
Comput Stat (2017) 32:717–761
DOI 10.1007/s00180-017-0721-7

ORIGINAL PAPER

Targeting Bayes factors with direct-path
non-equilibrium thermodynamic integration

Marco Grzegorczyk1 · Andrej Aderhold2 ·
Dirk Husmeier2

Received: 22 July 2016 / Accepted: 27 February 2017 / Published online: 14 March 2017
© The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract Thermodynamic integration (TI) for computing marginal likelihoods is
based on an inverse annealing path from the prior to the posterior distribution. In
many cases, the resulting estimator suffers from high variability, which particularly
stems from the prior regime. When comparing complex models with differences in a
comparatively small number of parameters, intrinsic errors from sampling fluctuations
may outweigh the differences in the log marginal likelihood estimates. In the present
article, we propose a TI scheme that directly targets the logBayes factor. Themethod is
based on amodified annealing path between the posterior distributions of the twomod-
els compared,which systematically avoids the high variance prior regime.We combine
this scheme with the concept of non-equilibrium TI to minimise discretisation errors
from numerical integration. Results obtained on Bayesian regression models applied
to standard benchmark data, and a complex hierarchical model applied to biopathway
inference, demonstrate a significant reduction in estimator variance over state-of-the-
art TI methods.
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1 Introduction

A central quantity in Bayesian statistics is the marginal likelihood

p(D|M) =
∫

p(D, θ |M)dθ =
∫

p(D|θ ,M)p(θ |M)dθ (1)

where D are the data, andM represents a given statisticalmodel with parameter vector
θ . The difficulty in practically computing the marginal likelihood is exemplified by
considering the Monte Carlo sum

X = 1

M

M∑
i=1

p(D|θ i ,M) (2)

where {θi } is an iid sample from p(θ |M). Under fairly general regularity conditions the
estimator X converges almost surely to p(D|M), by the strong law of large numbers,
and is asymptotically efficient, with asymptotic variance C/

√
N (where N is the size

of D), by the central limit theorem. However, even for modestly complex systems, the
constant in the numerator, C , can reach exorbitant magnitudes, rendering the scheme
not viable for practical applications. The practical shortcomings of a variety of alter-
native numerical methods, like the harmonic mean estimator (Gelfand and Dey 1994),
bridge sampling (Gelman and Meng 1998), or Chib’s method (Chib and Jeliazkov
2001), have been discussed in the statistics and machine learning literature (e.g. Mur-
phy (2012)). The most widely used and robust method appears to be thermodynamic
integration (TI). This methodwas originally proposed byKirkwood (1935) and further
developed in statistical physics for the mathematically equivalent problem of comput-
ing free energies; see e.g. Schlitter (1991) and Schlitter and Husmeier (1992). Gelman
and Meng (1998) adapted TI to the computation of marginal likelihoods, Lartillot and
Philippe (2006) demonstrated the application of TI to complex systems, and Friel and
Pettitt (2008) and Calderhead and Girolami (2009) popularised TI more widely in the
statistics community by demonstrating a computationally powerful combination with
parallel tempering (Earl and Deem 2005).

Thermodynamic integration is based on an integral of the expected log likelihood
along an inverse annealing path from the prior to the posterior distribution. The result-
ing estimator typically suffers from high variability, which particularly stems from
the parameter prior regime. When comparing complex models with differences in a
comparatively small number of parameters, these intrinsic errors from sampling fluc-
tuations may outweigh the differences in the log marginal likelihood estimates. The
objective of the present study is to explore the scope for variance reduction by directly
targeting the log Bayes factor via a modified transition path between the two models
such that the high-variance prior domain is avoided. This idea is not new. In statistical
physics it is well known (Schlitter 1991; Schlitter and Husmeier 1992) that applying
TI to the computation of a reaction free energy, which is mathematically equivalent to
the log Bayes factor, is computationally more efficient than the separate computation
of the standard free energies for the two reaction states involved (educt versus product
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states); the latter is mathematically equivalent to the difference of the log marginal
likelihoods of two statistical models to be compared. Also in the statistics literature,
the direct targeting of the log Bayes factor has been discussed before. For instance,
path sampling (Gelman and Meng 1998) and annealed importance sampling (Neal
2001) have been conceived in a way to allow the direct computation of the ratio of two
partition functions, Z1 and Z2, associated with two models M1 and M2. However,
in the work of Neal (2001), Z1 is set to the normalisation factor of the prior distribu-
tion, and the method thus reduces to the computation of the log marginal likelihood.1

Gelman and Meng (1998) do consider a direct comparison between two alternative
models: a homoscedastic versus a heteroscedastic linear regressionmodel. Rather than
computing the Bayes factor, the authors apply their path sampling approach to infer
the posterior distribution of the entire spectrum of intermediate models. While this is
a more ambitious approach than model selection with Bayes factors, it will be compu-
tationally onerous beyond the one-dimensional regime considered in their example.

To the best of our knowledge, the present article presents the first systematic study of
the variance reduction that can be achievedwith a thermodynamic integration path that
directly targets the log Bayes factor by transiting between the posterior distributions
of the two models involved. The mathematical exposition and implementation of
this scheme is combined with a comprehensive comparative performance assessment
based on a set of standard benchmark data to quantify the improvement in variance
reduction, accuracy and computationally efficiency that can be achieved over state-
of-the-art established TI methods, in particular the recent improvement proposed by
Friel et al. (2014).

This article is organised as follows. In Sect. 2 we provide a brief rationale for
targeting Bayes factors directly rather than indirectly via the marginal likelihood.
Section 3.1 reviews standard thermodynamic integration. In Sect. 3.2 we discuss a
modified numerical integration and sampling scheme from statistical physics, termed
non-equilibrium TI (NETI), to reduce numerical discretisation errors. Section 3.3
describes NETI-DIFF, the proposed new TI scheme along an alternative integration
path between two posterior distributions. Sections 3.4, 3.5 describe practical numerical
implementations based on Metropolis-Hastings and Gibbs sampling, and Sect. 3.6
proposes a new improved inverse temperature ladder. Section 4 provides an overview
of a set of benchmark problems on which we have evaluated the methods, and Sect. 5
presents our empirical findings. We conclude this article in Sect. 6 with a discussion,
a comparison with the controlled thermodynamic integral of Oates et al. (2016), and
an outlook on future work.

2 Rationale

Consider two alternative models, M1 and M2, and define Ei = − log p(D|θ,Mi ),
the negative log likelihood of model i . Further, define the log likelihood ratio ΔE =

1 Note that in the regression example presented by Neal (2001), where the objective is model selection
between a Gaussian and a Cauchy distribution for the noise, the log marginal likelihoods are computed
separately with annealed importance sampling, and then combined to produce the log Bayes factor. Unlike
the scheme proposed in the present article, the log Bayes factor is not targeted directly.
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720 M. Grzegorczyk et al.

E2−E1, the negative unnormalised log posterior Ẽi = Ei+log p(θ |Mi ), the negative
log posterior ratio ΔẼ = Ẽ2 − Ẽ1, and let 〈. . .〉i denote the posterior average with
respect to the posterior distribution (θ |D,Mi ).We can then adapt Jarzynski’s theorem
from statistical physics (Híjar and Zárate 2010) to show that

p(D|Mi ) =
〈
exp(Ei [θ])

〉−1

i
,

p(D|M2)

p(D|M1)
=
〈
exp(−ΔẼ[θ ])

〉
1

(3)

A proof is given in the Appendix. In real applications with non-trivial models, the
negative log likelihood is typically in the order of a two to three digit figure, which
when put into the argument of the exponential function will lead to an astronomically
large number. An estimator aiming to approximate p(D|Mi ) = 〈exp(Ei [θ])〉−1

i from
a limited sample drawn from the posterior distribution will inevitably suffer from
substantial variation. For nestedmodels ormodelswith sufficient parameter overlap, on
the other hand,ΔẼ(θ)will typically be small, |ΔẼ(θ)| � min{|E1(θ)|, |E2(θ)|}. We
can therefore reduce the intrinsic estimation uncertainty considerably by computing
the Bayes factor directly rather than indirectly via two separate marginal likelihood
estimations.

3 Methodology

3.1 Thermodynamic integration for marginal likelihoods

Thermodynamic integration is based on an inverse annealing path from the prior to the
posterior distribution, and computing the expectation of the log likelihoodwith respect
to the following annealed posterior distributions at inverse temperatures τ ∈ [0, 1]:

pτ (θ |D,M) = 1

Z(D|τ,M)
p(D|θ ,M)τ p(θ |M),

Z(D|τ,M) =
∫

p(D|θ ,M)τ p(θ |M)dθ (4)

Taking the derivative of log Z(D|τ,M) gives:

d

dτ
log Z(D|τ,M) = 1

Z(D|τ,M)

d

dτ
Z(D|τ,M)

= 1

Z(D|τ,M)

∫
d

dτ
p(D|θ,M)τ p(θ |M)dθ

=
∫

log p(D|θ,M)
p(D|θ ,M)τ p(θ |M)

Z(D|τ,M)
dθ

=
∫

pτ (θ |D,M) log p(D|θ ,M)dθ

= Eτ

[
log p(D|θ,M)

]
(5)
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From Eq. (5) we get:

log p(D|M) = log Z(D|τ = 1) − log Z(D|τ = 0)

=
∫ 1

0

d

dτ
log Z(D|τ)dτ =

∫ 1

0
Eτ

[
log p(D|θ,M)

]
dτ (6)

This one-dimensional integral can be solved numerically, e.g. with the trapezoid rule:

log(p(D|M)) ≈
K∑

k=2

τk − τk−1

2

{
Eτk

[
log p(D|θ,M)

]+ Eτk−1

[
log p(D|θ,M)

]}

(7)
Some care has to be taken with respect to the choice of discretisation points τk, k =

{0, 1, 2, . . . , K }, as the major contributions to the integral usually come from a small
region around τ → 0. This motivates the form

τk =
(
k − 1

K − 1

)α

; k ∈ {1, 2, . . . , K } (8)

for α > 1. Theoretical results for the optimal choice of α can be found in Schlitter
(1991), but require knowledge that is usually not available in practice (like the func-
tional dependence of Eτ [log p(D|θ,M)] on τ ). In practice, α = 5 is widely used, as
e.g. in Friel et al. (2014), andwe have used this value in the present study. A potentially
numerically more stable alternative was proposed in Friel et al. (2014). The authors
show that:

d

dτ
{Eτ [log(p(D|θ,M))]}τ = Vτ (log(p(D|θ ,M)) (9)

whereVτ (.) is the variance w.r.t. the power posterior in Eq. (4). The second derivative
of Eτ [log(p(D|θ,M))] at a point τ ∈ [τk−1, τk] can then be approximated by the
difference quotient of the first derivative of Eτ [log p(D|θ,M)] Eq. (9):

d2

dt2
{
Et
[
log(p(D|θ,M))

]}
t=τ

≈ Vτk (log(p(D|θ,M)) − Vτk−1(log(p(D|θ ,M))

τk − τk−1

Friel et al. (2014) then employ the corrected trapezoid rule2 to compute each sub-
integral

∫ τk
τk−1

Eτ [log(p(D|θ,M))]dτ . This yields:

2 ∫ b
a f (x)dx = (b − a)

f (b)+ f (a)
2 − (b−a)3

12 f ′′(c) for some c ∈ [a, b].
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log(p(D|M)) =
∫ 1

0
Eτ

[
log p(D|θ ,M)

]
dτ =

K∑
k=2

∫ τk

τk−1

Eτ

[
log p(D|θ,M)

]
dτ

≈
K∑

k=2

τk − τk−1

2

{
Eτk

[
log p(D|θ,M)

]+ Eτk−1

[
log p(D|θ ,M)

]}

−
K∑

k=2

(τk − τk−1)
2

12

{
Vτk

[
log p(D|θ ,M)

]− Vτk−1

[
log p(D|θ ,M)

]}

(10)

3.2 Nonequilibrium thermodynamic integration

The computation of the expectation valuesEτk

[
log p(D|θ,M)

]
is expensive and lim-

its the number of discretisation points K that can be practically applied. An alternative
scheme we use in the present work is to approximate

log p(D|M) =
∫ 1

0
Eτ

[
log p(D|θ,M)

]
dτ ≈

∫ 1

0
log p(D|θ (τ ),M)dτ

≈
K∑

k=2

τk − τk−1

2

{
log p(D|θ (τk ),M) + log p(D|θ (τk−1),M)

}

(11)

where θ(τ) is a single draw from the power posterior defined in Eq. (4), and 0 = τ1 <

τ2 < · · · < τK = 1. The computational resources gained are used to choose K orders
of magnitude larger than in equilibrium TI,3 with the implication that (τk − τk−1) →
0 and discretisation errors in numerical integration are avoided. This scheme was
originally proposed in statistical physics (Schlitter andHusmeier 1992) under the name
non-equilibrium thermodynamic integration (NETI), and is conceptionally similar to
annealed importance sampling (Neal 2001). The underlying rationale is as follows:
rather than use the computational resources for the computation of the expectation
value at a limited number of discretisation points—and incur discretisation errors—
spread the computational resources over the whole “temperature” range and use as
fine a discretisation as possible. This avoids the problem that had to be addressed in
Friel et al. (2014): how to select the inverse temperatures and minimise the numerical
integration error in standard TI. The price to pay is a relaxation error as a consequence
of the non-equilibrium nature of the method, as discussed by Schlitter and Husmeier
(1992). The authors proposed a scheme for correcting this relaxation error, by running
simulations over different simulation lengths Niter , regressing the estimates against an
approximate upper bound on the relaxation errorR, and then extrapolating forR → 0.
In preliminary investigations omitted from the present article, we found that a single

3 Note that K can be set equal to the total number of MCMC iterations Niter , which otherwise would have
to be subdivided onto K discretisation points.
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simulation with an increased value of Niter matching the total computational costs
of the extrapolation scheme achieved similar results, and we used this conceptionally
simpler approach in all our studies.4

3.3 Novel thermodynamic integration for Bayes factors

When comparing two models, we are typically interested in the Bayes factor
p(D|M2)/p(D|M1). The standard approach is to apply thermodynamic integra-
tion to both models M1 and M2 separately, by independently inversely annealing
the prior distributions to the respective posterior distributions. This approach ignores
the fact that both models usually have many aspects in common and share certain
parameters. This applies particularly to nested models, where all the parameters of the
less complex model are also included in the more complex model. One would expect
to reduce the estimation uncertainty by following a direct transition path from the
posterior distribution of the less complex model to that of the more complex model,
rather than transiting through the uninformative prior distribution twice. Consider
two models M1 and M2 with joint parameter vector θ and a joint parameter prior
p(θ |M1,M2) defined such that it reduces to the parameter priors for the separate
models by marginalisation:

p(θ |M1) =
∫
M2/M1

p(θ |M1,M2)dθ , p(θ |M2) =
∫
M1/M2

p(θ |M1,M2)dθ

(12)
whereM2/M1 is the subset of parameters contained in modelM2, but not in model
M1, and M1/M2 is the subset of parameters contained in model M1, but not in
modelM2. A mathematically more accurate notation would split θ into three subsets,
θ = {θ1, θ2, θ12} such that θ1 ∈ M1/M2, θ2 ∈ M2/M1 and θ12 ∈ M1 ∩ M2.
Eq. (12) implies that p(θ |M1) = p(θ1, θ12|M1) and p(θ |M2) = p(θ2, θ12|M2).
For that reason we can use a mathematically redundant but less opaque notation that
does not make the partition θ = {θ1, θ2, θ12} explicit. Define the tempered posterior
distribution

pτ (θ |D,M1,M2) = p(D|θ,M2)
τ p(D|θ,M1)

1−τ p(θ |M1,M2)

Z(D|τ,M1,M2)
(13)

where

Z(D|τ,M1,M2) =
∫ (

p(D|θ,M2)

p(D|θ,M1)

)τ

p(D|θ,M1)p(θ |M1,M2)dθ (14)

From Eq. (12) we get:

p(D|M1) = Z(D|τ = 0,M1,M2), p(D|M2) = Z(D|τ = 1,M1,M2) (15)

4 The extrapolation scheme proposed by Schlitter and Husmeier (1992) can reduce actual computation
time by parallelisation, but this was not an issue for the simulations carried out in the present work.
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Taking the derivative of the partition function in Eq. (14) gives:

d

dτ
log Z(D|τ,M1,M2) = 1

Z(D|τ,M1,M2)

d

dτ
Z(D|τ,M1,M2)

= 1

Z(D|τ,M1,M2)

∫
d

dτ

(
p(D|θ,M2)

p(D|θ,M1)

)τ

p(D|θ,M1)

× p(θ |M1,M2)dθ

=
∫

log

(
p(D|θ,M2)

p(D|θ,M1)

)
p(D|θ,M2)

τ p(D|θ,M1)
1−τ p(θ |M1,M2)

Z(D|τ,M1,M2)
dθ

=
∫

pτ (θ |D,M1,M2) log

(
p(D|θ,M2)

p(D|θ,M1)

)
dθ

= Eτ

[
log

(
p(D|θ ,M2)

p(D|θ ,M1)

)]
(16)

Combining Eqs. (15, 16) gives the following thermodynamic integral for the log Bayes
factor:

log

(
p(D|M2)

p(D|M1)

)
= log Z(D|τ = 1,M1,M2) − log Z(D|τ = 0,M1,M2)

=
∫ 1

0

[
d

dτ
log Z(D|τ,M1,M2)

]
dτ

=
∫ 1

0
Eτ

[
log

(
p(D|θ,M2)

p(D|θ,M1)

)]
dτ (17)

Again, we follow the idea of non-equilibrium thermodynamic integration and make
the approximation

log

(
p(D|M2)

p(D|M1)

)
≈
∫ 1

0

[
log

(
p(D|θ (τ ),M2)

p(D|θ (τ ),M1)

)]
dτ

≈
K∑

k=2

τk − τk−1

2

{
log

(
p(D|θ (τk ),M2)

p(D|θ (τk ),M1)

)
+ log

(
p(D|θ (τk−1),M2)

p(D|θ (τk−1),M1)

)}

(18)

where θ (τ ) is a single draw from the tempered posterior distribution defined in Eq. (13),
0 = τ1 < τ2 < · · · < τK = 1, K � 1, and (τk − τk−1) � 1.

In comparison with statistical physics, the proposed scheme corresponds to the
direct computation of a free energy difference (Schlitter 1991; Schlitter and Husmeier
1992), which is more efficient, in terms of reduced estimation variance for given com-
putational costs, than computing the difference of two separately computed standard
free energies. The analogy from classical statistics is model comparison via a paired
test, which is known to have higher power than an unpaired test.
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In what follows, we refer to the estimator defined by Eq. (18) as NETI-DIFF. We
describe how to compute the variance of this estimator in the Appendix 7.2.

3.4 Metropolis–Hastings scheme

The implementation of a Metropolis-Hastings scheme to target the distribution in (13)
is straightforward. Given the current parameters θ , sample new parameters θ̃ from
a proposal distribution q(θ̃ |θ), and accept these new parameters with the following
acceptance probability:

a(θ̃ |θ) = min

{
p(D|θ̃,M2)

τ p(D|θ̃,M1)
1−τ p(θ̃ |M1,M2)q(θ |θ̃)

p(D|θ,M2)τ p(D|θ,M1)1−τ p(θ |M1,M2)q(θ̃ |θ)
, 1

}
(19)

Otherwise, set θ̃ = θ , and follow this scheme iteratively.

3.5 Gibbs sampling for linear models

Consider a standard linear model with parameter vector θ , design matrix D, and prior
distribution

p(θ |δ2, σ 2) = N (μ0, σ
2δ2I) (20)

The data, D = {y1, . . . , yT } or Y = (y1, . . . , yT )
T
, are assumed to be obtained under

the assumption of independent and identically distributed normal noise, with variance
σ 2:

p(y|θ , σ 2) = N (Dθ , σ 2I) (21)

We want to compare two competing models M1 and M2, represented by two alter-
native design matrices D(1) and D(2):

p(y|θ , σ 2,M1) = N (D(1)θ , σ 2I), p(y|θ , σ 2,M2) = N (D(2)θ , σ 2I) (22)

For notational compactness we choose a representation that leaves the dimension of θ

invariant with respect to changing model dimensions by padding obsolete entries
in the design matrix with zeros. For instance, to compare the models M1:y =
θ1x1 + θ2x2, and M2:y = θ1x1 + θ3x3 + θ4x4 based on a data set of n observa-
tions {yt , x1,t , x2,t , x3,t , x4,t }, t = 1, . . . , n, we get the following design matrices:

D(1) =

⎛
⎜⎜⎜⎝

x1,1 x2,1 0 0
x1,2 x2,2 0 0
...

...
...

...

x1,n x2,n 0 0

⎞
⎟⎟⎟⎠ , D(2) =

⎛
⎜⎜⎜⎝

x1,1 0 x3,1 x4,1
x1,2 0 x3,2 x4,2
...

...
...

...

x1,n 0 x3,n x4,n

⎞
⎟⎟⎟⎠

From (13) we get
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pτ (θ |D,M1,M2) ∝ p(D|θ ,M2)
τ p(D|θ ,M1)

1−τ p(θ |M1,M2)

∝ N (D(1)θ , σ 2I)1−τ N (D(2)θ , σ 2I)τ N (μ0, σ
2δ2I)

∝ exp

(−(1 − τ)

2σ 2

[
D(1)θ − y

]
 [
D(1)θ − y

])

exp

( −τ

2σ 2

[
D(2)θ − y

]
 [
D(2)θ − y

])
(23)

exp

( −1

2σ 2δ2
[θ − μ0]


[θ − μ0]
)

= exp

( −1

2σ 2 θ

 [

τ {D(2)}

D(2) + (1 − τ){D(1)}


D(1) + δ−2I
]
θ

)

exp

(
1

σ 2 θ

 ([

τ {D(2)}
 + (1 − τ){D(1)}
]
y + δ−2μ0

))
C(y)

(24)

where the factor C(y) does not depend on θ . Comparing this with the identity

N (θ |μ, σ 2H−1) ∝ exp

( −1

2σ 2 [θ − μ]

H[θ − μ]

)

= exp

( −1

2σ 2 θ



Hθ

)
exp

(
1

σ 2 θ



Hμ

)
C(μ)

we get:
pτ (θ |D,M1,M2) = N (θ |μ, σ 2H−1) (25)

where

H = τ {D(2)}

D(2) + (1 − τ){D(1)}


D(1) + δ−2I,

μ = H−1
([

τ {D(2)}
 + (1 − τ){D(1)}
]
y + δ−2μ0

)
(26)

Hence, we can directly sample θ from the tempered conditional distributions in a
Gibbs sampling scheme without having to resort to Metropolis-Hastings. For linear
models where the variance σ 2 is not known and has to be sampled from the tempered
posterior distribution too, we refer to Appendix 7.6.

3.6 Sigmoid inverse temperature ladder

Given a single modelM, conventional TI follows an inverse annealing path from the
prior p(θ |M) to the posterior p(θ |M, D), symbolically p(θ |M) → p(θ |M, D).
Unlike TI, NETI-DIFF is based on a direct transition from the posterior of one model
M1 to the posterior of another modelM2, p(θ |M1, D) → p(θ |M2, D). For nested
models, e.g. M1 ⊂ M2, we start at the less complex model M1 and move towards
the more complex model M2, e.g. using the power-law inverse temperature ladder,
defined in Eq. (8). For a power α > 1 the distances τi+1 − τi between neighbouring
discretisation points τk and τk+1 increase in k and the discretisation points will be
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concentrated around the nested model,M1 (τ = 0), and fewer points will be set near
M2 (τ = 1). However, in many applications non-nested models have to be compared,
and it is then not clear which of the two models should be used as starting point.
Imbalances can be avoided by choosing a sigmoid inverse temperature ladder, such
that the discretisation points aremirrored at themidpoint τ � = 0.5 of the interval [0, 1].
Every discretisation point τ < 0.5 closer to M1 then has its counterpart τ � = 1 − τ

with the same distance τ toM2, and vice-versa.
To obtain a sigmoid inverse temperature ladder for NETI-DIFF we apply the fol-

lowing procedure. We first specify 50% of the discretisation points τ1 < · · · < τ Niter
2

within the interval [0, 0.5], and then we mirror the ladder at the midpoint τ = 0.5.5

This yields the remaining 50% of the discretisation points, τ Niter
2 +i

= 1 − τ Niter
2 +1−i

(i = 1, . . . , Niter
2 ). As we want the first 50% of the discretisation points to get as close

as possible to the midpoint τ = 0.5 subject to a power lawwith power α, we determine
the minimal integer N � such that

τi :=
(

i

N �

)α

< 0.5 (i = 1, . . . ,
Niter

2
) (27)

The solution is: N � = �x��, where
(
Niter

2x�

)α

= 0.5 ⇔ x� = Niter

2
· 0.5− 1

α (28)

4 Benchmark problems and data

We have evaluated the proposed method on four benchmark data sets. Given data D
the goal is to estimate the log Bayes factor B between two models M1 and M2. We
assume the models to be equally likely a priori, p(M1) = p(M2), so that the Bayes
factor is the ratio of marginal likelihoods:

B(M1,M2) = log

{
p(M2|D)

p(M1|D)

}
= log

{
p(D|M2)

p(D|M1)

}
(29)

For nonuniform prior distributions, p(M1) �= p(M2), it is straightforward to add the
correction factor log p(M2)/p(M1), which is computationally cheap compared to
the marginal likelihood ratio.

For method evaluation, we need to compare with a ground truth. For a linear model,
we have a proper ground truth, as the Bayes factor can be computed analytically. This
applies to the Radiata pine data (Sect. 4.1) and the Radiocarbon data (Sect. 4.3).
For the Pima Indian data (Sect. 4.2), we use a generalised linear model, and for the
biopathway data (Sect. 4.4), we use a nonlinear model. In these cases, a closed-form
solution of the Bayes factor does not exist. For the Pima Indian data, we follow the

5 For uneven Niter , we fix one point at τ = 0.5 and apply the procedure to the remaining Niter − 1 points.
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method suggested in Friel et al. (2014) and use the numerical result from a very long
MCMC run as an approximate gold standard. For the biopathway data, we use the
knowledge of the true interaction structure of the system as a surrogate gold standard
and assess the performance in terms of network reconstruction accuracy. We think this
provides an adequate balance between using linear models, for which a strong ground
truth exists, and generalised linear/non-linear models, for which a strong ground truth
is intrinsically unavailable, and a weaker surrogate ground truth has to be used instead.

4.1 Radiata pine

The Radiata pine data have been used in Friel et al. (2014) and were originally pub-
lished in Williams (1959). Like Friel et al. (2014) we focus on the log Bayes factor
between two competing non-nested linear regression models for explaining the ’max-
imum compression strength’ y of n = 42 Radiata pine specimens. Both linear models
contain an intercept and one single covariate. The first model (M1) uses the ’den-
sity’ x1 and the second model (M2) the ’adjusted density’ x2 of the specimen. After
standardizing the observation vectors x1 and x2 of the two covariates to mean 0, the
likelihood of model Mk (k = 1, 2) is:

Mk : p(y|θ (k), σ 2) = N (D(k)θ (k), σ 2I) (30)

where y is the vector of the observed ’maximum compression strengths’, D(k) =
(1, xk) is the n-by-2 design matrix and θ (k) is the 2-dimensional vector of regression
coefficients of model Mk . Both models share the intercept parameter θ0, but differ
w.r.t. the second parameter, i.e. θ (k) = (θ0, θk)


. For comparability we use exactly
the same Bayesian model as in Friel et al. (2014), where an inverse Gamma prior is
imposed on the noise variance: p(σ−2) = GAM(3, 2 · 3002) and Gaussian priors are
used for the regression coefficient vectors:6

Mk : p(θ (k)) = N

((
3000
185

)
,

(
0.06−1 0

0 6−1

))
(31)

This is a model with fully conjugate priors, so that the marginal likelihoods p(y|Mk)

can be computed in closed form (Friel et al. 2014). With Eq. (29) we obtain for the
log Bayes factor B(M1,M2) = 8.8571. Like Friel et al. (2014) we apply Gibbs
sampling and re-sample the model parameters iteratively from their full conditional
distributions: p(σ 2|y, θ (k)) and p(θ (k)|y, σ 2).

4.2 Pima Indians

The Pima Indians data have also been used in Friel et al. (2014) and were originally
published inSmith et al. (1988). LikeFriel et al. (2014)we focus on the logBayes factor
between two nested logistic regression models for explaining the binary ’diabetes

6 Unlike the prior in Eq. (20), the prior from Friel et al. (2014) uses fixed variances in Eq. (31).
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disease status’ y of n = 532 female Pima Indians. The first model (M1) contains an
intercept and 4 covariates, namely ’the number of pregnancies’, ’the plasma glucose
concentration’, ’the body mass index’, and ’the diabetes pedigree function’, while the
second model (M2) extends modelM1 by including one additional covariable ’age’.
After standardizing all covariates to mean 0 and variance 1, the likelihood of model
Mk (k = 1, 2) is:

Mk : p(y|θ (k)) =
n∏

i=1

{
exp(−x


i,kθ
(k))
}yi

1 + exp(−x

i,kθ

(k))

where the i-th element of y, yi ∈ {0, 1}, is the diabetes status of female i , xi,k is
the corresponding vector of covariates, including an initial 1 for the intercept, and
θ (k) is the vector of regression coefficients of dimension m = 5 (M1) or m = 6
(M2). Again we follow Friel et al. (2014) and impose the following Gaussian pri-
ors on the regression coefficient vectors: p(θ (k)|δ2) = N (0, δ2I), where δ2 = 100
gives rather uninformative priors. For the logistic regression neither the marginal like-
lihoods nor the full conditional distributions can be computed in closed form. We
therefore use the Metropolis Hastings based Markov chain Monte Carlo (MCMC)
sampling scheme from Friel et al. (2014), which employs the following proposal
mechanism: In each iteration a new candidate regression coefficient vector is obtained
by adding a sample u from an m-dimensional multivariate Gaussian distribution
to the current vector θ (k). The Gaussian distribution of u has a zero mean vector
and a diagonal covariance matrix, whose diagonal entries d1, . . . , dm depend on the
inverse temperature τ ∈ [0, 1] of the power posterior. For the TI approaches we
set: di = min{0.01τ−1, 100}, as in Friel et al. (2014). For the proposed NETI-DIFF
approach we use d6 = min{0.01τ−1, 100}, while we fix the first five diagonal entries
d1, . . . , d5 = 0.01.Thismodification is required, as thefirst five regression coefficients
appear in both models M1 and M2. That is, they effectively appear constantly with
inverse temperature τ = 1 throughout NETI-DIFF simulations. The marginal likeli-
hoods cannot be computed in closed-form. We therefore use those values reported in
Friel et al. (2014), which were obtained from long TI simulations, as gold-standard:
log{p(y|M1)} = −257.2342 and log{p(y|M2)} = −259.8519. Equation (29) yields
the log Bayes factor: B(M1,M2) = −2.6177.

4.3 Radiocarbon dating

We use the Radiocarbon data from Pearson and Qua (1993) to compute the Bayes
factors among 10 nested linear regression models. For predicting the ’true calendar
age’ y of n = 343 Irish oaks from one single covariable: ’the Radiocarbon dating
process’ x , we fit polynomial calibration curvesMi (i = 1, . . . , 10) of the following
type:

Mi : y = θ0 +
i∑

j=1

θ j x
j (32)
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The likelihood of model Mi is then

Mi : p(y|σ 2, θ (i)) = N (D(i)θ (i), σ 2I) (33)

where y is the vector of calendar ages, θ (i) = (θ0, θ1, . . . , θi )

 is the vector of regres-

sion coefficients, and D(i) is the n-by-(i + 1) design matrix. The first column of the
design matrix consists entirely of ones (for the intercept), and the subsequent columns
are built from the observation vector x, D(i) = (1, x1, . . . , xi ), where x j denotes an
element-wise power operation on x. We impose conjugate priors on the parameters.
For σ 2 we use an inverse Gamma distribution: p(σ−2) = GAM( a2 , b

2 ), and on θ (i)

we impose Gaussian priors:

p(θ (i)|σ 2, δ2) = N (0, σ 2δ2I) (34)

For fixed hyperparameters a, b, and δ2 the marginal likelihood for a model M with
design matrix D is given by:

p(y|M) = Γ ( n+a
2 ) · b a

2 · (b + y
(I + δ2DD
)−1y)− n+a
2

Γ ( a2 ) · π
n
2 · det (I + δ2DD
)

so that the log Bayes factorsB(Mi ,Ml) for twomodelsMi andMl can be computed
in closed formwith Eq. (29). For theRadiocarbon datawefix a = b = 0.2, δ2 = 1, and
we sample the parameters iteratively from their conditional distributions p(σ 2|y, θ (i))

and p(θ (i)|y, σ 2) with Gibbs sampling.

4.4 Biopathway

The objective of the last application is model selection with respect to two alternative
candidate interaction structures of ten genes in the circadian gene regulatory network
of Arabidopsis thaliana, shown in Fig. 1. The statistical model used for inference is

(a) (b)

Fig. 1 Gene regulatory networks of the circadian clock in Arabidopsis thaliana: wildtype and mutant. The
network displayed in panel a is the P2010 network proposed by Pokhilko et al. (2010). Panel b shows a
mutant network, in which the proteins PRR9 and PRR7 are dysfunctional and can no longer form a protein
complex with NI. The nodes in the network represent proteins and genes, the edges indicate interactions.
Arrows symbolize activations and bars inhibitions. Solid lines show protein-gene interactions; dashed lines
show protein interactions. The regulatory influence of light is symbolized by a sun symbol. Grey boxes
group sets of regulators or regulated components. Figure reproduced from Aderhold et al. (2014)
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a semi-mechanistic Bayesian hierarchical model for transcriptional regulation (Ader-
hold et al. (2017)). Let xi (t) denote the mRNA concentration of gene i at time t , and
πi the set of its regulators. For instance, in the gene network of Fig. 1a, the regu-
lators of gene PRR9 are two other genes, TOC1 and LHY. So if i = PRR9, then
πi = {T OC1, LHY }. A regulator can either act as activator or as repressor, and we
represent that with the binary variable Iu,i , with Iu,i = 1 indicating that gene u is
an activator for gene i , and Iu,i = 0 indicating that gene u is an inhibitor for gene i .
For the example above, LHY is an activator for PRR9, hence Iu,i = 1, while TOC1 is
an inhibitor for PRR9, hence Iu,i = 0. From the fundamental equation of transcrip-
tional regulation based on Michaelis–Menten kinetics we have for the gradient of xi
(Barenco et al. 2006):

dxi (t)

dt
|t=t� = −v0,i xi (t

�) +
∑
u∈πi

vu,i
Iu,i xu(t�) + (1 − Iu,i )ku,i

xu(t�) + ku,i
(35)

where the sum is over all genes u that are in the regulator set of πi of gene i . The first
term, −v0,i xi (t�), takes the degradation of xi into account, while vu,i and ku,i are the
maximum reaction rate andMichaelis–Menten parameters for the regulatory effect of
gene u ∈ πi on gene i , respectively. See the supplementary material of Pokhilko et al.
(2010, 2012) for similar examples in the mathematical biology literature.Without loss
of generality, we now assume that πi is given by πi = {x1, . . . , xs}. Equation (35) can
then be written in vector notation:

dxi (t)

dt
|t=t� = D


i,t�Vi (36)

where Vi = (v0,i , v1,i . . . , vs,i )

 is the vector of the maximum reaction rate param-

eters, and the vector Di,t� depends on the measured concentrations xu(t�) and the
Michaelis–Menten parameters ku,i (u ∈ πi ) via Eq. (35):

D

i,t� =

(
− xi (t

�),
I1,i x1(t�) + (1 − I1,i )k1,i

x1(t�) + k1,i
, . . . ,

Is,i xs(t�) + (1 − Is,i )ks,i
xs(t�) + ks,i

)

(37)

We combine the s Michaelis–Menten parameters ku,i in a vector Ki =
(k1,i . . . , ks,i )
. For n time points t� ∈ {t1, . . . , tn} we obtain n row vectors from
Eq. (37), and we can arrange them successively in an n-by-(|πi | + 1) design matrix
Di = Di (Ki ). The corresponding gradient vector is given by yi := (yi,1, . . . , yi,n)
,
where yi, j is the gradient of xi at time point t j . With yi being the response vector the
likelihood is:

p(yi |Ki , Vi , σ
2
i ) = (2πσ 2

i )−
n
2 e

− 1
2σ2i

(yi−DiVi )

(yi−DiVi )

where Di = Di (Ki ) is the design matrix, given the Michaelis–Menten parameter
vector Ki . To ensure non-negative Michaelis–Menten parameters, truncated Normal
prior distributions are used:
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Fig. 2 Hierarchical Bayesian
model used for gene regulatory
network reconstruction. Grey
nodes refer to fixed quantities
such as the observed response
data or low-level
hyperparameters. White nodes
refer to quantities that can
change, which includes the
model parameters and high-level
hyperparameters. Note that the
design matrix Di is not fixed
because it depends on the
Michaelis–Menten parameter
vector Ki

Ki ∼ N{Ki≥0}(1, νI) (38)

where ν > 0 is a hyperparameter, and the subscript, {Ki ≥ 0}, indicates the truncation
condition, i.e. that each element of Ki has to be non-negative. For the maximum
reaction rates, we use a truncated ridge regression prior:

Vi |σ 2
i , δ2i ∼ N{Vi≥0}(1, δ2i σ

2
i I) (39)

where δ2i is a hyperparameter that regulates the prior strength. For σ 2
i and δ2i we use

inverse Gamma priors, σ 2
i ∼ IG(aσ , bσ ) and δ2i ∼ IG(aδ, bδ). A graphical model

representation can be found in Fig. 2.
The posterior distribution of the parameters and hyperparameters has no closed-

form solution, andwe therefore resort to anMCMCscheme to sample from it. From the
graphical model in Fig. 2 it can be seen that with the sole exception of the Michaelis–
Menten parameters Ki , the conditional distribution of each parameter conditional on
its Markov blanket7 is of standard form (due to conjugacy) and can be sampled from
directly. The MCMC scheme is therefore of the form of a Gibbs sampler, in which
all parameters are sampled directly from their conditional distributions, except for
Ki , which is sampled via a Metropolis-Hastings within Gibbs step. The conditional
distribution of the maximum rate parameter vector Vi is obtained from Eqs. (25–26)
by replacing θ by Vi , and adding an index i , for association with gene i , to all other
quantities except for the identitymatrix I and the inverse temperature τ . The derivation
of the other conditional distributions is straightforward. Pseudo code of the standard
MCMC algorithm can be found in Aderhold et al. (2017). Pseudo code of the modified

7 Conditional on its Markov blanket, a node is independent of the rest of the graph; so the Markov blanket
shields a node from the remaining graph. The Markov blanket of a node is the set of nodes in the graph that
consists of the parents, the co-parents, and the children. In a graph A → B ← C, we have: A is a parent
of B (it has a directed edge from A to B), B is a child of both A and C, C is a co-parent of A, and A is a
co-parent of C.
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MCMC algorithm integrated into the proposed NETI-DIFF scheme is provided in the
Appendix, Table 2.

The data used for inference were obtained from Aderhold et al. (2014). These are
synthetic gene expression time series, whichwere generated from a biologically realis-
tic simulation of the molecular interactions in these networks, using the mathematical
framework described in Guerriero et al. (2012) and implemented in the Biopepa soft-
ware package (Ciocchetta and Hillston 2009). These time series correspond to gene
expression measurements in 2h intervals over 24h, repeated 11 times for different
experimental conditions related to various gene knockouts. We repeated the simula-
tions twice, for both of the two networks shown in Fig. 1. Hence, the true interaction
network is known, which can be used to evaluate the accuracy of Bayesian model
selection based on the modelling framework described above.

5 Results

In this section, we compare the efficiency and accuracy of three algorithms: standard
thermodynamic integration (TI-standard) and optimal thermodynamic integration (TI-
optimal) for computing the log marginal likelihood, and the proposed non-equilibrium
thermodynamic integration for directly targeting the difference of the log marginal
likelihood (NETI-DIFF).

In TI-standard we compute, based on Eq. (5), the expectation of the log likelihood
w.r.t. the power posterior, Eτ [log p(D|θ ,M)], for a set of a priori fixed inverse tem-
peratures {τi }, i = 1, . . . , K , spaced according to the power law of Eq. (8). Following
Friel et al. (2014) we have set K ∈ {10, 20, 50, 100} and α = 5 in Eq. (8). The log
marginal likelihood is computed with the trapezoid rule (Eq. 7).

TI-optimal uses the two improvements proposed in Friel et al. (2014): the log
marginal likelihood is computed with the improved numerical integration (Eq. 10),
and the inverse temperatures are set iteratively according to an optimality criterion
that aims to minimise the expected uncertainty; see Friel et al. (2014) for details.8

Finally, NETI-DIFF is the algorithm proposed in the present article.
For each inverse temperature τ in TI-standard and TI-optimal, we discarded the first

20% of the MCMC steps as burn-in (following Friel et al. (2014)). For NETI-DIFF,
we discarded the first 1000 MCMC steps with the inverse temperature kept fixed at
τ = 0, as burn-in.9 We recorded the total number of non-burn-in MCMC steps for all
three algorithms, Niter . As discussed in Appendix 7.7 this is a measure of the total
computational complexity.

We repeated theMCMC simulations Nsimu = 5 times from different initialisations.
LetBi denote the log Bayes factor obtained from the i th MCMC simulation, andBtrue

the ‘true’ log Bayes factor. For the Bayesian linear regression models applied to the

8 Note that there is a typo in Eq. (17) of Friel et al. (2014); t = f̂k+1− f̂k+ f̂k V̂k− f̂k+1 V̂k+1
V̂k−V̂k+1

must read:

t = f̂k+1− f̂k+tk V̂k−tk+1 V̂k+1
V̂k−V̂k+1

.

9 Due to the non-equilibrium nature of NETI, not discarding any burn-in phase made little difference to
the results.
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Radiata and Radiocarbon data, a closed-form expression for Btrue is available. For
the Bayesian logistic regression model applied to the Pima Indians data, and the
hierarchical Bayesian model from Fig. 2 for biopathway data, the log Bayes factor
is not analytically tractable, and Btrue was obtained from a very long simulation, as
in Friel et al. (2014). We assessed the intrinsic estimation uncertainty in terms of the
variance:

V = 1

Nsimu − 1

Nsimu∑
i=1

[Bi − B]2, B = 1

Nsimu

Nsimu∑
i=1

Bi (40)

and the accuracy in terms of the mean absolute error:

A = 1

Nsimu

Nsimu∑
i=1

|Bi − Btrue| (41)

5.1 Radiata pine and Pima Indians

We start our empirical evaluation study with the analysis of the Radiate pine data
(Sect. 4.1) and the Pima Indians data (Sect. 4.2). These two data sets have been
used in the literature before for the evaluation of the TI method proposed by Friel
et al. (2014), and in both cases the goal is to estimate the Bayes factor between
two competing Bayesian regression models. For the Radiata pine data we compare
two non-nested linear regression models. For the Pima Indians data we compare two
logistic regression models, where the first model, M1, is nested in the second, M2 .
We apply the NETI-DIFF approach with a sigmoid inverse temperature ladder, defined
in Sect. 3.6, and we instantiate NETI-DIFF such that in both applications the transition
path runs from the first model,M1 (τ = 0), to the second,M2 (τ = 1). For the Pima
Indians data this is the natural path, asM1 is nested withinM2.

Figures 3 and 4 show the average absolute deviations (Eq. 41) between the analyt-
ically computed log Bayes factors and the estimated log Bayes factors for different
total iteration numbers Niter . Figure 6 compares the variance of the log Bayes factor
estimates for the three different methods: TI-standard, TI-optimal, and NETI-DIFF.
Figure 7 shows ratios of the variances obtained with TI-optimal and NETI-DIFF.

For the Radiata data, NETI-DIFF only achieves a slight reduction in the absolute
deviation (Fig. 3) and the variance (Figs. 6, 7) for the lowest number of iterations,
Niter = 64k; otherwise NETI-DIFF and TI-optimal are on a par. Note that the two
alternative linear regressionmodels applied to theRadiata data only share the intercept,
while their sets of covariables are disjunct. This lack of model overlap presents the
least favourable scenario for NETI-DIFF, and our results confirm that there is little
room for improvement over standard TI.

For the Pima Indians data, NETI-DIFF achieves a significant reduction in the abso-
lute deviation (Fig. 4) and the variance (Figs. 6, 7) and clearly outperforms both TI
methods: TI-standard and TI-optimal. The variance reduction ranges between ratios of
5 and 50. As opposed to the models applied to the Radiata data, the alternative logistic
regression models applied to the Pima Indians data are nested, with the parameters
of the less complex model forming a subset of those of the more complex one. Our
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Fig. 3 Average absolute error on the Radiata pine data: TI versus NETI-DIFF. The figure shows the average
absolute deviation between the estimated and the true log Bayes factor in dependence on the total number of
MCMC iterations Niter . In each panel the same NETI-DIFF results are shown, while the two TI approaches
(TI-standard and TI-optimal) were applied with different numbers of discretisation points (10, 20, 50 and
100). The error bars represent standard deviations. The horizontal axes give the total number of (power
posterior) MCMC iterations, Niter

results demonstrate that in this scenario, the new thermodynamic integration path of
NETI-DIFF has potential for significant improvement over the establishedTImethods.

We also investigated the effect of the inverse temperature ladder (’sigmoid’ vs.
’power 5’) and the starting point (M1 vs.M2). To this end, we systematically applied
the proposed NETI-DIFF approach with all four combinations (two inverse temper-
ature ladders times two starting points) to the two data sets: Radiata pine and Pima
Indians. The results can be found in Fig. 5. First, consider the Pima Indians data, where
the two alternative models are nested, and the power inverse temperature scheme of
Eq. (8) has been applied. There is a clear advantage of starting the thermodynamic
integration at the less complex model over starting at the more complex model: the
absolute errors are significantly higher in the latter case. This is not surprising. It is
well known from standard TI for computing marginal likelihoods that for the power
law of Eq. (8), the optimal transition path is from the prior to the posterior, with
the majority of the inverse temperature points at the prior end. Applying this prin-
ciple to NETI-DIFF, starting the transition path for the differential parameters (i.e.
the parameters that are only in the more complex model) at the prior, implies that
the overall inverse temperature transition path has to lead from the less complex to
the more complex model, in confirmation of our findings. Interestingly, for the sig-
moid temperature ladder from Sect. 3.6, the difference between the two directions is
substantially reduced, which is a natural consequence of the symmetry inherent in
this scheme. There is no significant performance difference between the sigmoid and
the power law inverse temperature paths when the models are nested (Pima Indians
data, top row in Fig. 5). For the Radiata pine data on the other hand (bottom row
in Fig. 5), where the alternative models are not nested, the power law of Eq. (8) is
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Fig. 4 Average absolute error on the Pima Indians data: TI versus NETI-DIFF. The figure shows the
average absolute deviation between the estimated and the true log Bayes factor in dependence on the total
number of MCMC iterations Niter . In each panel the same NETI-DIFF results are shown, while the two TI
approaches (TI-standard and TI-optimal) were applied with different numbers of discretisation points (10,
20, 50 and 100). The error bars represent standard deviations. The horizontal axes give the total number
of (power posterior) MCMC iterations, Niter

Fig. 5 Comparison of two inverse temperature ladders and two NETI-DIFF paths. The vertical bars show
the average absolute deviations between the estimated and true logBayes factor, with error bars representing
standard deviations. The horizontal axes give the total number of MCMC iterations Niter . The two inverse
temperature ladders compared are the power law, Eq. (8), versus the sigmoid function, defined in Sect. 3.6.
The alternative NETI-DIFF path swaps the initial model at τ = 0 with the final model at τ = 1. Top row:
Radiata pine data. Bottom row: Pima Indians data
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intrinsically suboptimal,10 and the sigmoidal inverse temperature path of Sect. 3.6 is
to be preferred.

5.2 Radiocarbon dating

Next,we considermodel selection amongst different polynomial orders for polynomial
regression on the Radiocarbon data. Since this is a linear model, the log Bayes factor
is known and can be used for evaluating the accuracy of the different thermodynamic
integration schemes. Besides comparing the proposed NETI-DIFF scheme with the
established TI methods, we investigate the influence of the inverse temperature ladder
and the transition path. Due to the comparatively low computational costs, we have
increased the number of discretisation points from K ∈ {10, 20, 50, 100} to K ∈
{20, 50, 100, 200}.

Figure 8 shows the absolute error (see Eq. 41) for NETI-DIFF and the better of
the two established TI methods: TI-optimal. The task is to compute the log Bayes
factor for the pairwise comparison of various polynomial orders, as indicated by the
horizontal axis of each panel. It turns out that for TI-optimal, the accuracy of the
estimate deteriorates with increasing difference of the model orders (black bars in the
top panels of Fig. 8), while NETI-DIFF is unaffected by model choice.11 In addition,
NETI-DIFF considerably outperforms TI-optimal for the lower iteration numbers, as
again seen from the top row in Fig. 8.

The right column of Fig. 6 compares the variances between NETI-DIFF and TI-
optimal, and the right column of Fig. 7 shows the corresponding variance ratios.
It is seen that NETI-DIFF consistently outperforms TI-optimal, with the variance
ratios ranging between 5 and 2000. It appears that for low iteration numbers Niter ,
the improvement is most pronounced when the alternative models differ substantially
(polynomial order 1 vs. 9),while for high iteration numbers Niter , the clearest improve-
ment is achieved when the alternative models are more similar (polynomial orders 4
vs. 6).

The left panel of Fig. 9 compares the two inverse temperature ladders: the power
law of Eq. (8) versus the sigmoidal form of Sect. 3.6. Since the models are nested, we
would expect the polynomial scheme to perform well, like for the Pima Indians data
discussed above. Interestingly, the sigmoidal scheme achieves a better stabilization of
the resultsw.r.t.model order, and a slightly better performance for the largest difference
between the polynomial orders of the two alternative models considered. To shed
more light on this trend, we have investigated the evolution of the standard deviation
of the thermodynamic integral up to a given inverse temperature τ . The results are
shown in Fig. 10. While the power law indeed achieves a lower standard deviation
than the sigmoidal scheme at the low-inverse-temperature end (near the low-complex
model), it contributes a larger proportion to the standard deviation at the high-inverse-

10 This is a consequence of the fact that due to the non-nested structure of the models, there is always a
parameter for which the transition effectively moves from the posterior to the prior, rendering the power
law of Eq. (8) suboptimal.
11 NETI-DIFF is unaffected because it does not depend on the K number of discretization points of the
integral as the classical TI does. Instead, it continuously transforms one model into the other.
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Fig. 6 Variance of log Bayes factor estimators. Left panel: Radiata pine data, centre panel: Pima Indians
data, right panel:Radiocarbon data. The vertical bars show the varianceV, Eq. (40), for the TI-standard, TI-
optimal and NETI-DIFF estimators of the log Bayes factor. For the Radiata pine and the Pima Indians data
we varied the number of total MCMC iteration (horizontal axes). For the Radiocarbon data we performed
Niter = 1024k iterations and considered four different pairwise model comparisons (horizontal axis).
The rows represent different numbers of discretisation points for TI (NETI-DIFF is unaffected). The three
columns refer to the four panels in Fig. 3 (right), Fig. 4 (center) and Fig. 8 (right). The corresponding ratios
of the variances are shown in Fig. 7

temperature end (near the high-complex model). This suggests that the sparsity of
inverse temperatures at the high-inverse-temperature end can be counterproductive
due to insufficient sample size.

We finally investigated different model transition paths, with a comparison of
three alternative schemes: (1) a staggered path from the low-complexity to the high-
complexity model via a series of all intermediate models; (2) a transition via one
intermediate model of medium complexity; and (3) a direct transition. The results are
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Fig. 7 Variance ratios of log Bayes factors estimators. Left panel: Radiata pine data, centre panel: Pima
Indians data, right panel: Radiocarbon data. The vertical bars show the variance ratios of the log Bayes
factor estimators: TI-standard versus NETI-DIFF, and TI-optimal versus NETI-DIFF (obtained from the
variances in Fig. 6). The horizontal reference line at value 1 indicates equal performance; values above 1
indicate that NETI-DIFF achieves a variance reduction over the established TI schemes. For the Radiata
pine and the Pima Indians data we varied the number of total MCMC iterations Niter (horizontal axes).
For the Radiocarbon data we performed Niter = 1024k iterations and considered four different pairwise
model comparisons (horizontal axis). The rows represent different numbers of discretisation points for TI
(NETI-DIFF is unaffected). The three columns refer to the four panels in Fig. 3 (left), Fig. 4 (center) and
Fig. 8 (right)

shown in the right panel of Fig. 9. The differences are small without a clear trend. This
suggests that NETI-DIFF is remarkably robust w.r.t. the choice of the model transition
path.

123



740 M. Grzegorczyk et al.

Fig. 8 Average absolute error on the Radiocarbon data: NETI versus TI-optimal. The figure shows the
average absolute deviation between the estimated and the true log Bayes factor. In each panel the same
NETI-DIFF results are shown, while TI-optimal was applied with different numbers of discretisation points
(20, 50, 100 and 200). The bars represent standard deviations and the horizontal axes indicate different
model comparisons (polynomials of orders i vs. j). The total number of (power posterior)MCMC iterations
was kept fixed at Niter = 1024k

5.3 Biopathway

For the biopathway example, we considered two types of data. The first type was
obtained from the wild type gene regulatory network shown in Fig. 1a; the second
type was obtained from the mutant network shown in Fig. 1b. As we do not have
a closed-form expression of the log Bayes factor we chose, as a proxy, the average
of the log Bayes factors obtained with the longest TI and NETI-DIFF simulations,
which tended to be in reasonably good agreement. Table 1 shows the values of the log
Bayes factor thus obtained, which confirms that Bayesian model selection based on
the hierarchical model of Fig. 2 consistently identifies the true gene network.

In a preliminary study, we compared the two inverse temperature ladders for NETI-
DIFF: power law (see Eq. (8)) with power 5, as in Friel et al. (2014), versus the sigmoid
transfer function of Sect. 3.6.We repeated the simulations on the 5 data sets of Table 1.
From these data sets, we computed the mean of the varianceV, Eq. (40), and the mean
absolute error A, Eq. (41). The results are shown in Fig. 11. The trend is not as clear
as in Fig. 5. However, the sigmoid inverse temperature ladder achieves more often a
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Fig. 9 Influence of the inverse temperature ladder and the transition path. The bars show the average
absolute deviation A, Eq. (41), between the estimated and true log Bayes factor, computed with NETI-
DIFF for the Radiocarbon data. The error bars show standard deviations. The horizontal axes indicate
different model comparisons (polynomials of orders i vs. j). The total number of (power posterior) MCMC
iterations was kept fixed at Niter = 1024k. Left panel: Comparison of two NETI-DIFF inverse temperature
ladders (sigmoid vs. power 5).Right panel:Comparison of three NETI-DIFF transition strategies (staggered
vs. intermediate vs. direct)

Fig. 10 Comparison of the two inverse temperature ladders—Radiocarbon data. The figures show the
standard deviation of the partial NETI-DIFF integral, Eq. (18), over the partial inverse temperature range
[0, τ ], obtained from five independent NETI-DIFF simulations. The right panel shows a section of the left
panel at higher resolution.Dashed line: power law, Eq. (8). Solid line: sigmoid function, defined in Sect. 3.6
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Table 1 Log Bayes factor for the biopathway data.

Data instance: 1 2 3 4 5

wildtype → PRR7/9 −27.8 −29.3 −26.1 −25.4 −28.4

PRR7/9 → wildtype 17.1 9.8 14.4 5.8 4.0

The table shows the log Bayes factor log p(D|M2)/p(D|M1), whereM1 is the biopathway from Fig. 1a
(wildtype), andM2 is the biopathway fromFig. 1b (PRR7/PRR9mutant). Top row: data obtained fromM1;
negative log Bayes factors select the true model. Bottom row: data obtained fromM2; positive log Bayes
factors select the true model. The five columns show values for different independent data instantiations.
The log Bayes factors were obtained by averaging the values obtained with NETI-DIFF and TI for the
largest number of iterations Niter

(a) (b)

(c) (d)

Fig. 11 Mean absolute error and mean variance for different inverse temperature ladders and biopathway
data. Panels a, b show a comparison of themean absolute errorA (Eq. 41) and panels c, d show a comparison
of the mean variance V (Eq. 40) between two inverse temperature ladders: the power law from Eq. (8) as
black boxes, and the sigmoid form from Sect. 3.6 as white boxes. Results were obtained from 5 independent
data instantiations from the wildtype biopathway of Fig. 1a, and 5 independent data instantiations from the
PRR7/PRR9 mutant biopathway of Fig. 1b. Histogram height: average. Error bars: standard deviation

performance improvement over the power law (in terms of lower mean absolute error
A and average variance V) than the other way round, and we therefore adopted it for
all subsequent studies.

The main question of interest is to compare TI and NETI-DIFF with respect to
accuracy, estimation uncertainty and computational efficiency. To improve the clarity
of the presentation,weonly show the comparison betweenNETI-DIFFandTI-optimal,
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i.e. the TI scheme with the improvements proposed by Friel et al. (2014). In what
follows, we refer to “TI-optimal” simply as “TI”. The simulations were repeated
for different total iteration lengths, Niter , ranging from Niter = 10,000 to Niter =
6,400,000MCMCsteps.We repeatedTI for different numbers of inverse temperatures,
K , ranging from K = 10 to K = 100 [(the same values as used in Friel et al. (2014)].

Figure 12 shows the distribution of estimated log Bayes factors obtained from
Nsimu = 5 independent MCMC runs.12 The two columns refer to the different data
types (from the wild type network, left column, and the mutant network, right col-
umn), and the rows (Panels 12a–d) to the number of inverse temperatures used for TI
(from K = 10 to K = 100; note that NETI-DIFF is unaffected by that choice). The
horizontal dashed lines show the ‘true’ value, as described above. As expected, the
distribution width tends to decrease with increasing computational costs, Niter , and
for the highest value, TI and NETI-DIFF tend to be in close agreement, with distri-
butions tightly focused on the ‘true’ values. However, for lower computational costs,
Niter ≤ 400k, bias and uncertainty tend to be considerably lower for NETI-DIFF than
for TI, irrespective of the number of inverse temperatures used for TI.

For a more systematic investigation, we repeated the MCMC simulations on ten
independent data instantiations, for the ten data sets used in Table 1. Five data sets were
obtained from the biopathway of Fig. 1a (wildtype), and five data sets were obtained
from the biopathway of Fig. 1b (PRR7/PRR9mutant). For each data set, we computed
the mean absolute deviation A, defined in Eq. (41), and the variance V, as defined in
Eq. (40).

The top row in Fig. 13 shows the average varianceV, averaged over all data instan-
tiations. The second row shows the ratio of the average variance obtained with TI,
divided by the average variance obtained with NETI-DIFF, averaged over all five
data instantiations: V(TI)/V(NETI − DIFF). The third and fourth rows show the dis-
tribution of the variance ratios V(TI)/V(NETI − DIFF) over the five different data
instantiations, for different numbers of inverse temperatures (for TI), and different
total interation numbers Niter . For all ratios, values above 1 indicate a performance
improvement with NETI-DIFF over TI. Our results indicate that NETI-DIFF consis-
tently achieves a considerable variance reduction over TI. This reduction is particularly
pronounced for small numbers of inverse temperatures, where it reaches up to three
orders of magnitude. However, even for the highest number of inverse temperatures
the variance reduction NETI-DIFF achieves over TI still varies between one and two
orders of magnitude. This clear reduction in estimation uncertainty is matched by a
consistent reduction in the estimation error, as quantified in terms of A and shown
in Fig. 14. The reduction becomes stronger with decreasing iteration numbers Niter

and decreasing numbers of inverse temperatures, which indicates that the performance
improvement of NETI-DIFF over TI is particularly relevant in the regime of limited
computational resources.

12 These results were obtained from the first two data sets in the first column of Table 1.
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(a)

(b)

(c)

(d)

Fig. 12 Log Bayes factors for the biopathway data: comparison between NETI-DIFF and TI. The figure
shows the distribution of the log Bayes factor log p(D|M2)/p(D|M1), where M1 is the biopathway
from Fig. 1a (wildtype), andM2 is the biopathway from Fig. 1b (PRR7/PRR9 mutant). NETI-DIFF is the
same for all four rows. Left column: data generated fromM1; negative log Bayes factors select the correct
model. Right column: data generated from M2; positive log Bayes factors select the correct model. The
horizontal line shows the ‘true’ value of the log Bayes factor (in the sense defined in the text). The box plots
show distributions over 5 independent MCMC runs. The horizontal axis shows Niter , the total number of
iterations, ranging from 10 to 6400k a TI with K = 10 inverse temperatures. b TI with K = 20 inverse
temperatures. c TI with K = 50 inverse temperatures. d TI with K = 100 inverse temperatures
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(a)

(b)

(c)

(d)

Fig. 13 Variance of log Bayes factor estimation: comparison betweenNET-DIFF and TI on the biopathway
data. The variance measures are obtained from five repeated simulations of the same data set. The mean
measures correspond to the average from five different data instantiations, obtained from the biopathway of
Fig. 1a (wildtype, left column), and from the biopathway of Fig. 1b (PRR7/PRR9 mutant, right column) a
Mean of varianceV, defined in Eq. (40) with standard deviations (error bars). b Ratio of the mean variance
obtained with TI, divided by the average variance obtained with NETI-DIFF: V(TI)/V(NETI − DIFF).
Values above 1 indicate a performance improvement with NETI-DIFF over TI. c Distribution of the vari-
ance ratios V(TI)/V(NETI − DIFF) for TI with K = 10 inverse temperatures. Values above 1 indicate a
performance improvement with NETI-DIFF over TI. d Same as panel c, but for TI with K = (20, 50, 100)
inverse temperatures
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(a) (b)

Fig. 14 Mean absolute deviation of log Bayes factor estimation: comparison between NETI-DIFF and TI
on the biopathway data. Simulations were repeated for 5 independent data instantiations, obtained from the
biopathway of Fig. 1a (wild type), and from the biopathway of Fig. 1b (PRR7/PRR9 mutant). Shown is the
mean absolute deviationA, defined in Eq. (41). Vertical bar height: average over the five data instantiations.
Error bars: standard deviation. The horizontal axis shows the total number of iterations Niter . For each
value of Niter , the leftmost bar represents NETI-DIFF. The other barswith different grey shadings represent
TI with different numbers of inverse temperatures, ranging from 10 to 100

6 Discussion

The objective of our work has been the direct targeting of the log Bayes factor via
a modified thermodynamic integration path. This has been motivated by statistical
physics, where the computation of a reaction free energy (mathematically equivalent
to the log Bayes factor) is computationally more efficient than the computation of
the difference of standard free energies (equivalent to the difference of log marginal
likelihoods). The modified transition path directly connects the posterior distributions
of the two models involved. In this way, the high variance prior regime is avoided.
We have carried out a comparative evaluation with the state-of-the-art TI method
of Friel et al. (2014). Our study confirms that a substantial variance reduction can
be achieved when the models to be compared are nested. There is little room for
improvement when comparing non-nested models with non-overlapping parameter
sets. However, even in this least favourable case, the performance achieved with the
proposed method, referred to as NET-DIFF in the present manuscript, is still on a par
with established TImethods. For inference in a complex systems described by coupled
nonlinear differential equations (biopathway), we found that NETI-DIFF reduces the
variance by up to two orders of magnitude over state-of-the-art TI methods. Our work
has also revealed that NETI-DIFF achieves a considerable performance stabilisation
with respect to a variation of the parameter prior.

When the task is model selection out of a set of cardinality m, carrying out direct
pairwise comparisons is of computational complexity m2 and may not be viable in
practice. However, rather than reverting to the standard TI scheme and computing the
marginal likelihoods

p(D|M1), . . . , p(D|Mm) (42)

it appears more sensible to compute the Bayes factors
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p(D|M1)

p(D|M0)
, . . . ,

p(D|Mm)

p(D|M0)
(43)

where M0 is a typical or representative model chosen from the set of models com-
pared. The results for the Radiocarbon data, reported in Sect. 5.2, have demonstrated a
remarkable robustness of the proposedmethod w.r.t. a variation of themodel transition
path, meaning that there is no significant difference in efficiency and accuracy between
the direct computation of log p(D|M1)

p(D|M2)
, and the indirect computation via log p(D|M1)

p(D|M0)

and log p(D|M2)
p(D|M0)

. This suggests that 1-out-of-m model selection can also be improved
with the method we have proposed. It is beyond the scope of this article to investigate
this conjecture at greater depth, but it appears plausible that targeting Bayes factors
along an annealing path starting from a reference posterior distribution associated with
a reference model should give smaller posterior variance than conventionally targeting
marginal likelihoods along an annealing path starting from the prior distribution.

If there are only thosemmodels,M1, . . . ,Mm , then them Bayes factors inEq. (43)
together with the (pre-defined) model prior probabilities p(Mi ) (i = 1, . . . ,m) and
the normalisation condition fully specify the model posterior probabilities p(Mi |D).
With the definition:

bi, j := p(D|Mi )

p(D|M j )
· p(Mi )

p(M j )
= p(D|Mi )

p(D|M0)
·
(
p(D|M j )

p(D|M0)

)−1
· p(Mi )

p(M j )
(i, j ∈ {1, . . . ,m})

where the two Bayes factors on the right are known from Eq. (43), we get:

p(Mi |D) = p(D|Mi ) · p(Mi )∑m
j=1 p(D|M j ) · p(M j )

= p(D|Mi ) · p(Mi )∑m
j=1

p(D|Mi )·p(Mi )
bi, j

=
⎛
⎝ m∑

j=1

b−1
i, j

⎞
⎠

−1

(44)
Equation (44) is formally equivalent to Eq. (4) in Berger and Delampady (1987). We
have m models with discrete prior probabilities πi = P(Mi ) > 0 and

∑m
i=1 πi = 1.

We get, e.g., for model M1:

p(M1|D) =
⎛
⎝1 +

m∑
j=2

b−1
1, j

⎞
⎠

−1

=
⎛
⎝1 +

m∑
j=2

π j

π1
· p(D|M j )

p(D|M1)

⎞
⎠

−1

=
⎛
⎝1 + 1

π1

m∑
j=2

π j · p(D|M j )

p(D|M1)

⎞
⎠

−1

=
⎛
⎝1 + 1 − π1

π1

m∑
j=2

π j

1 − π1
· p(D|M j )

p(D|M1)

⎞
⎠

−1

=
(
1 + 1 − π1

π1
·
∑m

j=2 p(D|M j ) · π j
1−π1

p(D|M1)

)−1

=
(
1 + 1 − π1

π1
· 1

B

)−1

where B is the Bayes factor:

B := p(D|M1)∑m
j=2 p(D|M j ) · g(M j )

= p(D|H0)

p(D|H1)
with g(M j ) := π j

1 − π1
= π j∑m

j=2 π j

(45)
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and the hypotheses stand for: H0:M = M1 and H1:M ∈ {M2, . . . ,Mm} which
are assumed to be true with the prior probabilities π1 and 1− π1, respectively. Equa-
tion (45) corresponds to Eq. (2) in Berger and Delampady (1987).13

One of the referees raised the interesting question of how the proposed method is
applied to graphical Gaussian models and mixture models.

We have included an additional section in the Appendix 7.4 where we discuss in
detail how the proposed method can be applied to Graphical Gaussian models. We
have also carried out an additional simulation study to illustrate the application of our
method to Graphical Gaussian models. The key idea is to not apply the method to the
configuration space of precisionmatrices directly, which would be cumbersome due to
the constrained topologyof this space (restriction to positive definitematrices). Instead,
we make use of the theorem that every multivariate normal density can be represented
by a Gaussian belief network, and vice versa; see Geiger and Heckerman (1994). This
effectively defines an isomorphism between the space of Gaussian graphical models
and the space of Gaussian belief networks. We exploit this isomorphism by defining
the proposed NETI scheme in the space of Gaussian belief networks, as discussed in
detail in Appendix 7.4.

For mixture models, the proposed NETI method will not achieve any improvement
over the standard thermodynamic integration scheme. The reason is that according to
Eq. (18), the modified thermodynamic integration path that we have proposed has the
potential for a variance reduction if the two model likelihoods in the numerator and
denominator share a substantial number of parameters. For mixture models, this is not
the case, due to the intrinsic identifiability problem. In Appendix 7.5, we demonstrate
on an empirical simulation study that for a mixture model, the proposed new method
and the established thermodynamic integration scheme are on a par.

The focus of our study has been a comparison with the improved TI method pro-
posed in Friel et al. (2014). Recently, a powerful new method for variance reduction
in thermodynamic integration based on control variates, termed CTI (controlled ther-
modynamic integral), has been proposed (Oates et al. 2016). The idea is to add a
zero-mean function from a given function family (e.g. a polynomial) to the integrand
and then apply variational calculus to minimise the variance of the estimator. The
resulting optimality equations depend on expectation values w.r.t. the unknown pos-
terior distribution, which the authors approximate with samples from initial MCMC
simulations.

On the Radiata data, CTI outperforms NETI-DIFF, due to the fact that NETI-DIFF
offers little room for improvement on non-nested models with disjunct parameter sets,
as discussed above. On the Pima Indians data, both NETI-DIFF and CTI achieve a
significant variance reduction over the state-of-the-art TI method of Friel et al. (2014).

13 Berger and Delampady (1987) study the Bayesian test problem: H0 : θ = θ0 vs. H1 : θ �= θ0,
where θ is a continuous parameter. In Berger and Delampady (1987) the denominator of the Bayes factor
B in Eq. (3) is given by: P(D|H1) = ∫

p(D|θ)g(θ)dθ , where the prior g(.) and the integral are over
all parameters belonging to H1. Here we can think of the test: H0 : M = M1 vs. H1 : M �= M1.
With the partition theorem we get for the joint probability: p(D,H1) = p(D, {M2 ∪ . . . ∪ Mm }) =∑m

j=2 p(D,M j ) = ∑m
j=2 p(D|M j ) · π j , and hence we have for the denominator of our Bayes factor:

p(D|H1) = p(D,H1)
1−π1

=∑m
j=2 p(D|M j ) · g(M j ).
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Oates et al. (2016) applied their method with the standard trapezoid sum of Eq. (7),
CTI-1, andwith the improved trapezoid sumofEq. (10), CTI-2.A comparison between
Fig. 7 in the present paper and Fig. 3 in Oates et al. (2016) shows that the performance
of NETI-DIFF, which reduces the variance over state-of-the-art TI by a whole order
of magnitude, lies between CTI-1 and CTI-2. Oates et al. (2016) argue that the linear
curvature sum of Eq. (7) is known to be biased, and the quadratic curvature rule of
Eq. (10) should be used. However, in Aderhold et al. (2017) it was demonstrated that
quadratic curvature can lead to an increase in the estimation error when vague prior
distributions are used, and it is therefore not always the automatic method of choice.

Current work in statistics is increasingly aiming to tackle more complex models,
e.g. based on coupled nonlinear differential equations, like the biopathway model dis-
cussed in Sect. 4.4. For data generated from an ordinary differential equation model of
circadian regulation (Goodwin oscillator), Oates et al. (2016) found that CTI achieved
little improvement over state-of-the-art TI. The authors discuss that a potential prob-
lem CTI faces for complex models is multimodality of the posterior distributions,
rendering the approximation of the posterior expectation values, which enter the opti-
mality equations from variational calculus, less reliable. NETI-DIFF, on the other
hand, does not rely on such estimates. In fact, our results, presented in Fig. 13, suggest
that NETI-DIFF achieves the most substantial variance reduction over state-of-the-art
TI for the most complex, nonlinear biopathway model, reaching up to and exceeding
two orders of magnitude.

We conclude that CTI and NETI-DIFF are not competing methods, but rather
conceptionally different approaches with the potential to complement each other. CTI
aims to achieve variance reduction by adding control variates to the integrand; it
requires a reliable estimation of posterior averages of quantities related to these control
variates from initial MCMC runs. NETI-DIFF aims to achieve variance reduction
by modifying the thermodynamic integration path; it works best for models with
substantial parameter overlap. Both approaches can be combined, that is, the natural
next step is to add control variates and change the integration path, i.e. to target the
log Bayes factor with the principles of CTI. This combination of NETI-DIFF and CTI
has the potential to further extend the feasibility of Bayesian model selection to ever
more complex models, and a closer investigation of such a hybrid approach poses a
promising avenue for future research.
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7 Appendix

7.1 Proof of Jarzynski’s theorem

Using the definitions from Sect. 2, we get:

p(D|Mi ) =
∫

p(D|θ ,Mi )p(θ)dθ =
∫
exp(−Ei [θ ])p(θ)dθ∫

p(θ)dθ

=
∫
exp(−Ei [θ ])p(θ)dθ∫

exp(Ei [θ ]) exp(−Ei [θ])p(θ)dθ

=
(∫

exp(Ei [θ ]) exp(−Ei [θ ])p(θ)dθ∫
exp(−Ei [θ ])p(θ)dθ

)−1

=
(∫

exp(Ei [θ ])p(θ |D,Mi )

)−1

=
〈
exp(Ei [θ])

〉−1

i

p(D|M2) =
∫

exp(−E2[θ])p(θ |M2)dθ

=
∫

exp(−{E2[θ ] − E1[θ]}) exp(−{E1[θ ]})p(θ |M2)dθ

=
∫

exp(−ΔE[θ ]) exp(−{E1[θ]})p(θ |M2)dθ

=
∫

exp(−ΔE[θ ]) exp(−{E1[θ]}) p(θ |M2)

p(θ |M1)
p(θ |M1)dθ

=
∫

exp(−ΔẼ[θ]) exp(−{E1[θ]})p(θ |M1)dθ

p(D|M2)

p(D|M1)
=
∫

exp(−ΔẼ[θ])exp(−{E1[θ ]})p(θ |M1)

p(D|M1)
dθ

=
∫

exp(−ΔẼ[θ])p(θ |D,M1)dθ

=
〈
exp(−ΔẼ[θ ])

〉
1

7.2 Uncertainty quantification

From Eq. (16) we have:

d

dτ
Eτ

[
log

(
p(D|θ ,M2)

p(D|θ ,M1)

)]

= d

dτ

(
1

Z(D|τ,M1,M2)

d

dτ
Z(D|τ,M1,M2)

)
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= 1

Z(D|τ,M1,M2)

d2

dτ 2
Z(D|τ,M1,M2)

−
(

1

Z(D|τ,M1,M2)

d

dτ
Z(D|τ,M1,M2)

)2

= 1

Z(D|τ,M1,M2)

d2

dτ 2
Z(D|τ,M1,M2) −

{
Eτ

[
log

(
p(D|θ,M2)

p(D|θ,M1)

)]}2

(46)

For the first term we get:

1

Z(D|τ,M1,M2)

d2

dτ 2
Z(D|τ,M1,M2)

= 1

Z(D|τ,M1,M2)

∫
d2

dτ 2

(
p(D|θ,M2)

p(D|θ,M1)

)τ

p(D|θ,M1)p(θ |M1,M2)dθ

=
∫ {

log

(
p(D|θ,M2)

p(D|θ,M1)

)}2 p(D|θ,M2)
τ p(D|θ,M1)

1−τ p(θ |M1,M2)

Z(D|τ,M1,M2)
dθ

=
∫

pτ (θ |D,M1,M2)

{
log

(
p(D|θ,M2)

p(D|θ,M1)

)}2
dθ

= Eτ

[{
log

(
p(D|θ ,M2)

p(D|θ ,M1)

)}2]
(47)

Combining Eqs. (46) and (47), we get:

d

dτ
Eτ

[
log

(
p(D|θ ,M2)

p(D|θ ,M1)

)]
= Vτ

[
log

(
p(D|θ,M2)

p(D|θ,M1)

)]

Define the following shorthand notation:

Φ(τ) =
{
log

(
p(D|θ,M2)

p(D|θ ,M1)

)}
τ

(48)

which is an estimator of Eτ

[
log
(
p(D|θ ,M2)
p(D|θ,M1)

)]
with sample size 1. We can rewrite

Eq. (18) as:

log

(
p(D|M2)

p(D|M1)

)
≈
∫ 1

0
Φ(τ)dτ ≈

∑
n

Φ(τn)Δτn (49)
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For the variance we get:

V

{
log

(
p(D|M2)

p(D|M1)

)}
≈
∑
n

V

[
Φ(τn)

]
[Δτn]2 ≈

∑
n

(
∂Φ

∂τ

)
τn

[Δτn]2

≈
∑
n

ΔΦ(τn)

Δτn
[Δτn]2 (50)

≈
∑
n

ΔΦ(τn)Δτn (51)

7.3 Pseudocode

Table 2 shows the NETI-DIFF pseudocode for the Bayesian hierarchical model of
Fig. 2. Pseudocode for standard MCMC, following a Metropolis-Hastings within
Gibbs scheme, was provided in Table 1 of Aderhold et al. (2017). Table 2 shows
the modification required to sample with the NETI-DIFF scheme from the tempered
posterior distribution in Eq. (13).

7.4 Application to Gaussian Graphical Models

In this Appendix we show how the new method (NETI-DIFF) can be used to infer the
Bayes factor between Gaussian graphical models (GGMs). We propose an indirect
procedure which exploits that multivariate Gaussians can be represented as ’Gaussian
belief networks’ (Geiger and Heckerman 1994). A Gaussian graphical model corre-
sponds to an M-dimensional multivariate Gaussian distribution with mean vector m
and covariance matrix Σ so that the density (PDF) is given by

p(x|m, W) = (2π)−M/2 · det(W) · exp{−1

2
(x − m)

T
W(x − m)} (52)

wherex = (x1, . . . , xM )
T
andW = Σ−1 is called the precisionmatrix. Each 0 element

of W indicates that the partial correlation between the corresponding variables is zero,
e.g. Wi, j = 0 if the partial correlation between xi and x j is zero. We follow Geiger
and Heckerman (1994) and identify this Gaussian distribution with a ’Gaussian belief
network’, i.e. we factorise the density in Eq. (52) with the chain rule:

p(x|m, W) = p(x1) ·
M∏
i=1

p(xi |x1, . . . , xi−1) (53)

where the conditional distributions are univariate Gaussians

xi |x1, . . . , xi−1 ∼ N (mi +
i−1∑
j=1

β j,i (x j − m j ), σ
2
i ) (54)
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Table 2 Pseudo code for a NETI-DIFF simulation at inverse temperature τ for the biopathway model from
Sect. 4.4

The differences to the standard MCMC scheme from Table 1 in Aderhold et al. (2017) are marked in red
fonts

W j,i = 0 implies that the ’regression coefficient’ β j,i of the Gaussian belief net-

work representation is zero, and vice-versa. Moreover, we have m = (m1, . . . ,mM )
T
,

and σ 2
i is the conditional variance of xi given x1, . . . , xi−1. From the parameters in

Eqs. (53, 54) the precision matrix W = W(M) of the multivariate Gaussian distribu-
tion can be (re-)computed with the recursion:
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W(i + 1) =
⎛
⎜⎝

W(i) + βiβ
T
i

σ 2
i+1

− βi
σ 2
i+1

− β
T
i

σ 2
i+1

1
σ 2
i+1

⎞
⎟⎠ (55)

where W(1) = 1
σ 2
1
and β i = (β1,i , . . . , βi−1,i )

T
.

The most convenient way to compute the Bayes factor between two competing
GGMs is to work with their Gaussian belief network representations.14 For a GGM
with precision matrix W, we impose a Wishart prior onto W, and we represent the
GGM in terms of the parameters m = (m1, . . . ,mM )

T
, σ 2 = (σ 2

1 , . . . , σ 2
M )

T
, and

B =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 . . . 0
β1,2 0 0 . . . 0
β1,3 β2,3 0 . . . 0

...
...

. . .
...

β1,M β2,M . . . βM−1,M 0

⎞
⎟⎟⎟⎟⎟⎠

where β j,i = 0 if W j,i = 0 ( j < i).
Given two GGMs M1 and M2 with precision matrices W1 and W2 we represent
both as Gaussian belief networks with the regression coefficient matrices Bk whose
elements are given by βk

j,i (k = 1, 2). We have βk
j,i = 0 if Wk

j,i = 0 (k = 1, 2) and

β1
j,i = β2

j,i if β1
j,i , β

2
j,i �= 0, so that all shared non-zero regression coefficients are

equal. We assume that both GGMs share the mean vector m, which we assume to
be known, and the conditional variances (σ 2

i )k = σ 2
i . Let B denote the matrix of all

regression coefficients which are non-zero in at last one of the GGMs. The elements
of B are:

β j,i =

⎧⎪⎨
⎪⎩

β1
j,i if β1

j,i �= 0 and β2
j,i = 0

β2
j,i if β1

j,i = 0 and β2
j,i �= 0

β1
j,i if β1

j,i = β2
j,i

(56)

Given n data points x1, . . . , xn the tempered posteriors take the form:

pτ (W|x1, . . . , xn,M1,M2) ∝
( n∏

w=1

p(xw|m, W1)

)τ ( n∏
w=1

p(xw|m, W2)

)1−τ

p(W)

where τ ∈ [0, 1] and the three precision matrices W1, W2, and W can be computed
with Eq. (55) from the conditional variances σ 2

i and the regression parameters in B1,
B2 and B.
Sampling from the tempered posterior can be done with Metropolis–Hastings (MH)
MCMC moves which we define in the space of the non-zero regression parameters
in B and in the space of the logarithms of the conditional variances σ 2

i . We obtain a

14 When working directy with the precision matrix, one would have to guarantee that it stays positive-
definite.
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Fig. 15 Average log Bayes factor for GGMs: wildtype (M1) versus mutant (M2) network. The figure
shows the average log Bayes factor obtained for 10 independent wildtype data instantiations with n = 100
observations each. Bayes factors above the dotted reference line are in favour of the wildtype network
(M1), which is the true network if the additional regression coefficients are greater than 0. The error bars
refer to standard deviations

new candidate state B� and σ 2
i,� by adding randomly sampled numbers to the non-zero

elements of B and to log(σ 2
i ).15 From the new candidate matrix B� we extract the

matrices Bk,� (k = 1, 2) as follows: β
k,�
j,i = 0 if Wk

i, j is restricted to be zero and

β
k,�
j,i = β�

j,i otherwise. The new precision matrices W�, W1,�, and W2,� can then be

computed from B�, B1,�, and B2,� with Eq. (55), and the MH acceptance probability
depends on the ratio of the tempered posteriors of the new precision matrix W� and
the old precision matrix W.

For a proof of concept we perform a simulation study: We consider the M = 7
genes (1=̂LHY, 2=̂TOC1, 3=̂PRR9, 4=̂PRR7, 5=̂GI, 6=̂Y, and 7=̂TOC1) of the
Arabidopsis networks, shown in Fig. 1, and we parametrize both graphs M1 and
M2 as Gaussian belief networks. We set: m = 0 and σ 2

i = 1 for all i , and the
non-zero regression coefficients appearing in both graphs are set to β j,i = 1, while
the regression coefficients appearing only in the wildtype (M1) are set to β ∈ R.
The latter coefficients correspond to the edges ’PRR9-PRR7’ (β2,3) and ’PRR7-NI’
(β3,4) in Fig. 1. β is a tuning parameter for the strength of the two additional partial
correlations inM1. For β = 0 the partial correlations are zero and the nested mutant
network M2 is the correct model. As prior on W we use a Wishart distribution with
df = 10 degrees of freedom and the identity matrix as precision matrix P = I7.
We generate data sets with n = 100 data points from M1, and we use NETI-DIFF
(with 100k iterations, a sigmoidal temperature ladder and ε = 0.1) to compute the
Bayes-factors. Figure 15 shows the results. The Bayes factors are in favour of the
true wildtype network (M1) if the additional regression coefficients have a sufficient
size (β ≥ 0.3). For low values (β ≤ 0.2) the Bayes factor is in favour of the mutant
network (M2), which is actually the true network for β = 0. Only for low positive
values (β = 0.1 and β = 0.2) the wrong model is favoured over the true model. The
latter can be explained by the prior. The Wishart prior with hyperparameters df = 10

15 Those random numbers are uniformly distributed on a small interval [−ε, ε] with center 0.
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and P = I7 corresponds to 10 pseudo data points from a GGM without any non-zero
partial correlations, and hence, yield a higher penalty for the wildtype netwerk M1
than for the sparser mutant network M2.

7.5 Application to mixture models (galaxy data)

In this Appendix we show that the new method (NETI-DIFF) can also be used to
compute the Bayes factor between mixture models with different numbers of mixture
components. Like Friel et al. (2014) we consider the Galaxy data fromRichardson and
Green (1997), which contain n = 82 measurements y1, . . . , y82 of galaxy velocities,
and we compute the Bayes factor between two Bayesian Gaussian mixture models
M3 with K = 3 components andM4 with K = 4 components. For our study we use
exactly the same mixture model as Friel et al. (2014) with the same prior distributions
and the same hyperparameters. A latent allocation vector z = (z1, . . . , z82)

T
allocates

the individual data points to the K mixture components, where zi = k if data point
yi has been allocated to component k (k = 1, . . . , K ; i = 1, . . . , 82). On the mixture
weights wk := P(zi = k) we impose a Dirichlet prior:

(w1, . . . , wK ) ∼ DIR(1, . . . , 1)

The data points within each component k (1 ≤ k ≤ K ) are assumed to stem from a
univariate Gaussian distribution with mean μk and variance σ 2

k , so that

yi |(zi = k) ∼ N(μk, σ
2
k )

and for μk and σ 2
k we use a Gaussian prior and an Inverse-Gamma prior:

μk ∼ N(0, 1000) σ−2
k ∼ GAM(1, 1)

We define θK to be the set of all parameters of the mixture model MK with K
components:

θK =
{
wK ,1, . . . , wK ,K , μK ,1, . . . , μK ,K , σ 2

K ,1, . . . , σ
2
K ,K

}

In the absence of limiting conditions, mixture models with different numbers of
components (here: M3 and M4) do not share any parameters, and the tempered
NETI-DIFF posteriors take the form

pτ (θ3, θ4|y1, . . . , ym,M3,M4) ∝ p(y1, . . . , yn|θ3)τ p(y1, . . . , yn|θ4)1−τ

p(θ3|M3)p(θ4|M4)

Because of this modular form, the parameters in the sets θ3 and θ4 can be sampled
by disjunct MCMC sampling steps, which either re-sample subsets of the parameters
θ̃3 ⊂ θ3 (or θ̃4 ⊂ θ4) from their full conditional distributions:

123



Targeting Bayes factors with direct-path non-equilibrium… 757

pτ

(
θ̃3| ˜̃

θ3, θ4, y1, . . . , ym,M3,M4

)
∝ p (y1, . . . , yn|θ3)τ · p (θ3|M3)

pτ

(
θ̃4| ˜̃

θ4, θ3, y1, . . . , ym,M3,M4

)
∝ p (y1, . . . , yn|θ4)1−τ · p (θ4|M4)

where ˜̃
θK ∪ ˜θK = θK , or via Metropolis Hastings sampling steps, whose acceptance

probabilities are:

A
(
(θ3, θ4) → (θ�

3, θ4)
) = min

{
1,

(
p(y1, . . . , yn |θ�

3)

p(y1, . . . , yn |θ3)
)τ

· p(θ�
3|M3)

p(θ3|M3)
· HR

}

A
(
(θ3, θ4) → (θ3, θ

�
4)
) = min

{
1,

(
p(y1, . . . , yn|θ�

4)

p(y1, . . . , yn|θ4)
)1−τ

· p(θ�
4|M4)

p(θ4|M4)
· HR

}

where HR is the move-specific Hastings ratio and the � symbol indicates a new
candidate parameter set. Since these are the standard equations for power posterior
sampling, as used by the thermodynamic integration (TI) approach, the adaptation of
the Metropolis–Hastings and Gibbs sampling steps of the power posterior sampling
scheme for TI (Friel et al. (2014)) is straightforward. At each temperature τ ∈ [0, 1]
NETI-DIFF updates the parameters in θ3 and in θ4 independently by performing the
corresponding steps of the MCMC sampling scheme. The only difference is that the
parameters in θ4 are subject to the complementary temperature 1 − τ rather than τ ,
and we therefore implement NETI-DIFF with the sigmoid inverse temperature ladder
from Sect. 3.6. Moreover, we also take into account that NETI-DIFF has to perform
twice as many sampling steps as TI, since NETI-DIFF re-samples the parameters
of both models M3 and M4 within each iteration. Thus, NETI-DIFF iterations are
approximately double as expensive as TI iterations, and we can perform only 50% of
the total number of iterations Niter with NETI-DIFF.
In our empirical study we compare the performance of NETI-DIFF with TI-standard
and TI-optimal, and we implement both TI approaches with 100 discretisation points.
We compute the Bayes factor between the mixture models M3 and M4 based on
Niter = 1000k and Niter = 2000k iterations.16 The results of our study are shown
in Fig. 16. It can be seen that there are no significant differences between the per-
formances. The NETI-DIFF estimates appear to be minimally less biased than the TI
estimates, but on the other hand the NETI-DIFF estimates have a slightly increased
standard deviation. This finding, that NETI-DIFF does not lead to any improve-
ment over the standard TI approach, is not surprising: Due to the fact that the two
mixture models do not have any parameters in common, targeting the Bayes factor
directly cannot have any advantages. Formodelswith disjunct parameter spacesNETI-
DIFF effectively just corresponds to two simultaneously performed but independent
non-equilibrium thermodynamic integration (NETI) approaches, where one model is
subject to the complementary temperature transition from τ = 1 to τ = 0. Targeting
the Bayes factor directly, as described in Sect. 3.3, can only lead to an improvement if

16 That is, we implement NETI-DIFF with Niter /2 = 500k (and Niter /2 = 1000k) iterations, and for TI
we take Niter /100 = 10k (and Niter /100 = 20k) power posterior samples for each of the 100 inverse
temperatures.
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Fig. 16 Bayes factor estimates for the Galaxy data. Error bar plot of the average log Bayes factor between
the mixture models M4 with K = 4 components and M3 with K = 3 components. For each method
the averages have been computed from 10 independent simulations. The dotted reference line indicates the
(true) gold-standard Bayes factor of size 0.4685, reported in Friel et al. (2014). The error bars correspond
to standard deviations, and the horizontal axis gives the total number of iterations (Niter = 1000k and
Niter = 2000k)

the two models share parameters. In the direct transition paths between the two model
posteriors, only those shared parameters constantly appear with the inverse tempera-
ture 1 and do not undergo any temperature transitions (i.e. they are excluded from the
annealing process). All non-shared parameters have to undergo the transitions from
τ = 0 to τ = 1 or from τ = 1 to τ = 0, respectively.

7.6 Full conditional distributions of variance parameters

For linear models where the variance parameter σ 2 in Eq. (20) in Sect. 3.5 is not
known, a prior distribution has to be imposed on σ 2. A common choice is the conjugate
Inverse-Gamma distribution with hyperparameters a/2 and b/2, symbolically σ−2 ∼
GAM( a2 , b

2 ). The tempered full conditional distribution of σ−2 is then of closed-form
and can be derived as follows:

pτ (σ
−2|D, θ ,M1,M2) ∝ p(y|θ , σ 2,M2)

τ · p(y|θ , σ 2,M1)
1−τ · p(θ |σ 2,M1,M2) · p(σ 2)

∝ Nn(D(2)θ , σ 2I)τ · Nn(D(1)θ , σ 2I)1−τ · Np(μ0, σ
2δ2I) · GAM(σ−2)

∝
(

1

σ 2

)τ · n2
exp

(
− 1

2σ 2 ·
[
D(1)θ − y

]
 [
D(1)θ − y

]
· (1 − τ)

)
·

(
1

σ 2

)(1−τ)· n2
exp

(
− 1

2σ 2 ·
[
D(2)θ − y

]
 [
D(2)θ − y

]
· τ

)
·

(
1

σ 2

) p
2

exp

(
− 1

2σ 2δ2
· [θ − μ0]
 [θ − μ0]

)
·

(
σ−2

)a/2−1
exp

(
−σ−2 · b

2

)

=
(
σ−2

)ã−1 · exp
(
−σ−2 · b̃

)

where p is the length of the regression coefficient vector θ and
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Table 3 Runtimes in seconds for different data sets and 1,00,000 iterations.

n NETI-DIFF TI-standard TI-optimal

Radiata pine 42 81.6 (4.1) 85.6 (4.4) 85.6 (4.4)

Pima Indians 532 9.3 (0.1) 9.5 (0.3) 10.3 (0.1)

Radiocarbon 343 19.5 (0.5) – 35.4 (0.8)

Biopepa 143 54.1 (1.2) 53.6 (2.0) 58.7 (2.5)

The data size is given by n observations. The number of variables can differ depending on the model. Time
values are averages over 10 runs and different models on an Intel Core i7 6700HQ processor. The standard
deviations are indicated in brackets. The runtime for Biopepa is for a single response out of seven possible
responses

ã = 1

2
(a + n + p)

b̃ = 1

2

(
b + (1 − τ)

[
D(1)θ − y

]
 [
D(1)θ − y

]

+τ
[
D(2)θ − y

]
 [
D(2)θ − y

]
+ δ−2[θ − μ0]
[θ − μ0]

)

Comparing this with the identity:

GAM(σ−2|ã, b̃) = b̃ã

Γ (ã)
·
(
σ−2

)ã−1
exp{−σ−2 · b̃} ∝

(
σ−2

)ã−1
exp{−σ−2 · b̃}

we get the full conditional distribution

σ−2|(D, θ ,M1,M2, τ ) ∼ GAM(ã, b̃)

Hence,we can also sample σ−2 directly from the tempered full conditional distribution
in a Gibbs sampling scheme, and σ 2 = 1/σ−2.

7.7 Computational run times and convergence diagnostics

It is important to assess the convergence of the NETI simulations accurately. However,
conventional convergence diagnostics for MCMC, like the Gelman–Rubin potential
scale reduction factor, are not applicable here. The reason is that the combination of
the NETI scheme, described in Sect. 3.2, and the new thermodynamic integration path,
described in Sect. 3.3, continuously transform one model into another via a series of
non-equilibrium configurations. We need to point out that any samples taken during
this transformation are of no interest in themselves; the only quantity of interest is the
log Bayes factor, computed according to Eq. (18). The estimate of the log Bayes factor
from Eq. (18) is a random variable that is subject to the intrinsic stochasticity of the
MCMC sampler. A natural convergence diagnostic is the variance of this estimator: for
an infinite simulation time, the variance should go to zero as the estimate should not
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(a) (b)

Fig. 17 Convergence of NETI-DIFF for the Biopepa data. This figure gives the variance of marginal log
likelihood estimators for NETI-DIFF and the two ladder types (panel a and b). The variance is calculated
from five repetitions and for five different data instances shown in the legend. This figure complements
Fig. 11, where the average variances, averaged over all five data instantiations, are shown. a NETI-DIFF
with power law ladder. b NETI-DIFF with sigmoidal ladder

depend on the particular idiosyncrasies of anyMCMC trajectory.We have investigated
this conjecture in Figs. 6, 7, 11c, d and 13a. Since Figs. 11c, d and 13a provide average
variances over five independent data instantiations,wehave includedFig. 17 that shows
the individual variances for each data set separately. All these figures demonstrate
that the variance approaches zero as the simulation time, regarding the number of
MCMC steps, is increased. Figure 6 quantifies the improvement in convergence that
the proposed method achieves over the established schemes, in the form of a faster
decrease of the variance with increasing simulation times.

The figures mentioned above, e.g. Figs. 6 and 13a, monitor convergence in terms
of iteration numbers. For a fair comparison between different methods, we also need
to take into consideration the computational costs per iteration shown in Table 3:
The computational run times of the three algorithms compared are approximately
equal; if there is any difference at all, it appears to be in favour of the proposed
NETI scheme. From this, we can conclude that monitoring inference uncertainty as a
function of MCMC iteration numbers, as carried out throughout our paper, provides
an appropriate quantification of computational complexity.
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