TEC1

I/II (Madhani and Fink, 1997;
Prinz et al, 2004;
Zeitlinger et al, 2003)

Cell proliferation and
growth

c-Myc –| miRNA-22 –| MYCBP-c-Mycþ
MAX-target genes

II (Xiong et al, 2010)

Antioxidant response
(HepG2 cells)

ROS-KEAP1-Nrf2-Nrf2-Nrf2/small Maf-p62
gene-p62-Nrf2 gene

II (Alam et al, 1999;
Jain et al, 2010;
Motohashi et al, 2002)

Response to xenobiotics:
reduction of arsenic-induced
cytotoxicity (HeLa cells)

iAsIII- Nrf2 activation (KEAP1-Nrf2-Nrf2)-Nrf2/small
Maf-HO-1 gene-HO-1-Nrf2 gene

II (Abiko et al, 2010;
Alam et al, 1999;
Motohashi et al, 2002)

White-opaque phenotypic
switching in Candida albicans

Signal (loss of the mating type locus heterozygosity)-Wor1
Wor1þMcm1-WOR1

II (Morschhauser, 2010;
Tuch et al, 2008;
Zordan et al, 2007)

Cell cycle (G1-S phase transition)
and tumor suppression control

E2F1þDP12E2F1/DP1
E2F1/DP1þpRB2pRB/E2F1/DP1
Growth stimulatory signals-
pRB/E2F1/DP1-E2F1/DP1þ pRB-E2F1 gene

II (Helin et al, 1993;
Johnson et al, 1994;
Krek et al, 1993)

CREB, cAMP response element-binding; DP, differentiation regulated transcription factor protein; E2F, E2 transcription factor; HO-1, heme oxigenase-1; IRF, interferon
regulatory factor; iAsIII, inorganic arsenite; KEAP, Kelch-like ECH-associated protein; LXR, liver X receptor; MAX, c-Myc-associated factor X; MCM, minichromosome
maintenance; MYCBP, c-Myc-binding protein; Nrf2 (NFE2L2), Nuclear factor (erythroid-derived 2)-like 2; OAF, oleate-activated transcription factor; PIP, peroxisome
induction pathway; PPAR, peroxisome proliferator-activated receptor; pRB, retinoblastoma protein; RAR, retinoic acid receptor; ROS, reactive oxygen species; RXR,
retinoid X receptor; STAT, signal transducer and activator of transcription; TEC, transposon enhancement control; WOR, White-Opaque Regulator; 2, dimerization; -,
upregulation/activation; -|, downregulation.
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et al, 2009). Another example of an ASSURE II network motif is
composed of myogenic transcription factors MyoD and E12.
During myogenic differentiation, MyoD is activated by Mos
kinase phosphorylation and forms a heterodimer with E12,
and together they upregulate the expression of the gene
encoding MyoD (Figure 1C) (Benayoun et al, 1998).

Because of the prevalence and the wide range of systems in
which the ASSURE network motif is found, we asked what
features may be responsible for its presumed evolutionary
advantages. Here, we studied both experimentally and using
computational modeling, the behavior of systems controlled
by the ASSURE I or II motif and systems in which both
regulatory molecules in the pair are self-upregulated. We
demonstrate that the asymmetry in positive feedback motifs
provides the system with precise, tunable and robust control of
responses to stimuli that allows the system to reliably execute
its physiological program and that this motif leads to a fitness
advantage.

Results

To investigate possible functional implications of the ASSURE
network motif we developed mathematical models of four

different biomolecular regulatory systems where the network
response to a stimulus involves homo- or heterodimerization of
transcription factors (Figure 2A–D). In the first system, the
sensor molecule P is activated by an extracellular or an
intracellular signaling species (Signal) and forms a homodimer
that upregulates its targets without feedback (Figure 2A). The
second system is composed of the same players, but the
homodimer feeds back in a positive manner to increase the
synthesis of P (symmetric positive feedback (SPF)) (Figure 2B).
The remaining two systems represent versions of the ASSURE
network motif (Figure 2C and D). In ASSURE I, the sensor
molecule (P1) is activated by the Signal and forms a heterodimer
with protein (P2), which upregulates the synthesis of P2 and
additional targets (Figure 2C). In ASSURE II, the sensor
molecule (P1) is activated by the Signal and forms a heterodimer
with protein (P2), which positively upregulates the synthesis of
P1 and additional targets (Figure 2D). Constraints associated
with the general machinery of gene expression and protein
synthesis are accounted for in the models by representing the
fractional activity of genes using a saturation function (see
Materials and Methods).

To investigate the effects of network topology on network
function, models describing the four network classes were
compared in a mathematically controlled fashion, i.e., using
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Figure 2 Theoretical prediction of the precisely tunable and robust response of the biomolecular network with the ASSURE network motif. (A) A network where a
sensor molecule P activated by an extra- or intracellular signal (Signal) forms a homodimer that upregulates its targets (a network without feedback). (B) A network where
a sensor molecule P activated by Signal forms a homodimer that upregulates its own synthesis and targets (dashed arrows). (C) A network where a sensor molecule (P1)
activated by Signal forms a heterodimer with a protein (P2) that upregulates the synthesis of P2 and targets (ASSURE I). (D) A network where a sensor molecule (P1)
activated by Signal forms a heterodimer with a protein (P2) that upregulates the synthesis of P1 and targets (ASSURE II). (E) Stimulus applied to each system.
(F) Responses of each system to the stimulus. Responses of ASSURE I and II are equal when Signal44P1 and/or the dissociation constant Ksp is low, indicating the
high affinity between Signal and P1. (G) Color coded variation of initial P1 level in the ASSURE I system (inset) and corresponding responses of each system to the
stimulus. (H) Effect of Kd (the dissociation constant of homo- and heterodimerization) variation on the symmetric positive feedback and the ASSURE system responses
to the stimulus. The difference between the low and high Kd is five orders of magnitude (low Kd ¼ 10� 5 a.u. and high Kd ¼ 1 a.u.) (see also Supplementary Figures 2
and 3). (I) Response time (t0.5) probability density for the SPF and ASSURE models, respectively, calculated based on the model responses with 10 000 random
parameter sets (Supplementary Table 1; Supplementary Figure 9).
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equivalent parameters save for the specific parameter encod-
ing the difference in model topology (Henceforth, in the
mathematical models, we will use a species’s symbol (e.g.,
Signal) to represent its concentration.). Model simulations
revealed that the kinetic characteristics of the responses from
ASSURE I and ASSURE II network motifs are identical under
typical physiological conditions (i.e. when Signal 44P1 and/
or the dissociation constant for binding of P1 by Signal (Ksp)
is low (indicating a high affinity)) (Figures 2E and F). This
assumption is based on the fact that activating ligands are
typically in higher abundance than their targets (e.g., protein
receptors) and affinities between ligands and receptors are also
typically high (e.g., Kd for oleate binding to Oaf1p is
1.65�10� 8 M (Phelps et al, 2006); Kd for nitrolinoleic acid
binding to PPARg is 1.33�10�7 M (Schopfer et al, 2005); Kd

for 22(R)-hydroxycholesterol binding to LXRa and is 2.5�
10�7 M (Bramlett et al, 2003)). In simulations where the ligand
concentration is low (SignalooP1) and/or the affinity
between the ligand and the sensor is low (high Ksp) the
responses of ASSURE I and ASSURE II are distinct; ASSURE I is
more responsive due to the relatively high concentration of the
sensor protein P1 (Supplementary Figure 1).

Model simulations revealed several characteristics of the
ASSURE network motif that would be expected to confer
advantages over other motifs. The ASSURE motif has proper-
ties typical of other positive feedback networks (including
symmetric positive feedback motifs), which confer sigmoidal
all-or-none like responses to stimuli. The ASSURE motif is also
tunable, like the motif with no feedback; the maximum level of
the response is dictated by the abundance of one partner of the
heterodimeric pair (i.e., the protein that is not subject to
positive feedback, P1 in ASSURE I and P2 in ASSURE II)
(Figures 2Fand G; Supplementary Figure 2). In addition, in the
ASSURE motifs, the member of the heterodimer that is not
subject to positive feedback is assumed to be at higher
constitutive levels than the inducible partner. This ‘ready state’
efficiently shifts the equilibrium for the reaction pair P1þ
P23P1P2 toward the formation of heterodimer, increasing the
responsiveness of the ASSURE network compared to the SPF
network. The network controlled by the ASSURE motif
therefore responds more rapidly and reaches a plateau earlier
than a network controlled by symmetric positive feedback.

To address whether the ASSURE system response time (t0.5)
would be robust to changes in the partner interaction strength,
we investigated the response in the context of changes to the
dissociation constant (Kd) of the heterodimer formed between
P1 and P2. A wide range of Kd values have little effect on the
response of the systems with the asymmetric positive feed-
back. By contrast, the response of the symmetric positive
feedback motif is sensitive to changes in Kd (Figure 2H;
Supplementary Figures 3 and 4). In addition, the sensitivity of
the ASSURE response time to changes in the affinity of
dimerization is not significantly altered by changes in the
number of molecules of the heterodimerizing partner (whose
expression is not upregulated) (Supplementary Figure 5). In
the ASSURE network, the lower sensitivity of the response
time with respect to changes in Kd is likely due to the
imbalance in the abundance of P1 and P2. The ‘ready state’
ensures that the system can operate efficiently at lower affinity
between P1 and P2, facilitating evolvability.

Exploration of the effects of changing multiple model
parameters on the temporal responses of the SPF and ASSURE
models revealed the same pattern of robust responses in the
ASSURE system (Supplementary Figures 6 and 7). Interest-
ingly, for some parameter sets, the SPF model does not respond
to the stimulus whereas the ASSURE model for the same
parameter sets readily responds (see the high Kd values in
Supplementary Figures 6, 7 and 8).

We next investigated, in the context of a model of
evolutionary variations to pathway kinetic parameters,
whether there is a difference between the ASSURE and SPF
networks in terms of the frequencies with which network
perturbations would lead to substantially slower network
induction or inability to induce. Across randomly parameter-
ized SPF and ASSURE models, the distribution of response
times of the ASSURE model is significantly different (Po10� 4)
than the distribution of response times of the SPF model, with
the ASSURE model’s t0.5 distribution having a much smaller
right tail (Figure 2I; Supplementary Figures 9A and B;
Supplementary Table 1). Thus, randomly parameterized SPF
networks were more likely to be slow at inducing (t0.5415
min) than were ASSURE networks. The coefficient of variation
of the ASSURE t0.5 distribution was 21.4% lower than the
coefficient of variation of the SPF t0.5 distribution. Further-
more, across random parameterizations, the frequency with
which the SPF model failed to respond was higher than for the
ASSURE model (Supplementary Figure 9C).

Next, to gain insight into the ‘evolvability’ of the motifs,
we studied how random single parameter changes would
affect the response times for the SPF and ASSURE models
with randomly generated parameter sets. For each model
class, an ensemble of models was generated by randomly
generating vectors of parameter values (Supplementary
Table 1), and the response time of each model in the ensemble
was calculated. Then, for each model, a single parameter,
selected at random, was perturbed by a random amount, to
simulate a single evolutionary change, and the resulting
change Dt0.5 was calculated. This analysis revealed that
the distribution of the Dt0.5 values for the SPF model class
had a markedly longer tail than the distribution for the
ASSURE model class (Po10� 4), indicating that the response
times of models of the ASSURE class are, overall, less affected
by single parameter perturbations than models of the SPF
class (Supplementary Figure 10A). Moreover, single-para-
meter perturbations in models of the SPF class were more
likely to cause a failure to respond, than were single-parameter
perturbations in models of the ASSURE class (Supplementary
Figure 10B).

Steady-state bifurcation analysis of the SPF and ASSURE
models revealed that both models have parameter ranges in
which they have bistable responses (which would correspond
to heterogeneous responses across a cell population (Acar
et al, 2005)); however, the ASSURE system shows bistability
over a significantly smaller range of ka and Kd parameter
values compared to the SPF model (Supplementary Figure 11).
This property of the ASSURE system may be indicative of
additional advantages for this motif, namely, preserving the
system’s monostability and controllability, over a wide range
of heterodimer affinities (Kd) and activities (ka) that are subject
to change during evolution.
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To experimentally validate the ASSURE network motif role,
we compared the responses of a wild-type (WT) ASSURE I
network (Figure 3A) and an engineered version that
mimics the symmetric feedback network (Figure 3B and
Supplementary Figure 12). The WT ASSURE I network forms
the core of the fatty acid-responsive gene regulatory network
in S. cerevisiae. A heterodimer of Oaf1p/Pip2p, is activated by
the direct binding of oleate to the Oaf1p ligand binding domain
and the activated Oaf1p/Pip2p heterodimer upregulates the
expression of the PIP2 gene (Rottensteiner et al, 1997). In
the engineered strain the OAF1 gene is placed under control of
the PIP2 promoter so that it is also positively upregulated
by the activated Oaf1p/Pip2p heterodimer, forming a ‘sym-
metric’ positive feedback loop (Figures 3B and C). The
symmetric positive feedback type I (SPF I) model, the analog
of the engineered experimental system, reproduces exactly the
SPF model when the degradation rates are equal (ku

P1¼ ku
P2).

While the kinetics of the SPF I model change relative to the SPF
model when ku

P1aku
P2, the characteristics of the response

remain the same (Supplementary Figure 12). Thus, in these

models homo- and heterodimers can be treated equivalently
within a set of given parameters. Oaf1p half-life is 55 min
(Beyer et al, 2004) slightly more than that of Pip2p (40 min)
(Belle et al, 2007). This difference in protein degradation is
compensated for by the opposite differences in the half-lives of
corresponding mRNAs (15 min for OAF1 mRNA and 22 min for
PIP2 mRNA (Holstege et al, 1998)). The comparable levels of
Oaf1p and Pip2p make the engineered strain a reasonable
system to explore the symmetric feedback network.

The oleate response of the WT and engineered strains was
measured at the protein level using flow cytometry, replicated
6 times over a matrix of varying conditions (Figure 3D and
Supplementary Figure 13). Despite the potential for additional
control mechanisms operating in the context of the larger
cellular network, for example the differences in response times
between the early log phase and mid/late log phase cultures
(Supplementary Figure 13), the in vivo responses measured
here mirrored the predictions from the model simulations
discussed above. While both the ASSURE I and engineered
‘symmetric’ feedback motifs yielded switch-like responses,
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the ASSURE I motif yielded a response that was more rapid
(t0.2B3 h) and controlled, whereas the engineered motif led to
a slower response (t0.2B8 h) and to the overproduction of the
target protein (Figure 3D).

To address the role of the ASSURE motif in the context of a
cellular phenotype we hypothesized that the altered kinetics of
the transcriptional response would result in a decreased
competitive advantage of the engineered strain. To test this
hypothesis we performed fitness assays in which the wild type
and engineered strains were co-cultured in conditions that
alternated between oleate and glucose carbon sources
(Figure 3E). An advantage of this experimental design is that
it is internally controlled; both strains are co-subjected to the
same experimental conditions (see Materials and Methods).
The engineered strain was specifically disadvantaged under
oleate growth conditions compared to the wild type strain
(Figure 3E) while under glucose growth conditions no fitness
disadvantage for the engineered strain was observed
(Supplementary Figure 14). In an environment that is switch-
ing back and forth between oleic acid as the sole carbon source
and glucose as sole carbon source, the organism has to
repeatedly activate the peroxisome biogenesis gene regulatory
network and induce peroxisomes. We interpret these data to
indicate that the kinetics of the response conferred by the
ASSURE motif endow the system with a fitness advantage,
contributing to its use and evolutionary persistence in a wide
range of organisms and regulatory networks.

Discussion

Here, we theoretically and experimentally investigated dyna-
mical properties of the highly prevalent ASSURE network
motif, which lies at the heart of numerous networks
controlling many essential biological functions. In the ASSURE
motif, a heterodimer forms in response to a signal to regulate
the activity of downstream targets; one component of the
heterodimer acts as a sensor of the signal, and one (and only
one) component is also the target of feedback regulation by the
heterodimer itself. This motif confers numerous fundamental
properties including precise, tunable and robust control of
responses to environmental stimuli and is central to many
different biological processes (Table I). It seems likely that this
is because of the properties we have exposed here. For
example, RAR binding to retinoic acid induces formation of the
nuclear receptor RAR/RXR heterodimer, which in turn
regulates numerous aspects of vertebrate morphogenesis,
growth, cellular differentiation, and tissue homeostasis
(Mark et al, 2006). The regulatory circuit is predicted to be
robust and controlled, ensuring the appropriate execution of
developmental programs.

In the immune system, the host innate response is often
considered a double-edged sword (Kobayashi and Flavell,
2004; Liew et al, 2005). A rapid host defense against harmful
pathogens is essential, but at the same time, if the immune
response is unregulated, the overproduction of proinflamma-
tory cytokines may result in inflammation-associated sequelae
(Kobayashi and Flavell, 2004). IRF3 and IRF7 are central
regulators of certain chemokine genes and type I interferon
(INF) genes that are essential for host antiviral response

(Janeway and Medzhitov, 2002; Tamura et al, 2008); IRF3 and
IRF7 form an ASSURE motif. IRF3 levels are constitutive,
whereas IRF7 is expressed at a low level under normal
conditions (Honda and Taniguchi, 2006; Tamura et al, 2008).
When activated, an IRF3/IRF7 heterodimer forms leading to
the upregulation of the type I interferons IFN-a and IFN-b,
triggering a positive-feedback upregulation of IRF7, which in
turn leads to the full induction of type I IFN genes during the
host antiviral response (Tamura et al, 2008). While in this case
the activation occurs through phosphorylation, and feedback
on IRF7 occurs indirectly by interferons, the essential features
of the motif remain. The system response is predicted to be
reliably controlled, which is critical for balanced yet rapid,
antiviral and inflammatory responses.

Importantly, the ASSURE network motif ‘buffers against’
variations in the affinity between partners in the heterodimer.
This buffering feature of the motif can enable the evolution of
new activities and partners through gene duplication. In
principle both proteins of a heterodimer in the ASSURE
network motif can bind ligands, which could, in turn, alter the
affinity of the heterodimer. For example, PPAR/RXR hetero-
dimers can be activated by PPAR or RXR ligands (Westin et al,
1998) and even if different ligands alter the Kd of the
heterodimer (Yue et al, 2005) the ASSURE network behavior
would remain essentially unchanged.

On the other hand, the control and robustness of the
ASSURE system are highly sensitive to the abundance of the
protein that is not subject to feedback upregulation, with
increased abundance leading to stronger responses. From an
evolutionary standpoint there are many factors that can
operate to control levels of the constitutive protein (synthesis,
turnover, localization etc.). We expect that these factors
contribute in combination to control and buffer systems that
contain the ASSURE network motif. Indeed in our experi-
mental exploration of induction parameters by flow cytometry
(Supplementary Figure 13), we identified conditions that
change the response types within the predicted range of
profiles (Figure 3 and Supplementary Figures 12). In addition,
the ASSURE network motif properties discovered here are
applicable to any combinatorial up or down regulatory event
where two or more factors are involved, including cofactors/
coactivators, and at least one component is not subject to
feedback, but feedback is dependent on that component.

Investigation of the ASSURE network in the model system of
yeast responding to oleate demonstrated that this network
contributes to a fitness advantage, which at least partially
explains its prevalence and reuse in many biological systems.
Comparing the dynamics of transcription from the natural
ASSURE network and the engineered SPF validated the
predictions made from in silico studies. Specifically, a key
difference between these motifs is the response times upon
induction with oleate. These altered transcriptional rates likely
result in a fitness disadvantage through a multitude of
downstream effects such as delayed organelle biogenesis,
potential increases in reactive oxygen species at early time
points or a potential increase in the translational burden at
later time points. Accordingly, delayed expression of targets of
Oaf1p and Pip2p, conferred by, for example deletion of the
histone variant Htz1 (Wan et al, 2009; Saleem et al, 2010) leads
to a delay in biogenesis and reduced viability in oleate
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conditions (Smith et al, 2006; Lockshon et al, 2007). Another
key difference between these motifs is the ability to control the
level of the response. More of the reporter protein, Pot1p-GFP,
was observed in the engineered strain at later stages of
induction, which may also underlie the oleate specific
competitive disadvantage of this strain. Regardless, the relative
poor performance of cells in which the ASSURE network has
been replaced is founded in differences in transcription, with
the ASSURE motif contributing to fast response times and
constraining the level of the system response.

Understanding the dynamical properties of the ASSURE
network motif also has value in rational drug design and
development of optimal treatment procedures. For example,
PPARg, a nuclear receptor which forms an ASSURE network
motif in combination with RXR, has been implicated in the
pathology of numerous diseases including atherosclerosis,
diabetes and cancer and is a prominent and widely studied
drug target (Varga and Nagy, 2008). We predict, based on this
study, that PPARg/RXR-based responses would be relatively
insensitive to drug concentration differences, and as concen-
trations of a drug or other xenobiotics increase, the core
PPARg/RXR-based response would be similar. In addition, we
expect that the core PPARg/RXR-based response would be
tolerant to the introduction of a drug that affects the affinity
between PPARg and RXR.

The persistence of the ASSURE network motif through
evolution and its central role in many diverse regulatory systems
are evidence of the advantages conferred by the dynamical
features we describe here. Moreover, as biological regulatory
systems are increasingly harnessed in synthetic biology applica-
tions, the precise control and robustness of the ASSURE network
motif make it an attractive tool for synthetic molecular
regulatory systems with predetermined and tunable functions.

Materials and methods

Strain construction

An engineered cassette consisting of the HPH gene amplified from the
pFA6a-hphNT1 (Janke et al, 2004), and a 500 bp region upstream from
the start of the PIP2 ORF, which herein is described as the PIP2
promoter, was constructed by assembly PCR (Supplementary Table 2).
This cassette contained 40 bp of homology facilitating integration of
the construct into the OAF1 50 UTR and OAF1 ORF. Correct integration
of the engineered promoter was confirmed by both diagnostic PCR and
DNA sequencing.

Positive clones containing the OAF1 ORF under the control of the
PIP2 promoter were then transformed with a PCR cassette which
incorporates GFP at the 30 end of the oleate responsive gene POT1. The
functionality of this construct was tested by inducing the cells with
oleate and observing the GFP signal by flow cytometry and the
localization of Pot1p-GFP to peroxisomes by fluorescence microscopy.
Construction of the wild-type Pot1p-GFP strain was described
previously (Saleem et al, 2008). The wild type and engineered strains
are genetically identical, with the exception of the insertion of the PIP2
promoter at the 50 end of the OAF1 ORF (and an HPH drug resistance
gene upstream of the ectopic PIP2 promoter) in the engineered strain,
which generates the SPF I topology (Supplementary Figure 12) with
respect to the oleate responsive transcription factors, Oaf1p and Pip2p.

OAF1 was genomically tagged by homologous recombination, using
an integration cassette with OAF1 30 ORF and 30 UTR homology
(Supplementary Table 2), amplified from the pFA6-13MYC plasmid
(Wan et al, 2009). Correct integration of the myc tag was confirmed by
both diagnostic PCR and DNA sequencing.

Cell culture, protein extraction and western blot
analysis

Cells were grown overnight in YPBD (0.3% yeast extract, 0.5%
peptone, 0.5% potassium phosphate buffer, pH 6.0, 2% glucose) to an
OD600 of approximately 1.0. For protein extractions, cells were
transferred to YPB-low glucose (0.15%) and either grown in YPB-low
glucose (0.15%) only or induced with 0.2% oleate, 0.5% Tween 40.
Samples were collected at the indicated times (Figure 3C), the media
removed and the cells resuspended in a lysis solution of 264 mM NaOH,
152 mM 2-mercaptoethanol. After a 10 min incubation on ice,
tricholoracetic acid was added to a final concentration of 6% and
proteins precipitated for 10 additional minutes on ice. Precipitated
proteins were pelleted by centrifugation and resuspended in a solution
of 6.5% SDS, 0.5 M Tris base and 15% glycerol. The samples were
heated at 95 1C and proteins resolved on 4–12% gradient gels. Myc-
tagged Oaf1p was detected by western blot analysis using an anti c-Myc
9E10 mouse monoclonal antibody (Abcam). An anti Gsp1p rabbit
polyclonal antibody was used to detect Gsp1p as a load control.

Flow cytometry

Six replicates of each strain were assayed over a matrix of experimental
conditions, varying pre-culture conditions (2% glucose or 0.15%
glucose), cell densities (OD600 of 0.4, 0.8, or 1.6) and oleate
concentrations (0.2% or 1%) (Supplementary Figure 13). At the
indicated time points (Figure 3D and Supplementary Figure 13), 20ml
of induced cells were added to 100 ml of dH2O in a 96-well flat-
bottomed plate and analyzed by flow cytometry for total GFP
fluorescence. Flow cytometry was done using a FACSCalibur (BD
Biosciences) with the following parameters: forward scatter, E0
haploid linear scale; side scatter, 520 V linear scale; fluorescence,
490 V logarithmic scale. Cells were loaded onto the FACSCalibur using
the high throughput sampler (BD Biosciences). The high throughput
sampler was run in standard mode, sampling 10 ml at a rate of 2 ml/s for
a total event count of 10 000 cells.

Competition assay

The competitive fitness of the wild type versus the engineered strains
was investigated under time varying oleate and glucose conditions.
Cells from wild type and engineered strains were mixed 1:1 and grown
in YPD to an OD600 of approximately 0.5. At the times indicated in
Figure 3E, cells were transferred between YPBO and YPBD (0.15%
glucose). At 0, 24, 48 and 72 h, the cultures were sampled and then
reseeded at 1:5 to ensure they did not reach saturation. For sampling,
10 technical and two biological replicates of equal volumes of dilutions
were plated onto YPD, which is nonselective and allows both strains to
grow equally, and YPD with 400 ug/ml Hygromycin B (HPH; Sigma)
medium, to select for the engineered strain. Under conditions in which
the engineered strain showed no advantage or disadvantage the
expected number of colonies on the YPD-HPH plate would be half of
the number of colonies on the YPD plate.

Mathematical modeling

The ordinary differential equations for the ‘No feedback’, symmetric
and asymmetric feedback systems are as follows:

‘No feedback’ model:

dg
dt ¼ ksfðdðdðs; P;KspÞ;dðs; P;KspÞ;KdÞÞ� kug; 8g 2 Targetf g
dP
dt ¼ 0

(
;

SPF model:

dg
dt
¼ksfðdðdðs; P;KspÞ; dðs; P;KspÞ;KdÞÞ�kug; 8g 2 P;Targetf g;

ASSURE I model:

dg
dt ¼ ksfðdðdðs; P1;KspÞ; P2;KdÞÞ�kug; 8g 2 P2;Targetf g
dP1

dt ¼ 0

(
;
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ASSURE II model:

dg
dt ¼ksfðdðdðs; P1;KspÞ; P2;KdÞÞ� kug; 8g 2 P1;Targetf g
dP2

dt ¼ 0

(
;

SPF I model (see Supplementary Figure 12):

dg
dt
¼ksfðdðdðs; P1;KspÞ; P2;KdÞÞ� kug; 8g 2 P1; P2;Targetf g;

where d(x, y, K) represents the quasi-steady-state concentration of the
heterodimer between x and y with the dissociation constant K
calculated using the following equation:

dðx; y;KÞ¼ K

2
1þ xþ y

K
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ xþ y

K

� �2

� 4xy

K2

r !
:

d(x, y, K) is a solution of the quadratic equation (x� d) (y�d) ¼ Kd
that is derived from the steady-state assumption for the reversible
biomolecular reaction xþ y,

K
d. In the case of a homodimer, x¼ y.

f(z) represents a fractional activity of the target gene which is a
function of the activator z. f(z) is calculated using the following
equation:

fðzÞ¼
k0 þ z

ka

� �h

1þ z
ka

� �h
:

For example, f(d(d(s,P1,Ksp),P2,Kd)) represents the fractional activity
of the ASSURE target gene that is a function of the concentration of the
heterodimer between P2 and another heterodimer between s and P1 in
the model with Kd and Ksp dissociation constants, respectively.

Parameter values for results presented in Figure 2 are following:
ks¼ 10 min� 1, ku¼ 0.1 min� 1, k0¼ 0.1, ka¼ 40 a.u., h¼ 2, Ksp¼ 10� 3

a.u., Kd¼ 10� 5 a.u., s¼ 103 a.u. The unregulated component of the
heterodimer (P1 in ASSURE I and P2 in ASSURE II) is set to a
corresponding constant value. The Equations were solved numerically
with Matlab 7.9.0. The models are available in SBML format at
BioModels database (http://www.ebi.ac.uk/biomodels-main/) (SPF
ID: MODEL1203010000; ASSURE I ID: MODEL1203010001; ASSURE II
ID: MODEL1203010002; ‘No Feedback’ ID: MODEL1203010003; SPF I
ID: MODEL1203010004).

Computational analysis

The response time (tx) was calculated as the time that the system takes
to reach x portion of its response between the initial and steady-state
levels. A P-value for the comparison of the distributions of t0.5 values
for the SPF and ASSURE models in Figure 2I was calculated based on
the two-sample Kolmogorov-Smirnov test using the kstest2 MATLAB
routine. The response time probability density in Figure 2I was
estimated using the ksdensity MATLAB routine.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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