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ABSTRACT: Pulse-like signals are ubiquitous in the field of single molecule analysis, e.g., electrical
or optical pulses caused by analyte translocations in nanopores. The primary challenge in processing
pulse-like signals is to capture the pulses in noisy backgrounds, but current methods are subjectively
based on a user-defined threshold for pulse recognition. Here, we propose a generalized machine-
learning based method, named pulse detection transformer (PETR), for pulse detection. PETR
determines the start and end time points of individual pulses, thereby singling out pulse segments in
a time-sequential trace. It is objective without needing to specify any threshold. It provides a
generalized interface for downstream algorithms for specific application scenarios. PETR is validated
using both simulated and experimental nanopore translocation data. It returns a competitive
performance in detecting pulses through assessing them with several standard metrics. Finally, the
generalization nature of the PETR output is demonstrated using two representative algorithms for
feature extraction.
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Single-molecule analysis (SMA) technologies are developed
to interrogate individual molecules so as to gain high-

fidelity information about them, a task often difficult or even
impossible to attain using ensemble averages.1 They offer a
powerful toolbox for direct observation of molecule dynamics
in nanoscale, e.g., in peptide/protein folding,2,3 protein
dynamics,4,5 single-ion electrochemical reactions,6,7 DNA
hybridization,8,9 etc. Pulse-like signals are ubiquitously found
in the field of SMA. They carry comprehensive information
about the concerned molecules including their dynamics and
interactions with the surroundings. They can be in form of, e.g.,
variations in electrical current through protein ion channels in
cell membranes,10 alternations in luminance caused by analyte
translocations in nanopores,11 and changes in electrical current
related to single-molecule electrochemical reactions on nano-
scale electrodes.12 As a typical example, nanopore sensors have
been used for molecular analysis at the single-molecule level,13

such as DNA and protein sequencing,14,15 protein profiling,16

peptide recognition,17 and small molecule detection.18 In a
nanopore, the passage of single molecules, i.e., the analytes,
leads to temporal blockages of the pore and, therefore,
sporadic appearance of spikes on the ionic current in electrical
readout or changes in luminance in optical readout. Abundant
information about the translocating analytes is hidden in the
fluctuating monitoring ionic current contributed from
interactions between the analytes and the nanopore.19 Such
subtle informative details in the signal are inevitably affected by
noise and physical limitation of the signal readout such as the
bandwidth.20 Hence, a prerequisite to analyze them for various
purposes, such as feature extraction and classification, is to be
able to single them out from the noisy background.

The commonly adopted methods to detect the pulses from
time-sequential traces are based on user-defined thresholds
referring to the baseline.21−23 Additional mechanisms are
involved to self-adapt to variations or fluctuations of the
baseline, typified by dynamic window average21,24 and iterative
detection.22 By detection of abrupt changes in the current
traces, the CUSUM algorithm tolerates the baseline fluctua-
tions to a certain extent and adjusts the threshold
accordingly.25 A pitfall with these approaches is that they do
not thoroughly resolve the subjectivity problem during the
spike recognition, and some predefined parameters are needed,
e.g., size of the average window, rough amplitude of the spikes
or steps. Other algorithms, i.e., ADEPT26 and second-order-
differential-based calibration (DBC) with an integration
method,27 can also predict the time points at which spikes
appear. They usually require a prior rough knowledge of the
spike position so that a segment containing a single spike can
be singled out for further precise fitting. Furthermore, several
advanced machine learning algorithms have been developed
with a focus on specific tasks of processing pulse-like signals,
such as denoising, feature extraction, and classification.
However, machine learning, including artificial neural networks
(NNs), has seldom been involved in the most essential part of
signal processing in this procedure: pulse recognition.23
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Different from the classification task, pulse recognition requires
acquisition of pulse features from a noisy background in a time
sequential manner, which poses a challenging task to directly
adopting commonly used NN structures including convolu-
tional neural networks (CNN) and fully connected deep neural
networks. The hidden Markov model is one such attempt to
detect pulses from nanopore sensing signals. However, an
initial pre-processing step is required to enable the detection,
and it involves the use of a user-defined criterion to determine
the approximate position of current blockage events.28 The
determination of this threshold is based on user experience
and, therefore, varies from case to case.29 Obviously, objective
algorithms are desired for isolating pulses from noisy time-
sequential traces. Our recently introduced NN-based algorithm
named Bi-path Network (B-Net)29 has addressed this
subjectivity issue. B-Net is composed of two branches, each
one using a residual neural network (ResNet) structure. The
novelty with B-Net lies in its assignment of a different task to
each branch, one counting the number of pulses in signal
segments while the other measuring the features of the pulses
in the segments. This design gains some inspiration from
certain streams in the brain in which different pathways handle
specific tasks. For instance, the ventral/dorsal streams in the
visual system process the “what/where” of objects. In this way,
the training process is easier for each branch and the
generalization performance is increased. Unfortunately, B-Net

can only predict averaged features, such as amplitude and
duration, of the pulses in input data. It falls short in singling
out pulses in temporal windows. A potential drawback with
only obtaining average features is loss of information about the
analytes.

Here, a deep learning (DL) method is proposed for pulse
recognition. It is capable of predicting the start and end time
points of a pulse. The duration of the pulse can, thus, be
naturally obtained. The method, named pulse detection
transformer (PETR), is based on a transformer architecture.
Primarily, transformers have achieved state-of-the-art results in
many natural language processing tasks.30,31 Attentional maps
of transformers have been applied with outstanding success to
accurately predict protein structures, an important research
problem that had been open for more than 50 years.32 In
recent years, this approach has seen increasing applications in
computer vision (CV) as well.33 An architecture combining a
transformer NN with a CNN is adopted in the present work.
We focus on the application of this architecture in the field of
object detection.34 The original application is adapted from
two-dimensional (2D) object detection in bidimensional
images and implemented for one-dimensional (1D) pulse
detection in unidimensional temporal signals. Our method
simplifies the detection pipeline by removing many hand-
designed components commonly found in object detection
architectures.34 Furthermore, we avoid complex training

Figure 1. PETR as an algorithm with the capacity of detecting distinctive acute events into 1D noisy signals. It uses the feature estimation path,
ResNet 2, of our previously developed B-Net model as the backbone. The backbone is a pre-trained network fine-tuned to return better 1D
representations that are more adapted to the detection task. The outputs from the backbone are first added up to a 1D positional encoded vector
and then passed to the transformer encoder. The transformer decoder receives a certain number of learned embeddings (called pulse queries) and
returns a set of output embeddings while attending to the encoder outputs. Each decoder output is passed to an FFNN that predicts two different
aspects of a detection. A detection class can be pulse (colored) or no-pulse (gray) and a bounding segment.
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procedures with many independent stages in the pipeline and
propose a new architecture that can be easily trained with the
end-to-end philosophy that has led to the significant success in
DL.35 Crucially, the need for subjective user-defined thresholds
is eliminated.21,22

Specifically, we use electrical nanopore sensing signals, i.e.,
the ionic current traces from nanopore sensors, as typical
examples to evaluate PETR. Following the idioms in nanopore
sensing, “spike” is usually used to refer to “pulse” as the signal.
In this work, “spike” and “pulse” are used interchangeably. We
will generate synthetic datasets of analyte-translocating nano-
pores and use them for training and validating the PETR.
Afterward, we use experimental datasets of DNA- and
streptavidin-translocating solid-state nanopores to further
evaluate PETR by systematically comparing the results to the
counterparts of B-Net and threshold-based traditional
methods. Moreover, two representative algorithms known in
the community are utilized to process these segments and
extract features in order to demonstrate the generalized usage
of the output pulse segments from PETR.

To evaluate the performance of PETR, we refer to the
concept of mean average precision (mAP) from object
detection in CV and adapt it to the requirements posed by
nanopore translocation signals. The performance of the PETR
is better for longer translocation durations. Finally, the
performance for narrow translocation events can be boosted
by artificially transforming them into longer translocations with
larger apparent durations by means of an interpolation process.

Therefore, this work offers an objective spike recognition
algorithm that delivers an accurate prediction of each spike in a
temporal window from a noisy nanopore translocation trace
with an mAP close to 1. PETR achieves it through returning
spike segment predictions by specifying the start and end time
points of each pulse in a signal window. This proposed method
is expected to have a significant impact in the SMA research
community since it offers a flexible generalized interface
toward downstream algorithms such as feature extraction and
classification.

■ RESULTS
Model and Implementation. PETR is developed as an

algorithm that can help detect characteristic events in time-
sequential 1D noisy traces. This network is inspired by the
model called detection transformer.34 The architecture of
PETR is depicted in Figure 1. The network receives a 1D
temporal window, which is a chunk of a noisy trace and returns
a set of bounding segment predictions. The bounding
segments are composed of start and end time points that
predict the location of a pulse in the temporal window
generated by, e.g., a translocation of an analyte in a nanopore.
PETR consists of four main blocks: a pulse counter, a
backbone, a transformer, and a feed forward network. The
original detection transformer (DETR) architecture was
developed with the ultimate purpose of being readily
implementable in any DL framework that provides a common
CNN backbone, a clear distinction from many modern
detectors.

In our case, the modularity and simplicity in the original
implementation of DETR34 have been adopted by taking
advantage of a detection model whose main property is its end-
to-end trainability. We have further adapted the original
architecture for 1D “images” via decoupling the original
backbone and using instead the feature prediction path in our

previously developed B-Net,29 an architecture composed of
two ResNets. ResNet 1 predicts the number of pulses in a
temporal window, while ResNet 2 predicts the average
duration and amplitude of all the pulses in the window.
Similarly, ResNet 1 in our algorithm PETR predicts the
number of pulses in the input temporal window. When and
only when the number of pulses is larger than zero, the
complete system, i.e., the backbone, transformer, and
prediction heads, will process the temporal window. Other-
wise, the operation of the system is disabled, and zero
predicted segments are returned. ResNet 2 is used as the
backbone since it has already been trained in B-Net to
condense the abstract information from raw signals. The
transformer encoder receives the output from the CNN in
ResNet 2. It is worth noting that PETR is not an extension of
B-Net. PETR’s core unit, the transformer, is totally different
from B-Net. Here, only the functional components are
disassembled from B-Net and reused in the PETR peripherals
for convenience. One could also independently train a normal
CNN as the backbone of PETR, instead of ResNet 2, and use
other preprocessing techniques to filter out the blank segments
without pulse instead of ResNet1. The use of a pretrained
backbone in these kinds of architectures is a recurrent practice
in DL.34

As to bounding boxes, bounding segments have been
utilized in our study to reshape the concept of bounding boxes
from 2D to 1D. PETR uses a detection architecture whose
performance is not influenced by human conducted heuristics.
The network objectively abstracts the main features from the
noisy signals in order to attain the best detection experience.
The self-attention mechanism of the transformer prototypes all
pairwise interactions among elements in the positioned
backbone output.

Finally, each output embedding from the transformer
decoder is processed by feed-forward fully connected neural
networks (FFNNs) that classify the pulses as present or absent
and predict the start and end time points of the bounding
segments. The gray bounding segments in Figure 1 are
classified as absent pulses by the network, while the colored
ones are classified as effectively present pulses in the window.

It is worth recalling that PETR predicts all pulses in parallel,
thereby avoiding recurrence as in autoregressive models. It is
trained end-to-end using a set of loss functions such as
bipartite matching between predicted and ground truth pulses.
When this kind of architecture predicts a bounding segment in
a certain section of a trace chunk, such a prediction is not just
based on the patterns nearby the prediction location but also
determined by paying attention to all the surroundings inside
the window. The prediction is in fact influenced by, e.g., the
frequency, amplitude, and duration of the pulses in all the
surroundings of the prediction location.

We generate artificial datasets and use them for network
training, validation, and testing. In each dataset, three
important parameters are systematically varied, i.e., the
diameter of the analytes (15 kinds), the concentration of the
analytes (20 kinds) and the duration of the translocation spikes
(5 kinds). In order to measure the PETR performance, the
datasets with different signal-to-noise ratios (SNR) ranging
from 4 to 0.25 are also generated. In addition, two
experimental datasets of λ-DNA and streptavidin-translocating
solid-state nanopores are introduced to further validate the
PETR fidelity. As a final demonstration of the benefits from its
generalized output, two additional feature extraction algo-
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rithms are employed as use cases. Details of the data
preparation can be found in the Methods section.

The training process starts by providing a random batch of
temporal windows from the training data. Only temporal
windows with at least one pulse are used for training. Once the
total number of temporal windows is consumed in the dataset,
one epoch is completed. Inside each epoch, the learning rate is
set to 1 × 10−5, with a learning rate decay of 10 in a period of
100 epochs. We validate our model periodically by utilizing
mAP, which is a widely used performance metric for object
detection in 2D images.36 The model with the highest mAP is
saved as the best representation.

An adapted mAP is used for evaluating the model. Instead of
using intersection over union (IoU) as a threshold, the relative
distance between the midpoint of both the predicted pulse and
the ground truth is considered, referring to the duration of the
ground truth pulse. A 100% threshold means that their
distance is equal to the duration of the ground truth pulse. The
associated mAP is calculated as an average by varying the
relative distance thresholds from 100 to 400%, with steps of
10%. Any matched pair of the predicted pulse and the
corresponding ground truth with smaller distance than such
threshold is considered a true positive. Compared to the IoU
thresholds adopted in the standard mAP, the adopted
thresholds are more tolerant. However, the adapted mAP in
the pulse detection scenario appropriately reflects the
necessary requirements in order to catch nanopore trans-
location events in trace windows. Furthermore, coverage,
which is defined as the total number of true positives divided
by the total number of ground truth pulses, is calculated as
another metric for pulse detection performance. In addition,

the duration error as well as the start and end time errors are
computed as indirect performance measures of PETR.
Performance on the SNR = 4 Dataset. The PETR

performance is evaluated for our artificially generated dataset
with SNR = 4. Several typical examples of the detected spikes
are depicted in Figure 2a with the start and end time points
respectively marked in red and green stars predicted by our
model. The adapted mAP of the detection of the spikes with
different widths (i.e., translocation duration) is displayed in
Figure 2b. PETR returns an almost-perfect detection with mAP
≈ 1 for the long spikes, e.g., duration ≥ 1.5 ms. However, the
detection precision for spikes shorter than 1.5 ms decays
rapidly with decreasing duration. The overall mAP on the
entire dataset is 0.85. Evaluating our model by employing the
standard mAP produces results with an mAP of ≥0.3 for spikes
of 5 ms duration, which is comparable to detectors used in
other application scenarios.34,37−39 Details of the performance
measured by the standard mAP can be found in Supporting
Information (SI).

The coverage shows a similar trend with the spike duration
in Figure 2c. PETR has rarely missed spikes with duration
longer than 1.5 ms, as reflected by a coverage close to 1 in the
figure. The coverage drops for shorter spikes, though it can still
reach 60% for durations equal to 0.5 ms. Thus, the overall
coverage of PETR is above 90% on the entire dataset.

The relative errors of the predicted duration by the start and
end time points from PETR are shown in Figure 2d for
different duration spikes. The relative error is smaller for
longer spikes and the average error on the entire dataset is
below 9.3%. Furthermore, the absolute errors on the predicted

Figure 2. Results of PETR processing the SNR = 4 dataset. (a) Typical examples of the PETR output. In the current trace segment, PETR predicts
the start and end time points of the spikes, marked as red (start) and green (end) stars, respectively. (b) mAP and (c) coverage of the spike
detection at different durations. (d) Relative errors of predicted duration and (e) errors of start and end time points for spikes at different durations.
In each sub-figure, the corresponding overall mean and standard deviation on the entire dataset are included. (f) Box chart showing the distribution
of extracted durations for the spikes at different set durations in the dataset. (g) Box chart showing the distribution of spike appearance frequency
for the signal generated at different concentrations of analytes. In (f) and (g), pink dots (average values) with error bars (spread) mark the
corresponding quantities of the ground truth, indicating an excellent agreement between PETR predictions and ground truths.
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start and end time points are displayed in Figure 2e, showing
an average value of ∼1.5 ms.

For nanopore translocation, three features are most widely
discussed and studied for a spike, i.e., duration, appearance
frequency, and amplitude.40,41 The first two can be naturally
obtained by PETR as the by-products of the detection process.
The box charts of the predicted duration and frequency of the
spikes summarized in Figure 2f,g represent their statistical
distributions on corresponding setting parameters in the data
generation, i.e., set duration and analyte concentration,
respectively. For a better comparison, the average values of
the ground truth are also shown as dotted lines with error bars
in the same figures. It is found that the predicted values
coincide well with the respective ground truths, indicating that
PETR can efficiently detect the spikes with high accuracy.

An important reason for the good recognition performance
is that PETR naturally resists the baseline fluctuations. Two
kinds of fluctuations are commonly seen in single-molecule
detection signals and are involved in the artificially generated
datasets as well: slow drift and sudden jumps. The recognition
of pulses by PETR is based on the pulse features and their
differences from the background noise, which is insensitive to
the baseline level shift and, thus, resistant to the slow drift of
baseline. Sudden jumps generate rapid changes of a signal,
which are similar to the rising or falling edges of pulses. One of
the main features of a pulse, the target of PETR, is that its
rising and falling edges appear in pairs, which rarely happens
with sudden jumps. Even in the atypical scenario of a rising
edge and a falling edge occurring together with a similar timing
to the one found in a normal pulse in a window, the network
will not detect such a fluctuation as a pulse. PETR acquires not
only the timing of pulses but also the statistical distribution
behind their main morphological features. This feature makes
PETR immune to sporadic atypical fluctuations in the signal.
Several examples showing how PETR is immune to baseline
fluctuations can be found in the SI (Figure S3).
Datasets with Different SNRs. The PETR performance is

also evaluated on our artificially generated datasets with SNRs
other than 4. The overall mAP and coverage on all the datasets
with SNR ranging from 4 to 0.25 are summarized in Figure 3a.

Furthermore, the relative error of predicted duration and the
absolute error of the start and end time points for the different
SNR datasets are displayed in Figure 3b. Details about these
parameters, distributed on different setting variables in the data
generation process, such as duration, analyte concentration,
and analyte size, for each dataset can be found in the SI.

It can be clearly inferred from the charts that the PETR
performance does not decay substantially even when SNR
decreases from 4 to 1. The mAP for SNR ≥ 1 stays above 0.8,
and the coverage stays above 87%. The relative error of
duration is lower than 10.2%, and the error of predicted start
and end time points is smaller than 1.8 ms. The detection and
prediction abilities of PETR sharply fall for SNR < 1. However,
even for the worst case with SNR = 0.25, PETR can still
capture 20% of the spikes and the relative error of duration is
only ∼50%. If an mAP of >0.8 and coverage of >85% are set as
the criteria for an accurate processing at 10 kHz sampling rate,
the shortest pulses that can be detected accurately are 1, 1, 1,
and 5 ms for SNR = 4, 2, 1, and 0.5, respectively. These results
indicate that PETR has an outstanding generalization ability to
adapt to a wide range of noise space.

In this work, SNR-specific networks are trained individually
for the five different SNRs studied instead of training one
common network for all data with various noise levels. This
design is adopted by considering the properties of PETR as a
machine learning model: the recognition mechanism is based
on the acquisition of the statistical distribution behind the
pulse properties of the signal and the surrounding background
noises as the context. The differences between the pulse and
noise are implied in the signal−noise context. Each SNR
carries a distinct signal−noise relationship, which naturally
requires a specific set of trained weights to achieve the best
performance. On the contrary, training a common network for
all SNR can gain an added degree of automatization for data
processing but largely at the expense of detection performance.
Obviously, this approach does not bring any benefit.
Furthermore, the background noise is usually a stationary
stochastic process from an experimental perspective. Thus, the
statistical properties of noise do not change considerably in
one record of the current trace or even during the entire
measurement period as long as the experimental conditions,
e.g., bias voltage, analyte concentration, temperature, and
surface cleanness, are stable. In practice, well-trained networks
for different SNRs can cover most of the application scenarios.
In order to compensate for the loss of the degree of
automatization due to the use of SNR-specific networks, an
extra pre-processing section can be added to detect the rough
level of SNR. Alternatively, it is also possible to label a fraction
of the target dataset and use it for determining the best-
performing model. While viable, this last option is expensive
and tedious.
Compensation of Short Duration Spikes. The results

shown in Figures 2 and 3 point to the critical dependence of
PETR detection precision and coverage on the spike width
(duration). If the duration of a spike is too short, the number
of sampling points can be too limited to ascertain its
recognition from the noisy background. For example, using a
sampling rate of 10 kHz generates five sampling points for a 0.5
ms spike and 50 sampling points for a 5 ms spike. In other
words, it is the number of sampling points, instead of the
absolute duration time span, that determines the detection
performance of PETR. Therefore, increasing the sampling rate
of the data acquisition, as well as the bandwidth of the

Figure 3. PETR performance for the datasets with different SNRs. (a)
mAP and coverage of the spike detection at different SNRs. (b)
Relative error of the predicted duration and error of the start and end
time points at different SNRs.
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experimental setup, can enhance the detection performance for
the short spikes. From a signal-processing perspective,
interpolation can reach a similar performance improvement.
This approach is validated using a generated dataset (SNR =
4) with 0.5 ms spikes by linearly interpolating with nine points
in between each two original adjacent points. Hence, the
apparent effective spike duration of PETR becomes 10 times
longer, i.e., 5 ms. However, the interpolation can alter the noise
characteristics and thereby interfere with the decision-making

of PETR. In order to compensate for this adverse effect, a small
amount of artificially generated noise, which has the same
components in the power spectrum as the ones in the training
dataset, is added to the interpolated data. By adding a noise
component of half of the original amplitude in the signal
(measured on a small segment of input signal traces), which
only increases the total noise power by 12 + 0.52 = 1.25 times,
the resultant SNR is only slightly worsened from 4 to 4/ 1.25
= 3.58. However, this small amount of added noise can

Figure 4. Comparison of the PETR performance with interpolation. (a) mAP, (b) coverage, (c) relative error of duration, and (d) errors of the
start and end time points, for the interpolated 0.5 ms duration data in comparison with those for the original 0.5 and 5 ms data.

Figure 5. Results of PETR processing the experimental datasets. Box charts showing the PETR distribution of extracted duration at different bias
voltages for (a) DNA and (b) streptavidin translocation data. Box charts showing the distribution of spike appearance frequency at different bias
voltages for (c) DNA and (d) streptavidin translocation. The pink dot-on-lines (average values) with error bars (spread) in each figure display the
corresponding results from our previously developed B-Net algorithm.
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significantly boost the detection performance of PETR because
the signal−noise characteristics become similar to that of the
original training case with SNR = 4.

There are prerequisites for the interpolation and compensa-
tion. First, the bandwidth of the system is large enough for the
target signal, i.e., the pulses, and the sampling frequency to
discretize the signal is sufficiently high in accordance to the
Nyquist theorem. Second, the general knowledge of the noise
characteristics in the system should be acquired, such as the
noise components that dominate in different frequency ranges.
Here, the noise characteristics of nanopores have been studied
and noise models are well established.42,43 Hence, the original
signal with its raw data already contains sufficient information
for correct recognition. However, the data points are often too
few for PETR to perform a sensible detection of a pulse. In
detail, the number of data points in the pulse is simply
insufficient for the convolutional kernel to process them or for
the transformer to pay enough attention to them. Con-
sequently, PETR does not perform well on these short-
duration-pulse traces. Therefore, interpolating points that
contain a small amount of noise with similar characteristics
to the noise present in the original signal can alleviate the
challenge with limited data points and improve the detection
performance. It is important to clarify, however, that the
interpolating samples do not generate additional information.

Both mAP and coverage of the PETR spike detection for the
original and interpolated 0.5 ms data are compared in Figure 4.
The detection performance for the original 5 ms data is also
shown as a reference. It is clear that both mAP (Figure 4a) and
coverage (Figure 4b) are significantly improved after data
interpolation, and they are comparable to those for the original
5 ms data. It indicates that after the interpolation with a 10-
fold increase in number of points, PETR “sees” the data as if
they came from the 5 ms spikes. The relative error of duration
for the interpolated data is also similar to that of the 5 ms data
(Figure 4c). Since the errors of the start and end time points
depend on the number of points in a spike instead of the
absolute value of duration time, the higher the sampling rate
equivalently achieved by interpolation, the lower is the
absolute error in time (Figure 4d). Details of these parameters
distributed on different setting variables can be found in the SI.
Performance Evaluation on Experimental Datasets.

PETR is also applied to processing experimental data from the
translocation of λ-DNA and streptavidin in solid-state
nanopores. The duration and appearance frequency of
translocation events at various bias voltages are shown in
Figure 5. The latter shows an upward trend with increasing
voltage in accordance with the physics of the capture process.
Higher voltage offers larger capture area, thereby yielding
higher frequency.41 The observed constant duration of
streptavidin translocation at the bias voltages used is attributed
to the limited bandwidth of signal acquisition in our
experiment; it is readily conceivable that a high translocating
speed of small molecules such as protein can lead to a sharp
and featureless spike.44,45 The duration does not display a
monotonous trend in the DNA translocation data, which may
result from complicated interactions between long and
densely-charged DNA and nanopore.44,46 The traditional
method in which different multiples of noise level are utilized
as thresholds for spike detection yields diversified results on
both frequency and duration (SI, Figure S15). In sharp
contrast, physics-plausible, stable, and consistent trends are
obtained by PETR based on the same experimental data (SI).

The PETR results agree satisfactorily well with those based
on our previous algorithm B-Net29 (Figure 5). Both algorithms
give consistent results even for the variation details of these
two parameters, duration and frequency of the translocation
events, along the different bias voltages. It is important to
emphasize that the two algorithms have completely different
objectives along with distinct NN structures and output
formats. The unanimous results strongly support that PETR is
effective and reliable. Nonetheless, systematic deviations
between PETR and B-Net appear. PETR generally predicts a
shorter duration (Figure 5a,b), but a higher appearance
frequency (Figure 5c,d) than what B-Net gives. These
observations consistently point to the ability of PETR to
capture more spikes of relatively smaller amplitudes and
shorter durations than B-Net. That PETR raises the average
appearance frequency and lowers the average duration can be
related to the essential difference in the core tasks of the two
architectures, PETR versus B-Net. As mentioned, B-Net
predicts averaged properties of the pulses in each input
segment. This network does not detect individual pulses, and it
has a focus on the more obvious spikes with larger amplitudes
and longer durations. In contrast, PETR detects pulses
according to their distinct features from the noisy background,
i.e., the context around the pulses, and treats pulses as
individual entities. By this mechanism, PETR could catch
smaller spikes.
Demonstration of Generalized Output. The primary

objective of the PETR algorithm is to single out all spikes in a
time-sequential trace. Being endowed with the largest
flexibility, the PETR outputs in the form of spike segments
can be later adopted and processed by other algorithms for
different purposes, including extracting the features and then
classifying and correlating them to the physicochemical
properties of the analytes. To demonstrate the general utility
of PETR, two established algorithms, ADEPT26 and DBC,27

are adopted to post-process the spike segments singled out by
PETR. In short, current segments containing single spikes
objectively recognized from PETR are directly used as raw
materials for ADEPT and DBC to more precisely determine
the spike amplitude.

The ADEPT algorithm is based on the pulse response of the
nanopore system according to its equivalent circuit. Rising and
dropping periods in spikes are fitted by several exponential
functions with different time constants, leading to the
extraction of duration and amplitude of the spikes. In the
DBC method, the spikes are first fitted by a Fourier series for
smoothing. The second-order derivative of the smoothed
waveform is then calculated for determination of its extrema.
The positions of the two largest minima are then correlated to
the start and end time points of the translocation events.
Finally, the amplitude is extracted by considering the area
enclosed by the spikes referring to the baseline. Detailed
processing flows for both algorithms can be found in the SI
with typical examples.

The extracted amplitude and duration of the spike segments
by means of the ADEPT and DBC methods show physics-
plausible and stable results (see SI, Figure S17). The spike
segments result from the PETR detection data of the λ-DNA
and streptavidin translocation datasets. In detail, the spike
amplitude increases with increasing bias voltage, which is
reasonable since higher voltage induces a larger ionic current
through the nanopore. The spike duration of λ-DNA and
streptavidin follows similar trends as those extracted directly by
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means of PETR for different bias voltages. The comparisons
confirm that the results from both methods, as well as the spike
segments singled out using PETR, are reliable.

■ DISCUSSION
The detection of pulses using PETR is based on the acquisition
of the signal−noise characteristics of the input by the NN.
With a synergic consideration of the abrupt changes of
corresponding signal properties during the pulses and the
background noise surroundings as the context, PETR can
distinguish the differences between the pulses and the noise
and recognize them. This approach brings a completely
different strategy from the traditional threshold-based
methods, since the latter only consider the highly simplified
amplitude information. Therefore, the PETR results are
consistent and free from user-defined parameters. Further-
more, PETR can automatically adapt to complicated real-world
scenarios with baseline fluctuations, noise level alternations,
pulse amplitude variations, etc., thereby yielding stable and
reliable outputs. Thus, PETR, unlike the traditional methods, is
characterized by the ability of generalization. The strategy of
PETR in dealing with complex problems with pulsed signals
also determines that its generalization ability highly depends
on the characteristics of the pulses and the background noise
as well as their differences. Thus, PETR will return a better
performance for datasets with more similar noise−signal
characteristics to the training dataset. Moreover, the detection
performance of PETR for the interpolated data can be
enhanced by adding a small amount of noise with the same
spectrum as the one found in the training dataset.

Compared with our previously developed B-Net, PETR has
an entirely different aim. Instead of extracting the features of
pulses, it focuses on isolating individual pulses from a noisy
background in a time-sequential trace. From the perspective of
the network structure, a well-adopted practice in object
detection is to use the pre-trained features of a CNN as a
pre-processing (backbone) platform.34 From its convolutional
architecture, this pre-processing platform provides the system
with the needed inductive bias to capture important features
existent in signals found in nature, such as pulse-like signals
from molecular translocating events.

PETR utilizes the CNN part of the ResNet 2 in the B-Net as
its backbone. This section of the network contributes
important features about the signals to the system, playing a
pre-processing role of information abstraction and condensa-
tion. However, the essential process of acute pulse recognition
and localization is realized by the transformer structure. The
transformer plays the role of a memory bank, which is not
affected by inductive bias as the backbone. The transformer
focuses on learning the statistical distribution in the context of
the time-sequential features delivered by the backbone. The
transformer uses the backbone features to memorize the
semantic structures of the different situations present in the
signals. For instance, if a pulse of certain duration is found in a
location, it is highly likely that some pulses with a similar
duration could be found in the vicinity of such a detection,
since the signals used for training have such properties.47 If the
network has detected some repeated patterns of pulses in a
region of the temporal window, this observation will help the
network to take a decision about similar trends in other regions
of such a window. All these semantic features about the
structure of the signals are memorized by the transformer by
referring to the pre-processing features provided by the

backbone. It is worth noting that the achieved performance
of PETR relies on the fact that the backbone efficiently extracts
and condenses basic features in the signals and that the
transformer acquires the semantic properties of pulses, such as
positions and appearance frequency, by considering the
context in the time-sequential signal.

■ CONCLUSIONS
With the transformer structure as its base, PETR can
successfully single out pulses from a noisy background in
nanopore-sensing signals. The typical machine learning end-to-
end training strategy of PETR avoids user-defined thresholds
and, thus, the subjectivity of users. PETR is first trained on
generated datasets with different SNR levels. It is further
validated by both generated and experimental datasets.
Outstanding PETR detection performance is demonstrated
to be achievable even for low SNR data. As the detection
performance is largely influenced by the number of sampling
points in each pulse, a simple linear interpolation can
significantly improve the detection precision and coverage
for short pulses. PETR is proven to be a generalized method
for spike detection and offers a powerful tool for processing
signals from various single-molecule events in SMA. It further
acts as an important link in the pipeline of pulse-like signal
processing by offering a seamless connection to the down-
stream algorithms.

■ METHODS
Pulse Detection Transformer. As is the case for the original

DETR model by Carion et al.34 PETR possesses a reasoning-like
behavior that predicts each bounding segment by taking into account
a global context in the entire temporal window. At the end, the system
produces all predictions in parallel ,and each bounding segment is
predicted based on the global context surrounding such a prediction.
Pulse Counter. The pulse counter path (ResNet 1) in our

previously developed B-Net was used to count the number of pulses
in the temporal window to be processed by the system. The B-Net
architecture uses two ResNets that are pre-trained for regression
tasks�ResNet 1 is trained for pulse counting in a trace chunk, and
ResNet 2 is trained for averaged duration and amplitude prediction of
the pulses inside such a chunk. As shown in Figure 1, the system
would process the temporal window only if the number of pulses
counted by ResNet 1 was more than zero. Otherwise, the window was
discarded, the operation of the system disabled, and zero predicted
segments returned. This section of the network was only involved in
testing activities. ResNet 1 did not take part in either network training
or validation.
Backbone. The feature prediction path (ResNet 2) of our

previously developed B-Net was used as the backbone in PETR.29

The original pre-trained B-Net uses the ResNet18 architecture. The
FFNN layers in ResNet 2 were replaced by identity layers that only
passed the input to the output without modification. Hence, the
output returned by the backbone was the flattened version of the
output of the convolutional section in ResNet 2.

In its original function, the B-Net was trained to predict
characteristic features inside a temporal window extracted from a
noisy trace. Based on the DL architecture of the B-Net, with its end-
to-end training philosophy, it is highly feasible that the convolutional
section in each ResNet acquired important features in the statistical
structure of the translocating pulses in the signal. These features
turned out to be highly effective for training the entire detection
system we are introducing here. ResNet 2 was fine-tuned for the
detection task, and the learning rate applied to it was a constant but a
smaller value than the one used for the rest of the network.
Transformer. As its name alludes, transformer architectures

transform one sequence at its input into another sequence returned
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by its output. Even though transformers materialize the state of the art
in today’s machine learning sequence processing, these architectures
completely dispense recurrence, thanks to their attention mechanisms
that process sequences integrally in parallel.48

The output from the backbone is a sequence of vectors. Each
vector in the sequence has a number of channels (num_channels).
The sequence is processed by a kernel_size = 1 1D convolution that
reduces the number of channels in each vector in the sequence to
hidden_dim. In our case, since we used ResNet 18 in the backbone,
num_channels = hidden_dim = 512, there was no dimensionality
reduction.

Afterward, the transformer encoder added the 1D positional
embedding vector to the input sequence, and the resulting positioned
sequence was passed through Nenc successive encoder layers
composed by a multi-head self-attention (MHSA) layer followed by
an FFNN layer as residual stages were bypassed by skipping
connections.

The transformer decoder received a sequence of pulse queries,
which was a set of learned embedding vectors. Each embedding vector
had hidden_dim components. First, the embedding vectors were
passed to an MHSA, then the output from this one was passed to a
multi-head attention (MHA) layer. The MHA layer also paid
attention to the outputs from the transformer encoder. The output
from this MHA layer was passed to a final FFNN. The transformer
decoder had Mdec layers repeating this processing pipeline.
Feed-Forward Fully Connected NN. Finally, the outputs from

the last layer of the transformer decoder were passed to two FFNN
modules. One of these modules classified the pulse queries as present
or absent pulses in the trace chunk, while the other predicted the
bounding segments for each classification, i.e., predicted the location
of the pulse in the temporal chunk extracted from the noisy trace.
Pulse Detection and Prediction Losses. In each single pass

through the decoder, PETR predicted a fixed-size set of N pulses in a
temporal window in a noisy trace. N was a chosen parameter, and it
was larger than or equal to the maximum number of translocation
events produced inside a temporal chunk in the complete dataset. The
system found the best bipartite matching between predictions and
ground truths based on class, position, and size. The matching cost
took into account the class prediction, which was an existent or non-
existent pulse, and the similarity between the predicted and the
ground truth bounding segments.

Once the matching was done, each prediction was assigned to a
ground truth bounding segment and the system now could compute
the Hungarian loss for all the pairs matched in the previous step. The
Hungarian loss is a combination of class prediction and bounding
segment losses, i.e., this combines a class cost, a bounding segment
cost, and an intersection over union cost.

■ DATA PREPARATION
Data Generation. The artificially generated data was

composed of three parts: (1) randomly appeared translocation
spikes, (2) background noise, and (3) baseline variations. The
baseline current level, random properties of a translocation,
current blockage amplitude, and the background noise
spectrum were all determined using our established physical
models with given corresponding parameters such as geometry
of nanopore and analytes, electrolyte concentration, analyte
concentration, and bias voltage. In signal generation, both the
diameter and thickness of the nanopores were fixed to 20 nm.
Typical experimental conditions were selected, including a bias
voltage of 300 mV, a 100 mM KCl electrolyte, and −0.02 C/
m2 surface charge density. Three parameters in the signal
generation program, i.e., the diameter of translocating analytes,
the concentration of the analytes, and the duration of
translocation, were systematically varied in each dataset. In
each dataset, the diameter of the nanospheres varied from 3 to
17 nm with a 1 nm step (15 different values). The

concentration of the nanospheres varied from 0.01 to 1 nM,
changing in logarithmic scale (20 different values). The
duration of the translocation was directly assigned to 0.5, 1,
1.5, 3, and 5 ms (five different values). In addition, the SNR
was varied from 0.25 to 4 (five different values). Each dataset
was composed of 1500 traces with combinations of different
values of these three varying parameters. It is worth noting that
the SNR is defined as the ratio of spike amplitude to the peak-
to-peak value of the background noise. Details of the data
generation are available in the literature.29 We provide training,
validation, and testing datasets available online for SNR = 4 as
well as testing datasets available for all the SNRs.49

Experimental Data. λ-DNA and streptavidin were selected
as two typical examples of the translocating analytes,
representing the long strand-shaped and sphere-shaped
objects, respectively. Electrical measurements were controlled
using a patch clamp amplifier (Axopatch 200B, Molecular
Device Inc.). The ionic current was converted to digital signal
by Axon Digidata 1550A (Molecular Device LLC.) and
recorded by software Axon pCLAMP 10 (Molecular Device
LLC.). The translocation signal was measured under six
different bias voltages for both λ-DNA and streptavidin. The λ-
DNA translocation was measured in a 10 kHz sample rate with
2 kHz analog bandwidth, while the streptavidin translocation
was detected at 20 kHz sampling frequency with a 10 kHz
bandwidth. All the datasets have been published in Zenodo.49

■ TRAINING AND VALIDATION
Training was conducted using artificially generated traces as
described above. For this work, five datasets, each with a
different SNR, were used to train five different instances of the
same detector. In the training process, we split each 20 s trace
in temporal windows of 0.5 s. Accordingly, we ended up with
60,000 windows per dataset. Datasets for testing had traces of
10 s, i.e., we ended up with 30,000 temporal windows per
dataset for testing purposes.

The training process consisted of providing a random batch
of temporal windows from the training data. Only temporal
windows with at least one pulse were used for training. Empty
windows were discarded for training purposes. Therefore,
ResNet 1 was not used during training. Once the total number
of temporal windows had been consumed in the dataset, one
epoch was completed. Inside one epoch, a learning rate of 1 ×
10−5 was adopted, with a learning rate decay of 10 in a period
of 100 epochs. The number of epochs used to train a model
instance depended on the level of noise in the training dataset.
The batch size was of six temporal windows in all the cases.

Validation was conducted periodically, first after epoch
number 50, then after epoch number 100, and from then every
five epochs, i.e., after epochs number 105, 110, 115, and so on.
We validated our model by utilizing standard mAP, which is a
widely used performance metric for object detection in 2D
images.36 The model with the highest mAP was saved as the
best representation.

For evaluating (testing), the adapted mAP was used. In our
case, instead of using IoU as a threshold, we used the relative
distance between the midpoint of both, predicted the ground
truth segments, and referred to the length of the ground truth
segment. We computed the mAP by considering relative
distance thresholds between 100% and 400% with steps of
10%. A threshold of 100% means that the distance between the
two segments, predicted and ground truth, is equal to the
length of the ground truth segment. Likewise, a threshold of
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400% means that such distance is 4 times the ground truth
segment length. Any pair of matched pulses, predicted and
ground truth, with shorter distance than such thresholds was
considered as a true positive. Even when such thresholds could
seem too tolerant compared to the IoU thresholds adopted by
the detection community,1 in the nanopore translocation
application scenarios, our adapted mAP adoption for testing
appropriately reflected the requirements at time of catching
nanopore translocation events in trace windows. Coverage is
another important performance metric, which is defined as the
total number of true positives divided by the total number of
ground truth segments. We also computed the duration error
and the start and end time errors. The duration error is the
relative difference between the predicted and ground truth
segment lengths relative to the ground truth segment length.
The start/end time error is the difference, in milliseconds,
between the predicted and the ground truth of start/end time.
Finally, we computed the average and standard deviation of all
these metrics for each duration in the test datasets.

It is important to highlight that during testing, for the
computation of the adapted mAP, empty windows were
discarded since mAP was inconsistent for scenes without
objects. ResNet 1 was used to discard empty windows when
the model was confronted with experimental data.
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