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Abstract

Background: The T cell attracting chemokine CCL18 is produced by antigen presenting cells and
a role for CCLI8 has been suggested in the pathogenesis of a variety of diseases. Rheumatoid
arthritis (RA) is one of these conditions, in which abundant CCL 8 production is present. Although
Th2 cytokines and IL-10 are known to have an effect on CCL18 production, there are several gaps
in our knowledge regarding the exact regulation of CCL|8 secretion, both in general and in RA. In
this study we provide new insights in the regulation of CCLI8 secretion by monocytes and
dendritic cells.

Results: In contrast to a large panel of pro-inflammatory stimuli (IL-13, TNF-o,, IL-10, IL-13, IL-15,
IL-17, IL-18, IFN-y), T cell mimicking molecules (RANKL, CD40L) or TLR driven maturation, the
anti-inflammatory IL-10 strongly stimulated DC to secrete CCLI8. On freshly isolated monocytes,
CCL 18 secretion was induced by IL-4 and IL-13, in strong synergy with IL-10. This synergistic effect
could already be observed after only 24 hours, indicating that not only macrophages and dendritic
cells, but also monocytes secrete CCLI8 under these stimulatory conditions. A high CCLI8
expression was detected in RA synovial tissue and incubation of monocytes with synovial fluid from
RA patients clearly enhanced the effects of IL-4, IL-13 and IL-10. Surprisingly, the effect of synovial
fluid was not driven by IL-10 of IL-13, suggesting the presence of another CCL 18 inducing factor in
synovial fluid.

Conclusion: In summary, IL-10 synergistically induces CCL 18 secretion in combination with IL-4
of IL-13 on monocytes and monocyte derived cells. The effects of IL-14, IL-13 and IL-10 are strongly
enhanced by synovial fluid. This synergy may contribute to the high CCL18 expression in RA.
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Background

Rheumatoid arthritis (RA) is a chronic autoimmune dis-
ease that is mainly characterized by inflammation of the
synovial tissue (ST), leading to cartilage and bone destruc-
tion. Influx of different inflammatory cells into the ST and
enhanced production of cytokines and chemokines are all
well known features of RA. Chemokines are small pro-
teins that act as key players in the chemo-attraction of dif-
ferent leucocytes and perform their chemo-attractive task
through interaction with their receptor on the target cell.
Several chemokines have been shown to be abundantly
present in RA ST at highly strategic sites [1-3], which sug-
gests a role for these chemokines in the pathogenesis of
RA. In this respect, chemokines could be regarded as
promising therapeutic targets in RA. This concept has
already been translated to the clinic, since the blockade of
C Chemokine Receptor 1 (CCR1) has recently been
shown to be clinically effective in the treatment of RA [4].

Antigen presenting cells (APC), such as dendritic cells
(DC) and macrophages (M®), are generally accepted as
critical mediators in the complex pathogenesis of RA [5-
7]. APC produce a multitude of chemokines that attract
specific T cell subsets. Such chemokines are likely to play
a critical role in the regulation of immune responses, since
they orchestrate the spatial and temporal interaction
between APC and T cells, which determines the fate and
nature of the immune response. Evidence for this concep-
tual framework came recently from the observation that
blocking APC-T cell interactions using CTLA4-Ig led to a
significant reduction of disease activity in RA [8]. Several
chemokines orchestrate the attraction of T cells toward
DC. It is tempting to speculate that interfering with these
chemokines would lead to similar effects on disease activ-
ity as the direct blockade of T-cell DC interaction. Of this
group of T- cell attracting chemokines, CCL18 and
CXCL16 recently came out as potentially interesting tar-
gets in RA from previous research by our group and others
[9-13].

CC chemokine ligand 18 (CCL18, also DC-CK-1, PARC,
AMAC-1) was first identified as a naive T cell attracting
chemokine [14-16]. Next to chemo-attraction, CCL18
plays a role in stimulation of collagen production by
fibroblasts [17]. Despite numerous attempts to identify its
receptor, CCL18 is still an orphan chemokine. In vivo,
CCL18 expression was first found in high quantities in the
lung, which is caused by the abundant expression by alve-
olar macrophages [15]. In vitro, DC and M® have been
identified as CCL18 producers [14-16,18,19]. To date, a
substantial amount of data points toward the enrichment
of DC and M® in the synovial tissue which likely to be
responsible for the increased levels of CCL18 in RA syno-
vial tissue and synovial fluid (SF) compared with that
from healthy individuals [18,20]. In this line, CCL18 has
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been identified as a clinical marker in Gaucher's disease, a
condition in which M® activation is likely to play a role
in the pathogenesis [21,22]. In addition, a role for CCL18
has been suggested in a large variety of diseases, such as
systemic sclerosis and acute lymphoblastic leukaemia
[23,24]. In RA, we recently found that circulating CCL18
levels are elevated compared with controls and correlated
with disease activity (van Lieshout et al. manuscript sub-
mitted). Moreover, CCL18 mRNA expression by DC from
RA patients was shown to be higher than by DC from
healthy controls, which could be influenced by blockade
of TNF-a [10,13]. The exact regulation of CCL18 protein
secretion however is complicated and the studies pub-
lished thus far have led to controversial results [18,19,25-
27], as elegantly reviewed by Schutyser et al [28].

In order to clarify the mechanism of CCL18 expression
and secretion in RA, we investigated the role of a large
panel of inflammatory mediators known to play a role in
the disease process on CCL18 secretion. Here we show
that CCL18 secretion by monocytes and DC is regulated
by synergistic effects between 1L-4/IL-13, IL-10 and RA SF,
whereas pro-inflammatory cytokines and Toll-like recep-
tor (TLR) ligands did not have any influence on CCL18
secretion. These data add novel information to the puzzle
of increased CCL18 expression in RA.

Results

IL-10 strongly enhances CCL 18 production by moDC while
maturation and pro-inflammatory mediators do not

First we investigated whether several mediators that are
known to be important in RA were able to enhance CCL18
production by MoDC. In line with previous studies,
unstimulated immature DC (iDC) produced significant
amounts of CCL18 [19]. Interestingly, incubation with
TNF-o, IL-1B, IL-13, IL-15, IL-17, IL-18 and IFN-y did not
stimulate CCL18 secretion when added to day 6 iDC (n =
6). In contrast, the anti-inflammatory IL-10 strongly
induced CCL18 production by iDC (p = 0.03) (figure 1a).
Next we tested whether factors well known to induce mat-
uration or T cell mimicking could induce CCL18 produc-
tion. These experiments demonstrated that LPS, CD40L
and RANKL did not enhance CCL18 production (n = 3)
(figure 1b). Recent studies demonstrated that other TLR
pathways than TLR4 are all capable of inducing DC matu-
ration, but have different effects on cytokine production
[29-31]. However, stimulation of TLR2 (pamjcys), TLR3
(poly (i:c)), TLR4 (LPS) or TLR7/8 (R848) did not sort any
effect on CCL18 secretion (n = 6) (figure 1c), whereas they
did elicit a potent cytokine response [31]. Since IL-13 is
more abundantly present in RA than IL-4 and since some
conflicting results have been published on CCL18 produc-
tion induced by LPS when DC were cultured with IL-13 vs.
IL-4, we compared these culture methods (n = 6). In both
the IL-4 and IL-13 cultures, IL-10 strongly induced CCL18
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IL-10 induces CCL 18 secretion by monocyte derived dendritic cells. Panel A depicts CCLI8 secretion by MoDC (cul-
tured with IL-4 and GM-CSF) upon stimulation with TNF-a, IL-13, IL-10, IL-13, IL-15, IL-17, IL-18 (all 20 ng/ml) and IFN-y (10
ng/ml) (n = 6). Panel B depicts CCL18 secretion by MoDC upon stimulation with LPS (2 pg/ml), CD40L or RANKL (20 ng/ml)
(n = 3). Panel C depicts CCLI8 secretion upon stimulation upon TLR2 (pamjscys, 10 pg/ml), TLR3 (poly (i:c), 25 ug/ml), TLR4
(LPS, 2 ug/ml) or TLR7/8 (R848, | ug/ml) mediated stimulation (n = 5) In all experiments, a direct comparison was made with
unstimulated cells. The bars represent the mean (+ SEM) CCLI8 secretion in pg/ml. * represents a p-value of <0,05 (Wilcoxon

Signed Rank test)

(p =0.03 for both IL-4 and IL-13 culture), while LPS again
did not (figure 2). In addition, IL-10 in combination with
LPS was not significantly different from IL-10 alone (fig-
ure 2). Also co-stimulation with LPS and the cytokines
tested (as in figure 1) did not sort any effect on CCL18
secretion (data not shown).

IL-10 acts in synergy with IL-4/L-13 in promoting CCLI8
production by monocytes

MoDC and alternatively activated M® (AaM®) [32,33]
are known to produce CCL18. Both these cell types origi-
nate from CD 14+ monocytes and depend on IL-4 or IL-13
(in combination with GM-CSF for MoDC) for their differ-
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Similar pattern of CCLI18 production by IL-4 vs. IL-13 cultured monocyte derived dendritic cells. Inmature
MoDC were initially cultured with either IL-4 or IL-13, in combination with GM-CSF. On day 6, these immature DC were
stimulated for 48 hours with IL-10 (20 ng/ml), LPS (2 pg/ml) or both. The bars represent the mean (x SEM) CCLI8 (pg/ml)
production/ml of 6 individual experiments. * represents a p-value of <0,05 (Wilcoxon Signed Rank test)

entiation. To determine whether CCL18 secretion by mye-
loid cells is dependent on these cytokines, monocytes
were freshly isolated and stimulated with GM-CSF, 1L-4,
IL-13 and IL-10 alone or in combinations (n = 6). Even
after 6 days, unstimulated and GM-CSF treated mono-
cytes/macrophages did not secrete CCL18, whereas both
IL-4 and IL-13 stimulation resulted in a clear secretion of
CCL18, which is in line with previous findings on AaM®
[16]. Interestingly, stimulation with IL-10 alone only had
a minimal effect on CCL18 production by these mono-
cytes/macrophages. When IL-10 was provided together
with IL-4 or IL-13, this resulted in 3- and 2-fold increase
in CCL18 secretion respectively (figure 3). Interestingly,
already in low concentrations, IL-10 had its synergistic
effect with IL-4 (figure 4a). In order to rule out effects of
adherence, we cultured CD14+ monocytes/macrophages
for three days in teflon bags [34] and in rotation discs
[35]. The morphology of these cells was comparable with
freshly isolated monocytes according to their forward/side
scatter pattern (data not shown). In both cultures, IL-4 did
still induce CCL18 production in the same way as the cul-
tures in 24-wells plates (figure 4b). As a proof of principle,
we next tested whether the synergy between IL-4/IL-13
and IL-10 could already be observed after only 24 hours.
Intriguingly, we could indeed observe a clear CCL18 secre-
tion after 24 hours upon stimulation of freshly isolated
monocytes with 1L-4/IL-13 and IL-10, whereas stimula-
tion with IL-4, IL-13 or IL-10 alone did only result in a

minor or even undetectable CCL18 secretion (n = 3) (fig-
ure 4c). Since IL-10 appeared to synergize with 1L-4 and
IL-13, we investigated whether these cytokines could up-
regulate each other's receptors, possibly resulting in
enhanced signaling. This was not the case; IL-10 did not
up regulate either the IL-4/IL-13 common receptor IL-
4Rol or the specific IL-13Ra2. Furthermore, IL-4 had no
effects on IL-10Ra (data not shown).

RA synovial fluid enhances CCL | 8 secretion independently
of IL-10 and IL-13

We and others demonstrated CCL18 expression in RA ST
in the lining and the peri-vascular regions [10,20]. In fig-
ure 5, we show a high CCL18 expression in RA synovial
tissue (figure 5a,b,c), which was preferentially located in
both the synovial lining layer and the peri-vascular
regions. Intriguingly, CCL18 was also expressed in control
synovial tissue, although not as abundant as in RA ST (fig-
ure 5d,e,f). Notably, some parts of the sections were even
negative for CCL18, which is in sharp contrast with RA. In
order to explain the abundant CCL18 expression in RA,
we tested whether incubation with RA SF could induce
CCL18 production on monocytes/macrophages. Since RA
SF itself contains CCL18 [18,20], we cultured freshly iso-
lated monocytes for 3 days in the presence of SF, washed
the cells and cultured on for another 3 days in the absence
of RA SF (n = 6). Firstly, this pre-incubation with RA SF
resulted in marked CCL18 production (mean 676 (+ 151)
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Synergistic effect on CCL18 secretion by monocytes
upon stimulation with IL-4/IL-13 in combination with
IL-10. MACS isolated monocytes were cultured for 6 days
and stimulated on day | with IL-4 (500 U/ml), IL-13 (20 ng/
ml), IL-10 (20 ng/ml) or a combination of the cytokines. The
bars represent the mean (+ SEM) CCL18 (pg/ml) of 6 individ-
ual experiments. In all experiments, a direct comparison was
made with with unstimulated cells. ND = not detectable. *
represents a p-value of <0,05 (Wilcoxon Signed Rank test)

pg/ml) (figure 6b). Secondly, culture of freshly isolated
monocytes in the presence of RA SF, resulted in a 9- and
10-fold increase in CCL18 secretion upon stimulation
with IL4/IL-13 respectively and a 22-fold increase com-
pared with IL-10 alone (figure 6a). Intriguingly, this syn-
ergistic effect with IL-4, IL-13 and IL-10 could still be
observed after 3 days of culture in the complete absence of
RA SF (figure 6b), indicating that the cell does not require
a continuous stimulation in order to secrete CCL18. To
exclude intrinsic differences between monocytes/macro-
phages from RA patients and controls may contribute to
the effects on CCL18 secretion, we tested whether mono-
cytes/macrophages from RA patients (n = 3) responded
differently to combinations of 1L-4, IL-13, IL-10 and SF.
No difference in the CCL18 secretion pattern was
observed between monocytes/macrophages of healthy
controls and RA patients upon these stimuli (data not
shown), ruling out intrinsic differences in monocytes in
RA that affect CCL18 secretion.

Since the synergy caused by RA SF appeared similar to the
synergy between cytokines we already observed (figure 4),
we tested whether IL-10 and/or IL-13, both present in RA
SF, were responsible for this phenomenon by blocking
these cytokines with neutralizing antibodies. The potency
of these antibodies was first tested by determining their
ability to inhibit the synergistic CCL18 secretion upon
stimulation with a combination of IL-10 and I1L-4/IL-13.

http://www.biomedcentral.com/1471-2172/7/23
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Synergistic CCL18 production by monocytes upon
stimulation with IL-4 and IL-10 can be induced rap-
idly and by low concentrations of IL-10. Panel A depicts
CCL8 secretion by monocytes upon stimulation with differ-
ent doses of IL-10 in the presence of IL-4. Panel B represents
CCL18 secretion by monocytes that were cultured for three
days in the presence or absence of IL-4 in teflon bags or rota-
tion discs to prevent adherence. Panel C depicts CCLI18
secretion by monocytes that were cultured for 24 hours
with no stimulation or in the presence of IL-4, IL-13, IL-10 or
a combination of IL-4/IL-13 with IL-10. The bars in panel A
and B represent the mean CCLI8 (pg/ml) of duplicates of |
individual experiment and panel C shows the mean (£ SEM)
of 3 separate experiments. ND = not detectable

Addition of anti-IL-10 resulted in a 73% inhibition of the
synergy between IL-4 and IL-10 and anti IL-13 completely
abrogated the synergistic effect of IL-13 with IL-10 (figure
6¢). Unexpectedly however, blockade of IL-10 or IL-13 in
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CCL 18 expression in normal and RA synovial tissue. Panel A and B depict 2 sections of control synovium, where
CCL 18 expression is expressed in parts of the lining and some perivascular regions. Panel D and E depict 2 representative syn-
ovial sections from RA where CCL18 is present in the lining and perivascular regions. Panel C and F represent isotype controls

on RA synovium and that from healthy individuals respectively.

SF in the presence of IL-4 or IL-13 and IL-10 respectively
did not inhibit the synergy between these cytokines and
SF (figure 6a&b), suggesting that SF contains a yet uniden-
tified factor that triggers CCL18 secretion.

Discussion

In this study, we add new pieces to the complicated puzzle
of CCL18 regulation in RA. Firstly, we demonstrate that
CCL18 production can be induced by IL-4, IL-13 and IL-
10 in monocyte derived cells. Secondly, we show that a
large panel of pro-inflammatory stimuli and TLR medi-
ated signals leading to DC maturation are of no influence
on CCL18 production. Thirdly, IL-10 only induces a
minor CCL18 secretion, but acts in synergy with both IL-
4 and IL-13 on monocytes and monocyte derived cells.
Finally, we provide evidence that RA SF is able to induce
CCL18 secretion in strong synergy with IL-4, IL-13 and IL-
10, which could not be inhibited by a blockade of IL-10
and IL-13.

CCL18 can be produced by MoDC as well as by certain
types of M®. Often these cell types are considered to be
totally different cells. However, the differences between
MoDC and AaM® are not that large, since monocyte
derived macrophages are cultured in the presence of GM-
CSF by some groups [36] and both cells require the pres-
ence of [L-4 or IL-13. Penna and co workers demonstrated
that several in vivo DC subtypes were not able to produce
CCL18 [37], which is in contrast with previous findings,
where CCL18 mRNA expression was found on CD11c+
myeloid blood DC [27]. Moreover, in vitro cultured
MoDC have been identified as potent CCL18 producers
[18,19]. These data suggest that a CD14+ monocyte origin
in combination with a stimulation by IL-4/IL-13 is critical
for CCL18 secretion. This hypothesis is strengthened our
data, demonstrating that non-adherent monocytes/mac-
rophages were able to produce CCL18 under the influence
of IL-4. In addition, the synergistic effects of IL-4/IL-13
and IL-10 on CCL18 secretion by freshly isolated mono-
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Figure 6

CCL 18 production by monocytes upon stimulation with RA synovial fluid. Panel A. Monocytes/macrophages were
cultured for three days. A part of the cells were incubated with IL-10, IL-4 or IL-13 alone (left side of the figure) and another
part was incubated with these cytokines in the presence of RA SF (right side of the figure). Half of the latter were also incu-
bated with neutralizing antibodies against IL-10 and IL-13 or both, which is shown by the white, gray and checked bars respec-
tively in panel A. The bars represent the mean CCL18 pg/ml from 6 separate experiments. ND = not detectable. Panel B. The
cells were then washed and only the cytokines were added again to the fresh medium. After another 3 days, supernatant was
measured again. The left side of the figure shows the CCLI18 production upon stimulation with IL-4, IL-13 and IL-10. The right
side shows the production upon stimulation with these cytokines by cells that have been pre-incubated with SF for three days,
in the presence or absence of anti IL-10, anti IL-13 or both (white, gray and checked bars respectively). ND = not detectable. *
represents a p-value of <0,05 (Wilcoxon Signed Rank test). Panel C. The potency of neutralizing antibodies against IL-13 and

IL-10 was tested by investigating their ability to inhibit the synergy between IL-13 and IL-10 and IL-4 and IL-10. The bars repre-

sent the mean (£ SEM) CCLI8 secretion (pg/ml).

cytes were already clearly visible after 24 hours. This indi-
cates that a full differentiation into DC or M® is not
essential for CCL18 production as has been suggested pre-
viously for CCL18 mRNA expression [16]. Thus mono-
cytes rapidly secrete CCL18 upon triggering with the right
stimuli.

In the literature there is still some controversy regarding
the effect of DC maturation on CCL18 production. Vul-

cano and co workers suggested that DC down regulate
their CCL18 secretion upon maturation [19]. This is in
contrast with results from other studies, where maturation
caused an increased mRNA expression [10,26,27]. A sim-
ilar contrast between protein and mRNA was found on
blood DC [27,37]. The reason for these differences
between mRNA expression and protein secretion patterns
still needs to be investigated in detail. Recently, we already
provided evidence that DC maturation does not influence
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CCL18 protein secretion [18], which is further strength-
ened by the data from the present study, in which differ-
ent TLR stimulatory pathways did not induce CCL18
production, whereas full DC maturation was achieved
[31]. Also TNF-oo and CD40L, both well appreciated
inducers of DC maturation [38,39], did not enhance
CCL18 production. Perhaps the discrepancy between the
different reports is hidden in subtle differences in culture
conditions, which are difficult to trace in the published
data. Intriguingly, stimulation with IL-10 alone only lead
to a marginal induction of CCL18 secretion by mono-
cytes/macrophages, but did act in a strong synergy with IL-
4 or IL-13. The latter is not caused by an up regulation of
the receptors IL-10Ro, IL-4Ro or IL-13Ro2 (data not
shown). Probably intracellular pathways direct the syn-
ergy between these cytokines, which is an interesting topic
that warrants further investigation.

We showed that RA SF induces CCL18 production and
strongly synergizes with IL-4, IL-13 and IL-10. Blocking
studies revealed that neither IL-10 nor IL-13 in SF were
responsible for this effect. This suggests the presence of
another, yet unidentified CCL18 inducing factor in RA SF.
Another explanation for this fact might be the presence of
inhibiting factors in SF that counter-regulate the effects of
IL-10 and IL-13. The identification of the factor in SF that
drives the effects on CCL18 secretion may provide impor-
tant new insights to the pro-vs. anti inflammatory balance
in RA. In order to find this factor in a complex fluid like
SF, more knowledge on the pathways of CCL18 regulation
is critical. Another intriguing observation from our study
is the finding that pre-incubation with SF lead to a sus-
tained synergistic CCL18 secretion upon stimulation with
IL-4, 1L-13 and IL-10. This could be regarded as an
"imprinting effect”, meaning that the cell's previous envi-
ronment determines the nature of response to stimuli,
even when the cell is no longer in such an environment.
Results from previous studies, in which we showed that
moDC from RA patients differ in phenotype and cytokine
response from control DC after 6 days in culture might
also be explained by such a phenomenon [40,41].

Upon the encounter of an antigen, DC normally mature
and migrate to lymphoid tissues in order to perform their
task of antigen presentation to T cells. Immature DC or
M® can also encounter naive T cells in the periphery,
which subsequently might result in tolerance [42]. This
peripheral tolerance is a critical mechanism to prevent
auto-immunity. A role for CCL18 in this part might
explain the high expression of CCL18 by alveolar M®
[15,16], which are located at a site where the maintenance
of tolerance to non-pathogenic antigens, that are con-
stantly present, is crucial. Also the synergistic effect on
CCL18 secretion that we found with IL-10, a cytokine that
is well appreciated as a pivotal regulator of the immune
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system, fits in this picture. The synovial lining in the joints
has similarities with the alveolar lining in the lung. They
both consist of M®-like cells and both form a barrier to a
site in which self- and non-pathogenic antigens are con-
stantly present. The disease process in RA is considered to
be driven by pro inflammatory cytokines such as IL-1,
TNF-o, 1L-17 and IL-18 [43-48], whereas CCL18 is regu-
lated by IL-10, IL-4 and IL-13. It is therefore tempting to
speculate that the high CCL18 expression in RA is
designed to uphold peripheral tolerance, which however
seems to fail. This failure might be explained in two ways.
The first explanation might be that the skewing in the bal-
ance towards Th1 is still present despite the upregulation
of anti inflammatory mediators. Secondly, mature DC are
present in the synovial tissue in perivascular regions and
secondary lymphoid organs [3,49], which is in sharp con-
trast with healthy synovial tissue. Therefore an explana-
tion for the ongoing immune process might be that these
mature DC direct naive T cells towards a phenotype that
drives the pro-inflammatory immune response in the syn-
ovial tissue.

Conclusion

In summary, we provide evidence that monocyte derived
cells produce CCL18 under the influence of IL-4 and IL-
13. IL-10 acts in strong synergy with IL-4 and IL-13 as a
key regulator of CCL18 production by monocytes, which
indicates that CCL18 secretion is not confined to fully
developed DC and M®. In addition, the effects of IL-4, IL-
13 and IL-10 are strongly enhanced by RASF, which is due
to yet unidentified factors. Both the in vivo expression pat-
tern and the contributing factors to its regulation in vitro
are suggestive for a role for CCL18 in the regulation of the
immune system, both in health and auto-immune dis-
eases such as RA.

Methods

Patients and samples

For cell culture experiments, 50 ml peripheral blood was
taken from healthy volunteers and RA patients after
receiving informed consent in 10 ml lithium heparine
(Vacutainer, USA) tubes. Synovial biopsies from RA
patients were taken with small needle arthroscopy (Storz,
Tutlingen, Germany). Synovial fluid from RA patients was
obtained during arthroscopy. For our experiments in
which monocytes were stimulated with SF, a pool of SF
from 10 different RA patients was used. Synovial samples
from healthy controls were taken during scheduled
arthroscopic procedures by orthopedic surgeons in
patients with traumatic knee injuries. The Nijmegen med-
ical ethics committee (MEC) approved these studies.

Recombinant proteins and antibodies
For stimulation of iDC, we used 20 ng/ml recombinant
(th) IL-1B, thTNF-o, thIL-10, rhiL-13, rhIL-15, rhIL-17,
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rhIL18, 10 ng/ml IFN-y (all R&D systems, Minneapolis,
USA), or 20 ng/ml RANKL and CD40L (Pepro Tech, Rocky
Hill, USA). DCs were cultured with 500 U/ml IL-4 and
800 U/ml GM-CSF. The same IL-4 concentration was used
for monocyte stimulations. For Toll-like receptor stimula-
tion, 10 pg/ml pamscys (TLR2), 25 ug/ml poly (i:c)
(TLR3), 2 pg/ml lipopolysacharide (LPS) (TLR4), or 1 ug/
ml R848 (TLR7/8) was used [31]. Blockade of IL-10 (Ebi-
oscience, San Diego, USA) and blockade of IL-13 (Dia-
clone, Becanson, France) was achieved with a 1000x
excess of a neutralizing antibody. For FACS analysis, we
used mouse-anti human antibodies against CD14, (Dako,
Glostrup, Denmark), CD83 (Beckman Coulter, Mijdrecht,
The Netherlands), IL-4Ra. (Santa Cruz, California USA),
IL-13Ro. 1T (R&D systems, Minneapolis, USA) and IL-
10Ra. (R&D systems, Minneapolis, USA) or mouse-iso-
type control (goat IgG for IL-13Rall). For ELISA, mouse
anti-human and biotynilated goat anti-human CCL18
were used as capture and detection antibody (R&D sys-
tems, Minneapolis, USA). A standard curve was made
with rhCCL18 (R&D systems, Minneapolis, USA).
Immuno histochemistry for CCL18 was performed with
AZN-CK18B [18] as a primary antibody.

Monocyte/macrophage and MoDC isolation and culture
MoDC were cultured using essentially the same protocol
as described previously [13,40]. In brief, peripheral blood
mononuclear cells were isolated from venous blood by
density gradient centrifugation over Ficoll-Hypaque
(Amersham Biosciences, Roosendaal, The Netherlands).
The interphase was collected and washed with citrated
phosphate buffered saline, and the cells were allowed to
adhere for 1 hour at 37°C in RPMI-1640 (Life Technolo-
gies, Breda, The Netherlands) supplemented with 2%
human serum in culture plates (Costar, Badhoeverdorp,
The Netherlands). Adherent cells were cultured in RPMI-
1640 Dutch modification supplemented with 10% fetal
calf serum L-glutamine (Life Technologies, Breda, The
Netherlands) and antibiotic-antimycotic agents (Life
Technologies, Breda, The Netherlands) (culture medium)
in the presence of IL-4 (500 U/ml; Strathmann Biotech,
Hamburg Germany) and granulocyte monocyte-colony
stimulating factor (GM-CSF) (800 U/ml; R&D systems,
Minneapolis USA) for 6 days. Fresh culture medium with
the same supplements was added at day 3, and then iDC
were harvested at day 6. To generate mature DC, imma-
ture DC were re-suspended in a concentration of 0,5 x
10°/ml in fresh 1L-4 and GM-CSF containing culture
medium. Immature DC were then stimulated with
cytokines or maturation stimuli in the presence of 1L-4
and GM-CSF. DC were harvested after another 48 hours of
culture. For CCL18 measurements in supernatant of cells
stimulated with TLR ligands, aliquoted culture superna-
tant from previous experiments was used [31].

http://www.biomedcentral.com/1471-2172/7/23

For the culture of monocytes/macrophages, CD14+ cells
were isolated with magnetic cell sorting and separation
(MACS). In brief, mononuclear cells were labelled with
anti CD14 microbeads (Miltenyi Biotec, Amsterdam, the
Netherlands) and incubated for 30 minutes at 4°C. CD14
positive cells were then separated from the other cells
using a MACS column (Miltenyi Biotec, Amsterdam, the
Netherlands) according to the manufacturers instructions.
CD14+ cells were cultured in a concentration of 0,5 x 106
cells/ml in culture medium for up to 6 days. Where appro-
priate, fresh culture medium was added on day 3. After 6
days, supernatant was collected for ELISA and cells were
prepared for FACS analysis. In some additional experi-
ments, monocytes/macrophages were cultured for three
days in the same concentration and in the same media in
teflon bags [34] or in rotation discs (Cellon, Luxembourg)
[35] to prevent adherence of the cells. In experiments in
which monocytes/macrophages were stimulated with RA
SF, the cells were cultured for three days in the presence of
100 pl RA SF. Cells were then harvested and re-suspended
in fresh culture medium without SF, but with the
cytokines that were present in the first three days. Anti-I1L-
10 or anti-IL-13 neutralizing antibodies were only present
during the first three days.

Immuno histochemistry

For immuno histochemistry, frozen ST was cut into 7 pm
sections and mounted on slides, air-dried, and stored at -
80°C. Before staining, the cryosections were air-dried,
fixed in acetone for 10 min and air-dried again. The sec-
tions were then stained with 5 pg/ml mouse anti human
CCL18 or isotype control at 37°C for 1 hour at room tem-
perature (RT) and washed in PBS. Endogenous peroxidase
was blocked with 0,3% H,0,/methanol. After another
wash-step, the sections were incubated with a biotin-con-
jugated horse anti-mouse antibody at RT for 30 min. Next,
the samples were washed and incubated with avidin-
biotin-HRP complex (Vector, Burlingham, UK) at RT for
20 min. Next, the section were stained with diaminoden-
zidine (DAB) (Sigma, Zwijndrecht, the Netherlands).
Finally, sections were then counterstained with hematox-
ylin, rehydrated and mounted in to allow microscopic
evaluation of the samples.

Fluorescence-Activated Cell Sorter (FACS) analysis

The phenotype of cells was characterized by using flow
cytometry techniques (FACS). For this aim, cells were har-
vested and collected by means of centrifugation and fur-
ther processed on melting ice. Cells were diluted in buffer
solution (PBS with 1% bovine albumine, pH 7,4) in a
concentration of 1.10° cells/ml and plated in v-shaped 96
wells plates (1.105 cells per plate). Cells were labeled with
monoclonal mouse- or goat anti human antibodies or
mouse-isotype control (goat IgG for IL-13Rall) and incu-
bated at a temperature of 4°C for 45 minutes. Cells were
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then washed and labeled with goat-anti-mouse (or rabbit
anti-goat when appropriate) FITC (Zymed Laboratories,
South San Francisco, USA) as a secondary antibody. After
another 30 minute incubation at 4°C, cells were again
washed, diluted in buffer solution and transferred into
FACS tubes. Cells were gated according to their forward
and side scatters and fluorescence was measured with a
FACSCalibur® (Becton-Dickinson, San Jose, USA) and Cel-
lquest® software.

Enzyme Linked Immuno Sorbent Assay (ELISA)

For the detection of CCL18 protein levels of CCL18 in
supernatant, a sandwich ELISA was performed as
described previously [18,50]. In brief, maxisorb ELISA
plates (Nunc, Roskilde, Denmark) were coated overnight
with 50 pl/well 1 ug/ml capture antibody in PBS. Next, the
plates were washed 3 times with PBS and blocked with
300 ul 1% Bovine Albumin (Sigma, Zwijndrecht, the
Netherlands) in PBS for a minimum of 1 h at RT. After
washing 3 times with ELISA wash buffer (PBS containing
0.05% Tween-20), the plates were incubated with 50 ul/
well of serial dilutions of the sample for 2 hrs at RT. Serial
dilutions of rhCCL18 were used to obtain a standard
curve. After washing 3 times with ELISA wash buffer, the
plates were incubated with 50 pl/well of 0.05 pg/ml sec-
ondary antibody at RT for 1 hr. Thereafter, the plates were
washed 3 times with ELISA wash buffer, and incubated
with 50 pl/well of streptavidin conjugated to Poly-Horse
Radish Peroxidase (CLB, Amsterdam) for 20 minutes at
RT. After washing 3 times with ELISA wash buffer, the
presence of HRP was detected using 50 pl/well 3,3',5,5-
tetramethylbenzidine (TMB) (Biomerieux, Marcy 1'Etoile,
France) diluted in peroxide buffer (UP) (Biomerieux,
Marcy I'Etoile, France). The reaction was stopped with 50
pl/well 2,5M H,SO,. Absorbance was measured at 450
nm using a Magellan Tracker V4.XX (Tecan Austria
GMBH). As an internal control for inter-assay variability,
a sample of pooled normal human serum (n = 300) was
taken along in all assays. The maximal accepted inter-
assay variability is 10%. The detection limit of the ELISA
is 100 pg/ml.

Statistical analysis

CCL18 production levels by monocyte derived cells upon
different stimulations were compared with a Wilcoxon
Signed Rank test. P-values < 0,05 were considered signifi-
cant.

Abbreviations

C Chemokine Ligand 18 (CCL18), Chemokine (CK),
Rheumatoid Arthritis (RA), Antigen presenting cells
(APC), Dendritic cell (DC), Macrophage (M®), immature
DC (iDC), mature DC (mDC), Synovial Tissue (ST), Syn-
ovial Fluid (SF), Toll-like receptor (TLR), Chemokine
Receptor 1 (CCR1), Alternatively activated M® (AaM®),
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Monocyte derived dendritic cell (MoDC), Fluorescence-
Activated Cell Sorter (FACS), Enzyme Linked Immuno
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