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Compositional cyber‑physical 
epidemiology of COVID‑19
Jin Woo Ro1, Nathan Allen1, Weiwei Ai1, Debi Prasad2 & Partha S. Roop1*

The COVID‑19 pandemic has posed significant challenges globally. Countries have adopted different 
strategies with varying degrees of success. Epidemiologists are studying the impact of government 
actions using scenario analysis. However, the interactions between the government policy and the 
disease dynamics are not formally captured. We, for the first time, formally study the interaction 
between the disease dynamics, which is modelled as a physical process, and the government policy, 
which is modelled as the adjoining controller. Our approach enables compositionality, where either 
the plant or the controller could be replaced by an alternative model. Our work is inspired by the 
engineering approach for the design of Cyber‑Physical Systems. Consequently, we term the new 
framework Compositional Cyber‑Physical Epidemiology. We created different classes of controllers 
and applied these to control the disease in New Zealand and Italy. Our controllers closely follow 
government decisions based on their published data. We not only reproduce the pandemic progression 
faithfully in New Zealand and Italy but also show the tradeoffs produced by differing control actions.

The ongoing Coronavirus Disease 2019 (COVID-19) presents an unprecedented global crisis with 30,675,675 
infections and 954,417 deaths as of 20th September  20201. There are now widespread calls for new techniques 
for intervention, including methods of rapid testing even at the  home2. While Epidemiologists are studying the 
dynamics of the diseases using computational models, governments are trying to “flatten the curve”3 to reduce 
the health impacts. This is achieved through Nonpharmaceutical Interventions (NPIs), such as lockdowns and 
social distancing methods 4.

The Majority of the research focus in epidemiology has been on mathematical modelling of the disease 
dynamics. Many governments, like the New Zealand government, have also worked closely with the scientific 
 community5 to arrive at critical decisions. But how can we ascertain which model is better, and in which  settings6? 
There exists no clear methodology to formally capture and classify criteria-based actions of the government7 as 
mathematical models. Also, given the wide variability of government actions globally, how can we formally assess 
them while studying their impact? This paper tries to provide answers to these questions for the first time, by focus-
ing on the compositional modelling of government actions alongside an epidemiological model of the disease.

While at the policy level there has been minimal engineering thinking to provide solutions, it is evident that 
the pandemic and its control bear many similarities with the well known engineering domain of Cyber-Physical 
Systems (CPSs)8,9. In a CPS, a physical process such as the electrical conduction of the human heart (known as 
the Plant) is controlled by an adjoining device such as a pacemaker, also known as a Controller10. This closed-loop 
system mimics the behaviour of a piece-wise continuous phenomena, where the plant’s dynamics is modelled 
using a set of Ordinary Differential Equations (ODEs). The plant makes discrete mode switches based on the 
actions of a discrete controller.

In the setting of COVID-19, we may view the plant as the dynamics of disease progression, already mod-
elled faithfully using several epidemiological  models11,12. The adjoining controller is a state machine that can 
induce mode switches in the plant. Such a closed-loop system may be depicted as shown in Fig. 1a and we term 
this approach Compositional Cyber-Physical Epidemiology (CCPE). Here, the plant provides the state of the 
pandemic encapsulated as a vector of variables X(t), while the controller affects the state of the plant by trying 
to alter the value of the reproduction number R0 , which represents the average number of new infections for 
each infectious person.

There is recent evidence that such engineering thinking may have relevance for COVID-19. The Institute of 
Electrical and Electronics Engineers (IEEE) published an article citing the benefits of the application of such 
feedback control  theory13, which is evidence of concurrent thinking along our lines. However, their work is pri-
marily based on studying the impact of fictitious controllers over a simple disease model, without considering 
the actual data from the current pandemic.
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This paper advocates that a compositional design approach is needed to include the NPI techniques with the 
existing epidemiological models. Such an approach, which we term CCPE, would allow for the creation of more 
realistic models which can answer more questions than any existing individual  model6. This can be used in the 
decision making of a government, with the goal of both minimising the death toll while reducing the economic 
impact of any restrictions.

We use Susceptible, Exposed, Infected, Removed (SEIR)  model11,12 for the illustration of our methodology, 
while stressing that the developed methodology is amenable to any other dynamical model based on ODEs. 
The SEIR model incorporates coupled ODEs, and has been utilised previously in the context of COVID-1914. 
These ODEs capture the progression of a disease through the population, as people become infected, progress 
through their infection, and infect others. SEIR models include variables which represent the population dur-
ing an epidemic which can be in a range of states: susceptible (S), exposed (E), pre-symptomatic (P), infectious 
(I), recovered (R) and deaths (D). The infected and recovered cases are further categorized into untested ( Iu , 
Ru ) and confirmed cases ( Ic , Rc ) to enable control mechanisms which are specific to confirmed cases. The key 
parameter determining if a virus can cause an epidemic is the reproduction number R0 and depends on both the 
transmissibility of the virus and social distancing. For R0 > 1 the virus will spread until herd immunity has been 
established, while for R0 < 1 the transmission will progressively decay until the virus is  eradicated12. In addition 
to R0 , further parameters are used for capturing aspects such as the fatality rate and testing rate.

Government interventions can be used to modify each of these parameters such as the use of NPIs to reduce 
the reproduction number, or increased testing to isolate more confirmed cases. These responses vary between 
countries and typically vary over time depending on the local  situation2,15. For example, New Zealand acted 
with a “hard and fast” response that quickly implemented quarantines and immigration restrictions, similar to 
other countries like  Vietnam16. The New Zealand response implemented an alert system for COVID-1917 which 
comprises four levels of increasingly strict interventions. In this case, the four levels can be modelled as a discrete 
 controller9 which can interact with the continuous SEIR model as a type of CPS. Such an approach can be used 
in order to continuously evaluate the efficacy of the control strategy while the pandemic is still in a relatively 
nascent period and more information is being learned about its dynamics each day.

The use of formal modelling for biological processes has been advocated by Fisher and  Henzinger18, which 
makes a distinction between computational models and executable models. More recently, Bioengineers have 
adopted an executable model called Hybrid Input-Output Automata (HIOAs)10,19 for developing abstract models. 
These abstractions are used to achieve behaviour from  cellular20 to organ  levels21,22. These abstract models are 
also “executable” in the sense that hardware and software implementations may be derived from them so that 
they work as virtual  organs21,23,24.

An HIOA captures both the continuous (i.e. the population model) and discrete (i.e. the government con-
troller) dynamics through the use of an automata with included ODEs. The conversion of the SEIR model into 
HIOA results in the formal model of Fig. 1b, where the two locations capture whether the Intensive Care Unit 

Figure 1.  The proposed compositional design of Compositional Cyber-Physical Epidemiology and simulation 
results. For (d–f), day 0 corresponds to 20th March 2020. For (d,f) these numbers are compared with the 
available New Zealand data.
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(ICU) capacity has been exceeded. The formal nature of these models means that they can be used in simulation 
and code generation frameworks with relative  ease25,26. We have used the recently developed Intensive Care Unit 
(ICU)23, which allows for the specification of a complex network of HIOAs.

To illustrate our methodology we have selected New Zealand and Italy, who have adopted disease management 
approaches that differ in terms of their response speed—where New Zealand is quick to increase restrictions, 
Italy takes comparatively longer. We show that in the case of the four-level New Zealand control, we are able to 
make decisions around the optimal criteria for switching between the control modes to minimise the impact of 
the virus. Our methodology is generic enough and has the potential to be adopted to other alternative settings.

Results
A simple controller in the New Zealand context. The proposed CCPE approach is first demonstrated 
using the New Zealand COVID-19 context using a simple controller we term NZ-C1. The NZ-C1 control strat-
egy is to initiate a strong lockdown measure, which is introduced early and is not lifted until the new infections 
approach zero. We compare against the official data which contains the number of cases (both confirmed and 
probable), recovered, and deaths for every day from 20th March 2020 to 9th September 2020. Also, on 26th 
March 2020 (6 days after the first date in our data), the New Zealand government initiated their full lockdown 
measures, which remained in place until 28th April 2020 when some restrictions began to be eased.

First, we examine the accuracy of our CCPE approach by comparing it to the New Zealand data as a means 
to increase confidence in our predicted future disease dynamics, as per Fig. 1. In our framework, we propose the 
modelling of both the plant and controller as  HIOA9. We create a simple controller (Fig. 1c), which transitions 
into a lockdown mode (LD) 6 days after the start. The controller modes are depicted as two different states of the 
system, namely Pre-LD and LD respectively. Within every mode, we encapsulate a condition that determines the 
maximum time control can reside in a given mode, which is known as the invariant. In the LD mode, however, 
no such invariant is specified. In this case, the invariant is by default true and hence control can remain in this 
location forever. In contrast, control can remain in the Pre-LD mode, when the current time t is less than 6 
days. The rate of change of time is modelled as ODE ̇t = 1 within both modes.

Transitions between modes happen when some conditions are satisfied. For example, the transition from 
Pre-LD to LD happens when the current value of t becomes 6. When a transition triggers, some variables are 
updated. For example, when this transition triggers, the value of time t is reset (by the reset action, which is 
denoted t ′ = 0 ). Also the value of R0 is set to 0.316.

For this model, we use the previously described values for R0 of 2.5 and 0.316 for pre-lockdown and lockdown 
respectively. Figure 1d–f show the results of this simulation for three main metrics. By day 120 (19th July 2020) 
the cases have levelled out in both the real data and model data. On this date, the simulated model predicts 1505 
confirmed cases, while in reality there were 1506, an error of only 1 case. Overall, the correlation coefficient is 
0.9752.

With this simple controller which remains in lockdown indefinitely (i.e. until a vaccine arrives), the cumula-
tive infection count converges to a realistic number, indicating that the 4 weeks of lockdown was effective at era-
ditcating the disease. This can be seen in Fig. 1e, where the active infections decrease to around zero by day 100, 
meaning that the disease has been eradicated. Finally, the total number of deaths in this scenario is expected to 
be 22, which matches up exactly with the official data.

CCPE model of the New Zealand Government control strategy. Next, we investigate the disease 
dynamics in New Zealand over a longer period of time (600 days) with a more complex model which closely 
follows the government’s strategy of four different levels of increasing stringency, along with their historical 
changes. The previous controller (Fig. 1c) is extended by incorporating a control policy that reflects these alert 
levels, where Pre-LD and LD correspond to Level 0 and Level 4 respectively. This new controller is called NZ-C2 
and is shown in Fig. 2a. Additionally, the plant model is augmented to allow for the introduction of a “second 
wave” of infections around day 100 to capture what was experienced in the New Zealand context.

Until 9th September 2020 (day 172) NZ-C2 follows the historical actions of the real-world control strategy. 
Subsequently, NZ-C2 tries to set the alert level in order to determine an appropriate reproduction number R0 
for the current situation. We have based our work on the reports released by the New Zealand government and 
the analysis of R0 values and associated alert  levels7.

For New Zealand, Table 2 presented in the “Methods” section lists major interventions and their associated 
relative reproduction number changes indicating how they increase/decrease the R0 . According  to27, the initial 
value of R0 is 2.5 without any control, which corresponds to alert level 0 in our model. In summary, the R0 values 
for alert levels 4 through 1 are 0.316, 0.827, 1.384, 1.570, respectively. The maximum value of R0 is 2.5, which 
corresponds to level 0.

The controller HIOA which captures the transitions between these levels is shown in Fig. 2a. Here, the condi-
tions for increasing the alert level are based on the current number of infected cases ( Ic ). For example, from level 
two if Ic ≥ kl3 then the alert level immediately rises to three. On the other hand, the alert level can go down if the 
increasing rate of new cases per day ( ̇C ) is less than a certain amount. For example, from level three if Ċ ≤ dkl3 
then the alert level decreases to level two. In addition, to avoid frequent oscillations between levels, a minimum 
duration within a level before being able to drop down to a lower level is added and is set to be 14 days.

The simulation results for this controller are shown in Fig. 2b, where we also include the presence of a vaccine 
from day 365, which results in the country moving out of all remaining lockdown measures on day 397 (22nd 
April 2021). In contrast to the scenario of continuing the lockdown based on the previous controller NZ-C1, 
we observe gradual step downs in the control level. Although there will be 30 deaths, 8 more than the previous 
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lockdown scenario, the four-level approach allows for society to begin its return to normalcy from day 39 in order 
to minimise economic damage relative to the controller NZ-C1 caused as a result of enforced social  distancing4.

Additionally, the model and controller show their ability to capture both the real-world second wave (at 
around day 150—18th August 2020)) in a realistic manner, as well potential future outbreaks (from around 
day 250—18th August 2020)). In these cases, the controller reacts proportionately to the risk associated with the 
current situation based on both the number of active cases ( Ic ) and the rate of new cases ( ̇C).

Modelling Italy’s control strategy. The CCPE approach can be adapted to the intervention techniques of 
other countries. For example in Italy, the government does not have an explicitly outlined intervention system, 
instead the control actions are progressively released as they are needed. We use the published stringency index15 
for Italy across time in order to create an approximation of their control strategy in our framework. For example, 
on 23rd February 2020, the stringency index was listed as 66.67, while subsequent measures increased this to 
71.43, 90.48, and finally 95.2415. We create an approximate discrete controller for this approach (Fig. 3a), where 
the phases correspond to a degrees of stringency mentioned earlier. Note that the date of first observation point 
in the Italy data is 23rd February 2020.

The control flow of the Italy model called I-C1 in Fig. 3a is as follow. From the initial state Phase 0, transi-
tion 1© leads to Phase 1. This transition is triggered based on time, according to the historical actions of Italy 
government. For instance, Italy was in Phase 0 on 23rd February 2020, and moved to Phase 1 by closing 
the schools and universities on 4th March 2020. Similarly, transitions 2© , 3© , 4© , and 5© are triggered based on the 
time when historical actions were imposed. A countrywide lockdown was issued on 10th March 2020 (day 16) 
and the nation entered Phase 2. On 20th March 2020 (day 26), the government further tightened the control 
by reducing the public transportation and initiated Phase 3, before beginning to relax restrictions on 27th 

Figure 2.  The controller and simulation results corresponding to the New Zealand system for fighting COVID-
19.
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July 2020 (day 155) which allowed for a second wave of infections. For Italy, according to our estimation based 
 on15, the reproduction number R0 is 6.3533 in Phase 0, 4.8051 in Phase 1, 3.2704 in Phase 2 (2.6472 in 
Phase 2*), and 0.5808 in Phase 3.

After the historical transitions have been performed ( 1©— 5© ) in Fig. 3a, we apply the same control strategy 
presented in Fig. 2a. That is, the control level can decrease based on Ċ and time remained in a level, or the control 
level can increase based on Ic . Precisely, the same level changing conditions are used for Italy. In this way, we can 
examine the performance of the same controller in different countries. We set 10, 5, and 0.01 for dkl3 , dkl2 , and 
dkl1 , respectively. Also, kl3 , kl2 , and kl1 are 6046, 3023, and 605, respectively. Additionally, the constraint to level 
four ( ku ) is equal to the hospital capacity of approximately 483,69414.

The simulation results for the Italy model are shown in Fig. 3b. When control goes down to phase two for 
the first time, the active infection count ( Ic ) starts to increase again, causing a second wave of infections and 
necessitating the return to phase three. We can observe that in order to deal with this second wave, the controller 
implements phase three and remains there until day 344. Overall, the simulation predicts that approximately 
45,000 deaths and 320,000 confirmed cases are expected in Italy.

Modelling other controllers. We can examine various “what if ” scenarios of COVID-19 in New Zealand, 
as a result of varying intervention techniques. A simple control policy in previous work has consisted of only two 
levels, essentially a full lockdown and no  control14. Precisely, a complete lockdown (level four) is triggered if the 
currently active infection count exceeds the hospital ICU capacity ( {Ic ≥ ku} ), while in times where the currently 
active infection count is less than the half of the hospital capacity ( {Ic ≤ ku/2} ), the lockdown is removed (level 
zero), as shown in Fig. 4a.

Figure 3.  The controller and simulation results corresponding to the Italy system for fighting COVID-19.
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The simulation results for this model in our framework are shown in Fig. 4b. As expected, the control level 
frequently switches between four and zero as the number of active cases oscillates. This results in a number of 
1-month lockdown happening after day 67. Although the peaks of oscillation in the infection case graph gradu-
ally diminishes over time, the final number of deaths is extremely high and control remains in the lockdown for 
a long period of time, causing drastic impacts on the economy.

Discussion
The compositional approach of CCPE allows the flexibility of formal modelling and validation of government 
control strategies to manage a pandemic. We have shown the ability of CCPE to model the dynamics of COVID-
19 in conjunction with the various intervention techniques that governments employ. Table 1 compares the 
controllers used in this paper. As we can see, in the case of New Zealand, the controller NZ-C2 achieves much 
better overall outcome compared to the simple controller NZ-C1. While the lockdown for NZ-C1 lasts until a 
vaccine is available, the economic impact of such a long lockdown may be catastrophic. In contract, the control-
ler NZ-C2 has a gradual lifting of restrictions, which reaches level 1 much faster. Also, the overall risk of this 
strategy is a marginal increase in the number of deaths. In contrast to these two controllers, is the third control 
strategy NZ-C3, which introduces oscillations. We can see immediately the impact of a poorly managed control 
strategy, which may lead to three orders of magnitude more deaths. Finally, we also present the controller for 
Italy, which is modelled based on the actions of their government and as reported  in15.

CCPE allows the formal modelling of complex controllers. This enables the systematic evaluation of various 
control strategies in order to determine the best approach for a country which minimises the economic and social 
impacts, in addition to achieving the best healthcare outcome. As long as each NPI can be quantified, in terms of 
R0 or testing rate, then the importance of individual NPIs can also be evaluated in terms of their overall impact 

Figure 4.  Examples of government interventions with only lockdown action.

Table 1.  A summary of Compositional Cyber-Physical Epidemiology case studies.

Figure Plant Controller Confirmed cases Deaths Description Social impact

1 PL-2 NZ-C1 1501 22 Indefinite lockdown Lockdown lasts until vaccine is available

2 PL-3 NZ-C2 1874 30 Four level control Business can operate after day 39, and a near zero 
infection count is achieved on day 397

4 PL-1 NZ-C3 983,960 30,835 Two level control Infection count oscillates until it reaches zero on 
day 481

3 PL-1 I-C1 319,834 43,540 Three level control A near zero infection count is achieved after 
424 days
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on pandemic control. These NPIs can then be organised into an overall policy which includes both the NPIs to 
enforce, the conditions under which they are enforced, and how long they should remain in place.

While the CCPE framework as presented here is based on the SEIR  model14, there is nothing that restricts 
our framework to such a model. Any continuous model which can be captured through a series of ODEs is able 
to be used which can open the door to more accurate simulation techniques, such as the enhanced version used 
by  CovidSIM5, the recent SIDARTHE  model28, or even microscale modelling. We have already shown this ability 
by suggesting some modification to SEIR to better account for contact tracing and isolation. This is presented 
in “Methods” section and is denoted as the revised plant model PL-2 in Table 1. Additionally, PL-3 allows for 
the capturing of the second wave dynamics.

The effectiveness of the CCPE framework relies on the fidelity of the transmission model and parameter 
estimation, requiring expertise in both epidemiology and statistical analysis, both of which are rapidly changing 
as our understanding of the pandemic increases. As such, the estimation of R0 is technically  challenging29 and 
the value varies due to different model assumptions and estimation  procedures27,30–33. While the World Health 
Organization (WHO) estimates that the basic R0 ranges between 1.4 and 2.534, Liu et al. suggested that the value 
is expected to be higher based on evolving  research35. To further complicate this matter, cultural differences 
between countries can have an impact on the effectiveness of NPIs at reducing R0 , such as social  distancing4.

To apply the CCPE framework to other countries, the R0 value should be examined. However, this repro-
duction number varies based on the control measures implemented by each  country29,30,36–38. To investigate the 
interaction between government interventions and disease transmission dynamics, action-specific R0 values 
are essential. Apart from the control actions, many factors, such as population  density39,  mobility30, and spatial 
 heterogeneity40, affect the R0 value.

The ability for our CCPE framework to work across a range of these different country-specific plant models 
and various control designs creates a useful tool for designing strategies to fight COVID-19. The analysis of 
counter-measures and their impact on dealing with the disease has traditionally been limited to simple “if-else” 
style controllers, and here we show the ability to model counter-measures which are able to include some form 
of state in their logic.

Outlook
In this work, we evaluated the composition of a controller with an epidemiological model. However, the CCPE 
framework is far more flexible. HIOA-based modelling can be composed with any number of other HIOA. 
Further HIOAs could be used which take into account aspects such as legislation, culture, economy structure, 
administration, etc.4,41–43. For example, an economic model could be  added3, which takes into account the vari-
ous measures being applied in order to provide a metric of the financial toll. Such a model could then be used 
to design a controller which not just minimises the number of deaths in the population, but also reduces the 
economic impact in a form of bi-criteria  optimisation44,45.

In our work, the criteria used for switching between modes of the controller were based on comparing the 
number of active cases to the ICU capacity. Instead, control mechanisms could be created which take into account 
additional information, such as the climate, to more accurately capture the decision-making process. Moreover, 
we could further refine the dynamical modes to better represent the rate of testing.

Finally, a robust estimation approach of action specific R0 values within context of geographical and social 
heterogeneity should be systematically investigated in the future. COVID-19 is still relatively new and there 
exists a large variation in potential reproduction numbers between studies. We note that the accuracy of any 
epidemiological model depends on the accuracy of its reproduction number, and so further improvements in 
this area would be of great benefit. For example, there is the potential for the adoption of an approach as recently 
proposed  in13 if the reproduction number could be approximated as a continuous function. While this is a chal-
lenging proposition, our work opens the door for more engineering researchers to create an impact on current 
and future pandemics. A momentum is already in evidence as reported  in46 to show how Engineers are coming 
together to contribute to this cause in various ways.

Methods
The SEIR model of COVID‑19. The modified SEIR  model14 consists of variables which represent the 
various sub-populations during an epidemic: susceptible (S), exposed (E), pre-symptomatic (P), infectious (I), 
recovered (R), and deaths (D). The infectious and recovered cases are further categorized into untested ( Iu , Ru ) 
and confirmed ( Ic , Rc ). The dynamics of the transmission between these sub-populations can be described by a 
series of coupled ODEs, shown in Eq. (1) through (8).

(1)
dS

dt
= −βS(ǫP + Iu + Ic)

(2)
dE

dt
= βS(ǫP + Iu + Ic)− αE

(3)
dP

dt
= αE − δP
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The Case Fatality Ratio (CFR) depends on the number of active people in the ICU and the ICU capacity. If 
the number of active people in the ICU is within the ICU capacity then the CFR is is simply equal to some lower 
bound CFR0 (1%). When this limit is exceeded, the CFR is decided by a mixture of patients who are receiving 
ICU care ( CFR0 ) and those who are not ( CFR1 ). The result of this is a piecewise function as in Eq. (10) where 
CFR1 (2%) is the maximum fatality rate, nICU denotes the maximum ICU beds, N is the population size, and pICU 
is the proportion of total cases which require ICU attention.

The SEIR model can be described as HIOA, shown earlier in Fig. 1b. X is the vector of all epidemic vari-
ables initialized to X0 , A is the matrix of the parameters, and Ẋ = AX is the matrix representation of Eqs. (1) 
through (8)). When the ICU demand Nicu is less than or equal to the maximum ICU capacity nICU , the HIOA 
stays in the location Below ICU with CFR of CFR1 . Otherwise, control goes to the location Beyond ICU and the 
CFR is defined by Eq. (10).

In the model (Eq. 1, 2 ), the reproduction number R0 determines the transmission rate β as per Eq. (11). 
Here, ǫ is the relative infectiousness in the presymptomatic period, δ is the transition rate from presymptomatic 
to infectious, and γ is the transition rate from infectious to recovered.

These transition rates are decided by the virus nature, while R0 depends on the contacts and the 
 transmissibility12. The government control measures can impact this reproduction number, and hence also β , 
by reducing:

• physical contacts (e.g. travel restriction, self-isolation, work at home, close schools, etc.), or
• the transmissibility (e.g. hand washing, public disinfection efforts, etc.)

In order to start the propagation of the disease through the population we start with an initial number of 
cases ( Ic ) which matches with the initial number of reported cases. Typically, our simulations start after a country 
has reached 100 total cases as this is a likely point where local transmission, if not community transmission, has 
started to occur. Additionally, this allows us to isolate the population from the rest of the world and ignore the 
potential inflow and outflow of infected people as travel is heavily restricted by this point in time.

We propose a revision of the recent SEIR  model14 in this paper to account for better management of the 
pandemic using improved case isolation and contact tracing. In Table 1, we denote the SEIR  model14 as the plant 
model PL-1 while our revised model is marked as the plant model PL-2. This is since case isolation and contact 
tracing could significantly reduce R0 for identified cases (i.e. Ic)37. We use different parameters for the transmis-
sion rate β (Eqs. 1, 2 ) such that the confirmed cases have lower transmissivity due to the combined effects of 
isolation and contact tracing. The resultant refined model replaces Eq. (1) and (2) with Eq. (12) and (13) .

Further, to capture the the dynamics of externally introduced second waves we create a further extended plant 
model named PL-3. This model, at some predefined time t2 will instantly move a set number of people from 
the susceptible population (S) into the exposed population (E). Such a model is required in the context of New 

(4)
dIu

dt
= δP − (γ + c)Iu

(5)
dIc

dt
= cIu − γ Ic

(6)
dRu

dt
= γ (1− CFR)Iu

(7)
dRc

dt
= γ (1− CFR)Ic

(8)D = 1− S − E − P − Iu − Ic − Ru − Rc

(9)patients = N × (Iu + Ic)× pICU

(10)CFR =

{

CFR0 if patients ≤ nICU

CFR1 − (CFR1 − CFR0)×
nICU

patients
otherwise

(11)β =
R0

ǫ/δ + 1/γ

(12)
dS

dt
= −β1S(ǫP + Iu)− β2SIc

(13)
dE

dt
= β1S(ǫP + Iu)+ β2Ic − αE
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Zealand, where it is most likely that eradication of the virus was achieved prior to the emergence of the second 
wave and thus the cause of this re-emergence was most likely external.

The New Zealand model of COVID‑19. For the epidemiological model of New Zealand, we use base 
reproduction number of 2.5 as is widely reported without control measures in  place27. To investigate the inter-
action between government interventions and disease transmission dynamics, we need to introduce various 
reproduction numbers for the different action control strategies and stages. The estimation of R0 is technically 
 challenging29 and a number of studies have been  done31,32,35,38,47. However, these values are not specific to certain 
control policies.

We identified which interventions are applied in the New Zealand alert levels, indicated in Table 2 by a tick 
(✔) or a cross (✗) to capture if a given intervention is applied (respectively not applied) in a given alert level. 
Each intervention is also weighted in its effectiveness, with the weighted sum being 2.184. A triangle ( 

�
 ) is used 

when an intervention is partially applied. In this case, half the weight is considered. At the bottom of Table 2, we 
show the calculated reproduction numbers for each alert level by taking into account both the base reproduc-
tion number R0 and the interventions applied. In summary, the R0 values for alert levels 4 through 1 are 0.316, 
0.827, 1.384, 1.570 respectively. The maximum value of R0 is 2.5, which corresponds to level 0. Additionally, for 
use with the previously described PL-2 model, we impose an R0 value of 0.02 for confirmed cases to capture 
the enforced isolation placed upon them.

In order to capture the increased testing rates (and more rigorous contact tracing) associated with higher 
alert levels, we also vary the value c used to represent the testing rate in PL-3. In this model, we use daily rates 
of 0.3, 0.2, 0.15 and 0.01 for alert levels 4 through 1, respectively.

The controller NZ-C2, in Fig. 2a, matches a given alert level to its corresponding R0 value. Initially, the control 
starts from Pre-LD and move to LD just like the previous controller in Fig. 1c. After 33 days this corresponds 

Table 2.  A list of the interventions involved at each alert level in New Zealand, and the reproduction number 
derivation. A tick (✔) represents that an intervention is applied, a cross (✗) meansthat it is not applied, and a 
triangle (△) is used when an intervention is partially applied.

Intervention Weight Level 4 Level 3 Level 2 Level 1 Level 0

Widespread testing 0.186 ✔ ✔ ✔ ✔ ✗

Temperature checkpoints 0.093 ✔ ✔ ✔ ✔ ✗

Contact tracing 0.186 ✔ ✔ ✔ ✔ ✗

Close contacts of confirmed cases ordered to self-isolate 0.093 ✔ ✔ ✔ ✔ ✗

Large scale disinfection efforts 0.046 ✔ ✔ ✔ ✗ ✗

Distribution of PPE to at-risk workers 0.093 ✔ ✔ ✔ ✔ ✗

Hygiene public awareness efforts 0.186 ✔ ✔ ✔ ✔ ✗

International travel ban 0.186 ✔ ✔
�

✗ ✗

Domestic travel restrictions 0.093 ✔ ✔
�

✗ ✗

People forced to remain home 0.186 ✔ ✗ ✗ ✗ ✗

Bans on outdoor gatherings over 500 people 0.093 ✔ ✔ ✔ ✔ ✗

Bans on indoor gatherings over 100 people 0.093 ✔ ✔ ✗ ✗ ✗

Bans on recreational sports 0.046 ✔ ✔ ✗ ✗ ✗

Bars and restaurants close 0.186 ✔
�

✗ ✗ ✗

Schools close 0.186 ✔
�

✗ ✗ ✗

Tertiary education facilities close 0.093 ✔
�

✗ ✗ ✗

Small food retailers close 0.093 ✔ ✗ ✗ ✗ ✗

Non-essential retail business close 0.093 ✔
�

✗ ✗ ✗

Summation 2.184 1.673 1.116 0.930 0

Base reproduction number ( R0) 2.5 2.5 2.5 2.5 2.5

Final R value 0.316 0.827 1.384 1.570 2.5
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to 27th April 2020, which is the scheduled start of Level 3. After this point, the control enters Level 3, and 
the reproduction number is set to 0.827. The transitions 1© through 6© are taken based on time, like NZ-C1, 
since these mimic known time based government actions.

Subsequently, the government decisions, which are yet unknown, will have to be mimicked using more com-
plex mechanisms. We use the following strategy to determine the transition conditions, which will not be time 
based alone, as follows. First we denote the rate of new cases per day as Ċ and the current number of infected 
cases is Ic We consider the following parameter values based on the published data from New  Zealand14. We set 
kl4 , kl3 , kl2 , and kl1 as 100, 50, 5, and 1, respectively. dkl3 , dkl2 , and dkl1 are 10, 5, and 0.01, respectively. Finally, 
in our results, we assume that a vaccine will arrive 365 days after 20th March 2020. At this time, the number of 
susceptible people progressively decreases to zero, assuming widespread adoption of an effective vaccine.

The conditions for increasing the alert level are based on the current number of infected cases ( Ic ). For exam-
ple, from level two if Ic ≥ kl3 then the alert level immediately rises to three. On the other hand, the alert level can 
go down if the increasing rate of new cases per day ( ̇C ) is less than a certain amount. For example, from level three 
if Ċ ≤ dkl3 then the alert level decreases to level two. In addition, to avoid frequent oscillations between levels, a 
minimum duration within a level before being able to drop down to a lower level is added, and is set to be 14 days.

The Italy model of COVID‑19. Unlike New Zealand, Italy does not issue a systemic intervention strat-
egy for COVID-19. Instead, the government releases the actions incrementally as they are needed. The Oxford 
COVID-1915 provides a stringency index of the measures taken by various governments around the world. 
According to the stringency index of Italy’s interventions, we divide the transmission trajectory into four phases. 
Considering that the initially reported cases are mostly imported rather than community transmission, the start-
ing point of the analysis is 23rd February 2020, when the reported number of cases is 155. As a first attempt, we 
use the SEIR  model14 and curve fitting to estimate policy-specific reproduction numbers for Italy. We use the 
MATLAB function lsqcurvefit to search for these reproduction numbers for each phase by minimizing the 
square of the residual error between the SEIR simulation and the reported  data48. The resulting reproduction 
numbers are listed in Table 3.

The controller is shown in Fig. 3a. For dropping alert levels, we have values of 10, 5, and 0.01 for dkl3 , dkl2 , and 
dkl1 respectively. The population of Italy (N) is 60,461,828 and we have level changing constraints of 6046,3023, 
and 605 for kl3 , kl2 , and kl1 , respectively.

HAML. Hybrid Automata Modelling Language (HAML)23 is a recently developed tool in our group for the 
compositional modelling and verification of CPSs. To create the CCPE system in HAML we simply create two 
automata, one each for the plant and controller, and compose them as a single network. For the plant model, 
Listing 1a, we have an automata with an input R0 value which is used to determine the rate of reproduction in 
the model. Additionally, there are two outputs for the number of currently infected (and tested) people, Ic , and 
the rate of change in the number of cases ( Cdot ). The two locations of Fig. 1b are shown which have the same flow 
constraints but differ in their calculation of the CFR to create a piecewise implementation of Eq. (10) through 
the use of update constraints.

The discrete controller has external inputs and outputs which mirror those of the plant model, having two 
inputs, Ic and Cdot , and a single output, R0 . Listing 1b shows this controller captured in HAML, using locations 
for each of discrete modes that it can be in. When the number of current confirmed cases ( Ic ) reaches an upper 
bound for each location then the control progresses to a higher alert level, while when the change in number of 
cases ( Cdot ) reaches a lower bound then control transitions to a lower alert level. The values of R0 for each control 
location are taken from Table 2.

Finally, composition between these two components simply requires mapping their respective inputs and 
outputs together. This is achieved by defining each of the previous models, creating a single instance for each, 
and then providing the mapping of their variables, as shown in Listing 1c.

Table 3.  Estimated reproduction numbers for each phase in Italy.

Phase Phase 0 Phase 1 Phase 2 Phase 3 Phase 2*

Date range 23 Feb–4 Mar 4 Mar–10 Mar 10 Mar–20 Mar 20 Mar–27 Jul 27 Jul–28 Aug

R0 6.3533 4.8051 3.2704 0.5808 2.6472



11

Vol.:(0123456789)

Scientific Reports |        (2020) 10:19537  | https://doi.org/10.1038/s41598-020-76507-2

www.nature.com/scientificreports/

Listing 1.  Example HAML specifications for the Compositional Cyber-Physical Epidemiology system.
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Data availability
Accession codes All models and code used for this work are publicly available on GitHub: https ://githu b.com/
PRETg roup/ccpe-covid 19. The real-world data used to validate our models was obtained from the publicly avail-
able dataset of Johns Hopkins CCSE: https ://githu b.com/CSSEG ISand Data/COVID -19.
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