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Abstract: The design of new materials for technological applications is increasingly being assisted by
online computational tools that facilitate the study of their properties. In this work, based on modern
web application frameworks, the online app MAELASviewer has been developed to visualize and
analyze magnetostriction via a user-friendly interactive graphical interface. The features and technical
details of this new tool are described in detail. Among other applications, it could potentially be used
for the design of magnetostrictive materials for sensors and actuators.
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1. Introduction

Magnetostriction is a physical phenomenon in which the process of magnetization induces a
change in the shape or dimension of a magnetic material. These materials have the advantage that their
magnetostrictive properties do not degrade over time as is the case for some poled piezoelectric
materials, in addition to their good performance in terms of strains, forces, energy densities,
and coupling coefficients [1]. As a result, magnetostrictive materials are widely used in many
technological applications like sensors (torque sensors, motion and position sensors, force and
stress sensors) and actuators (sonar transducers, linear motors, rotational motors, and hybrid
magnetostrictive/piezoelectric devices) where a high magnetostriction is required [2–4]. Conversely,
in other applications such as electric transformers, motor shielding, and magnetic recording, it is
important to reduce the magnetostriction of the magnetic materials [5] as much as possible. Currently,
magnetostrictive materials have some drawbacks such as the size and weight required in some
applications, high manufacturing cost, and high non-linear and hysteretic effects. These limitations
might be overcome by optimizing the design of the materials and their applications. Thanks to
modeling techniques, significant improvements have been made in relation to these problems [1].

The study and design of different properties of materials are being increasingly assisted by
online visualization tools. For instance, ELATE (an open-source online application for analysis and
visualization) is an online user-friendly interface that has been implemented to analyze second-order
elastic stiffness tensors and visualize anisotropic mechanical properties [6]. It makes use of a Python
module to generate an HTML web page with embedded Javascript for interactive dynamical plots.
A similar approach could also be particularly useful in the case of magnetostrictive materials since
magnetostriction can be highly anisotropic. Recently, we have developed the MAELAS code [7,8] to
calculate magnetostrictive coefficients by automated first-principles calculations. As a complementary
online tool of MAELAS, in this work we present the app MAELASviewer to visualize and analyze
magnetostriction. The online application is available at https://maelasviewer.herokuapp.com/,
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while the open-source Python module is available at GitHub repository https://github.com/
pnieves2019/MAELASviewer.

2. Overview of Magnetostriction

2.1. Theoretical Description

The main magnetostriction effects are the Joule effect (length change along the same direction
as the magnetic field), Villari effect (magnetization change due to a mechanical stress applied),
Wiedemann effect (twisting of a magnetostrictive cylinder when helical magnetic field is applied
to the material), and Matteucci effect (induced helical magnetization by a torsion). In this section,
we provide a brief introduction to the equations that describe the field-induced magnetostriction
(Joule effect and Wiedemann effect), which are implemented in the app MAELASviewer. A more
detailed discussion about this topic can be found in [7,9–13].

2.1.1. Relative Length Change Due to the Joule Effect

Frequently, the physical quantity of interest related to the Joule effect is the change of a material’s
length along a measuring direction. It is given by the relative length change (l − l0)/l0 = ∆l/l0,
where l0 is the initial length of a demagnetized material along a measuring direction β (|β| = 1),
and l is the final length along the same direction β when the system is magnetized along the direction
α (|α| = 1), see Figure 1. For instance, the relative length change for a cubic single crystal system
(point groups 432, 4̄3m, m3̄m) can be written as [9]
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where coefficient λα describes the volume magnetostriction (isotropic), while λ001 and λ111 are the
anisotropic magnetostrictive coefficients that give the fractional length change along the [001] and
[111] directions when a demagnetized material is magnetized in these directions, respectively. In the
case of hexagonal crystal systems (point groups 6mm, 622, 6̄2m, 6/mmm), the relative length change
reads [9,10,14]
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These magnetostrictive coefficients are related to the normal strain modes for a cylinder [9,10].
In addition to cubic and hexagonal systems, MAELASviewer also supports other single crystals like
trigonal systems (point groups 32, 3m, 3̄m), tetragonal systems (point groups 4mm, 422, 4̄2m, 4/mmm),
and orthorhombic systems (point groups 222, 2mm, mmm). The equation of the relative length change
for these systems can be found in [7]. The implemented equations include the magnetostrictive
coefficients up to the second-order of the direction cosine polynomial.
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Figure 1. Sketch of the (a) Joule effect and (b) Wiedemann effect.

Typically, single-crystal magnetostrictive alloys help to understand and characterize the material
behavior in the design stage of the material. However, magnetostrictive polycrystalline alloys are more
convenient than single crystals for macroscale applications due to the lower production cost and a
faster production rate. A widely used approximation to describe magnetostriction for polycrystals is to
assume that the stress distribution is uniform through the material. For polycrystalline cubic systems
(point groups 432, 4̄3m, m3̄m) the relative change in length may be put into the form [9,15,16]
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where ξ is the angle between magnetization and measuring directions, and

λS =
2
5

λ001 +
3
5

λ111. (4)

This equation describes an isotropic magnetostriction because the relative change in length depends
on the magnetization direction in the same way for any measuring direction. Note that polycrystalline
cubic systems might not exhibit an isotropic magnetostriction when λ001 and λ111 do not have the
same sign and order of magnitude, the elastic tensor is not close to being isotropic, and there is a
crystallographic texture [12]. On the other hand, the relative change in length for intrinsically isotropic
materials like amorphous alloys without growth anisotropy can be well described in the form of
Equation (3) [12]. We have also implemented Equation (3) in MAELASviewer.

2.1.2. Deformation Due to the Joule Effect

The total deformation induced by the Joule effect can be described in terms of the displacement
vector u(r) = r′ − r that gives the displacement of a point at the initial position r in the demagnetized
material to its final position r′ in the magnetized state. For small deformations, the displacement
vector can be calculated by solving [17]
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where εme
ij is the equilibrium magnetostrictive strain tensor given by the minimization of both the

elastic and magnetoelastic energies [9,10]. The equilibrium magnetostrictive strain tensor is linked to
the relative length change via [9,10]
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For instance, the equilibrium magnetostrictive strain tensor for a cubic single crystal (point groups 432,
4̄3m, m3̄m) reads [9,10]
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This strain tensor contains three magnetostriction symmetries or normal strain modes for a cube.
Namely, a volume change is given by λα that does not depend on magnetization direction, while normal
and shear deformations are related to λ001 and λ111, respectively [9,10]. In practice, Equation (5) can
be solved numerically by finite element modeling (FEM) techniques. To illustrate this method we have
used the FEM software COMSOL Multiphysics [18] to calculate the deformation of face-centered cubic
(FCC) Ni (λ001 = −46× 10−6 and λ111 = −24× 10−6 [13]) induced by the Joule effect (without volume
magnetostriction λα = 0) for three simple geometries: cube, cylinder, and sphere with characteristic
length 1µm. The results of the simulation are presented in Figure 2. We see that the magnitude of the
maximum displacement vector is of the order 10−11m for these material sizes. Increasing the scale
factor reveals different types of deformation when magnetization points to α = (0, 1/

√
2, 1/
√

2) and
α = (0, 0, 1). For α = (0, 0, 1) we see a normal deformation, while for α = (0, 1/

√
2, 1/
√

2) there is a
combination of normal and shearing deformations due to the contribution of non-diagonal elements
(εyz and εzy) in the magnetostrictive strain tensor Equation (7). A detailed study of magnetostrictive
materials with FEM can be found in [19].

Figure 2. Deformation of single-crystal face-centered cubic (FCC) Ni due to the Joule effect for three
material geometries: cube, cylinder, and sphere. The saturated magnetization points to direction
α = (0, 1/

√
2, 1/
√

2) for the cube and cylinder on the left, while it points to α = (0, 0, 1) for the cylinder
and sphere on the right. The color of the surface gives the magnitude of the displacement vector u.

2.1.3. The Wiedemann Effect

The helical magnetic field to twist a magnetic rod is achieved by applying a magnetic field along
the rod height axis (longitudinal field H‖) and an electric current (I) through the rod, which induces a
circular magnetic field due to Ampère’s circuital law (perpendicular field H⊥). In Figure 1 we show a
sketch of the Wiedemann effect. For an isotropic magnetic cylindrical rod aligned to the z-axis with
height L and radius R, the twisted angle φ induced by a helical magnetic field is [12]

φ(z) =
3λS Iz
2AH‖

, 0 ≤ z ≤ L (8)
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where λS is the isotropic magnetostrictive coefficient and A = 4πR2 is the area of the cross-section of
the rod. The helical field-induced torque can be calculated as [20]

τ =
YπR4φ(L)
4L(1 + σ)

, (9)

where Y is the Young’s modulus, σ is the Poisson’s ratio, and φ(L) is the twisted angle given by
Equation (8) evaluated at z = L.

2.1.4. Magnetocrystalline Anisotropy

The magnetocrystalline anisotropy is very important in the design of applications based on
magnetostrictive materials since it determines easy and hard magnetic crystallographic directions.
The magnetocrystalline anisotropy energy for cubic systems reads

Ea = K1(α
2
xα2

y + α2
xα2

z + α2
yα2

z) + K2α2
xα2

yα2
z , (10)

where K1 and K2 are the magnetocrsytalline anisotropy constants. The corresponding
magnetocrystalline anisotropy field is given by

µ0Ha,i = −
1

Ms

∂Ea

∂αi
i = x, y, z (11)

where Ms is the saturation magnetization and µ0 is the vacuum permeability. In our simulation of the
Joule effect we include the magnetocrystalline anisotropy field and external magnetic field (H). At the
equilibrium the magnetization points to the direction of the effective field

He f f = H + Ha (12)

Additionally, MAELASviewer also contains 3D visualization tools for the analysis of the
magnetocrystalline anisotropy energy.

2.2. Magnetostrictive Materials

The first measurements of magnetostriction were made in Fe, Ni, and their alloys after the
discovery of this phenomenon by James P. Joule in 1842 [21]. Despite the low magnetostriction of
these itinerant magnets (λ < 10−4), numerous applications were developed in the first half of the
20th century, including telephone receivers, hydrophones, scanning sonar, fog horns, oscillators,
and torque sensors [1]. In the second half of the 20th century, giant magnetostrictive materials were
discovered in elementary rare-earth (R) metals (under low temperature and high magnetic field) and
compounds containing R and transition metals (λ > 10−3). In particular, the highest magnetostrictions
were found in the RFe2 compounds with a Laves phase C15 structure (face-centered cubic) type [10].
For instance, Terfenol-D (Tb0.27Dy0.73Fe2) is a widely used magnetostrictive material thanks to its
giant magnetostriction along the [111] crystallographic direction (λ111 = 1.6× 10−3) under moderate
magnetic fields (<160 kA/m) at room-temperature [11]. Beyond cubic systems, the research into
magnetostrictive materials has been focused on hexagonal crystals like RCo5 (space group 191),
hexagonal and trigonal R2Co7 and R2Co17 series, and tetragonal R2Fe14B [9,22]. More recently,
the problem of R availability [23] has also motivated the exploration of R-free magnetostrictive
materials like Galfenol (Fe-Ga), spinel ferrites (CoFe2O4), Nitinol (Ni-Ti alloys), Fe-based Invars,
and Ni2MnGa [1,24,25]. The experimental magnetostrictive coefficients for some representative cubic
crystals are shown in Table 1.
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Table 1. Magnetostrictive coefficients of some cubic crystals.

Material Temperature (K) λ001(×10−6) λ111(×10−6) λs(×10−6)

(BCC) Fe 4.2 26 a −30 a -
(BCC) Fe 300 21 a −21 a −7 a

(FCC) Ni 4.2 −60 a −35 a -
(FCC) Ni 300 −46 a −24 a −34 a

(Laves phase C15) SmFe2 4.2 30 b −4100 b -
(Laves phase C15) DyFe2 4.2 −70 b 3000 b -
(Laves phase C15) TbCo2 4.2 −1200 b 4500 b -
(Laves phase C15) ErCo2 4.2 −1000 b −2500 b -

(Laves phase C15) Terfenol-D 300 90 c 1600 c 1080 c

a Ref. [13], b ref. [22], c ref. [1].

2.3. Applications of Magnetostriction

The discovery of giant magnetostrictive materials like Terfenol-D has enabled the development of
novel applications based on magnetostriction like advanced sensors and actuators. Presently, the most
common magnetostrictive sensors are torque sensors (used in passenger cars, tractors, truck and
off-highway vehicle powertrains, manufacturing machinery, and stationary power plants) [2,26],
motion and position sensors [2] (mainly used in the automotive industry), and force and stress sensors
(used in vehicle active suspensions and engine mounts, active vibration control, manufacturing
control, monitoring overloads on bridges, and active control of buildings against seismic events) [1,2].
A magnetostrictive linear position sensor based on the Wiedemann effect is depicted in Figure 3 [27].
In this sensor, the position magnet is attached to whatever is being measured and generates the
longitudinal field (H‖). The transverse field (H⊥) is created by a short electric current pulse through
the ferromagnetic rod, which starts a timer and induces a strain pulse due to the twist of the rod close
to the position magnet (Wiedemann effect). This strain pulse travels at the speed of sound in the rod
(vs) until is detected by a pickup, stopping the timer. The elapsed time indicated by the timer (∆t)
then represents the distance between the position magnet and the pickup (x = vs · ∆t). Concerning
actuators, the main applications are sonar transducers [28], linear motors [4,29], rotational motors [30],
and hybrid magnetostrictive/piezoelectric devices [31].

Figure 3. Schematic of a magnetostrictive linear position sensor based on the Wiedemann effect.

3. Methodology

3.1. Software Details

MAELASviewer was created with Dash, which is a productive Python framework for building
web applications [32]. Dash uses Flask as the web framework [33]. Visualization of 3D surfaces is
done using the Python open source graphing library Plotly [34]. We also make use of NumPy library
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for some math operations. The online application is deployed to the cloud platform Heroku [35]
that allows users to build, deliver, monitor, and scale apps easily. Alternatively, one can also run
MAELASviewer offline by executing the Python module available at the GitHub repository https:
//github.com/pnieves2019/MAELASviewer.

3.2. Modeling of the Joule Effect

3.2.1. Mapping the Joule Effect to a Sphere

In MAELASviewer we have implemented a tool to map the longitudinal deformation of the
Joule effect to a sphere. Namely, the length l0 of the material in any arbitrary measuring direction β

is represented by a sphere with radius 1 (l0 = 1), so that it does not depend on the geometry of the
material. Here, the direction β is written in spherical coordinates β = (sin θ cosϕ, sin θ sinϕ, cos θ),
where θ and ϕ are the polar and azimuthal angles, respectively. Figure 4 shows a sketch of the Joule
effect mapped to a sphere. In the magnetized state, the distance between a point on the surface of the
distorted sphere and the origin (0, 0, 0) describes the simulated length lsim along direction β.

Figure 4. The Joule effect mapped to a sphere. In this model we assume that the magnetization is
saturated in the direction of the effective field (α‖He f f ). Symbols M and Ms stand for macroscopic
magnetization and saturation magnetization, respectively. The dash line on the right represents the
original unit sphere (demagnetized state).

Magnetostriction is a small effect that is hard to visualize. In order to facilitate the 3D visualization
of the distorted sphere in the simulation, we multiply the relative length change by a scale factor s,
which can be modified by the user. For instance, Equation (1) is implemented as
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(13)

Note that this scaling preserves the ratio between the magnetostrictive coefficients. Obviously, the case
with s = 1 corresponds to the real situation. The length calculated in the simulation (lsim) along to the
direction β is

lsim
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(14)

where we took into account that l0 = 1. The same procedure is applied to the other supported
crystal systems. In addition to 3D plots, MAELASviewer generates interactive 2D plots showing the

https://github.com/pnieves2019/MAELASviewer
https://github.com/pnieves2019/MAELASviewer
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cross-section of the distorted sphere. As a reference, in the 2D plots it also prints the cross-section of
the unit sphere representing the demagnetized state. However, in these plots it is hard to distinguish
the cross-section of the distorted and undistorted spheres since magnetostriction makes a very small
change in the length. Therefore, it is recommended that the scale factor is increased in order to see
both curves clearly.

3.2.2. Applications and Physical Interpretation

Among other possible applications, this procedure can be a useful tool to determine the length
change due to the Joule effect in the cutting direction of a crystal. For instance, let us consider
a material cut along a crystallographic direction β with length l0,exp in the demagnetized state.
The length in the direction β of the material in the magnetized state (lexp) can easily be obtained
with MAELASviewer by setting the magnetic field, the corresponding values of the magnetostrictive
coefficients and magnetocrystalline anisotropy constants, and using the following equation

lexp =
l0,exp

s
(s + lsim − 1), (15)

where lsim is the simulated length value printed by the interactive app at the surface of the distorted
unit sphere along direction β, and s is the scale factor set by the user. We see that after setting the
scale factor equal to 1 (s = 1) then one just needs to multiply lsim by l0,exp, that is, lexp = lsim · l0,exp.
When the user clicks on the surface of the distorted sphere, MAELASviewer prints the components
of vector lsim so that it gives both the length lsim = |lsim|, and direction β since it is aligned to lsim
(β ‖ lsim). To gain more insight into this method, let us cut the material in the measuring direction β

and measure the initial length l0,exp in the demagnetized state as the distance between points A and
B depicted in Figure 5. If we now apply a magnetic field that induces only a normal deformation,
then lexp is equal to the total length lAB defined as the distance between the new positions of points
A and B in the deformed material. However, we see that if the magnetic field induces a shearing
deformation, then lexp is not equal to lAB.

Figure 5. Schematic showing that if we cut the material along the measuring direction β and the
effective magnetic field induces a normal deformation, then the length in the direction β, lexp, given by
Equation (15), is equal to the total length lAB defined as the distance between the new positions of
points A and B in the deformed material. However, if the field induces a shearing deformation then
lexp is not equal to lAB.

It is important to note that this method gives only the length change in the measuring direction
but not the overall real shape deformation of a material induced by the Joule effect, not even for
a sphere. In Figure 2, we observe that the real shape deformation of the sphere corresponds to an
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ellipsoid. This shape is different to the shape of the distorted sphere generated by mapping the Joule
effect to a unit sphere that is implemented in MAELASviewer. As we see in Figure 6, the reason for that
is the lack of a transverse component of the displacement vector in this procedure (u⊥ = 0, u‖ = u).

Figure 6. Comparison between the shape deformation of a sphere induced by the Joule effect and the
shape generated by mapping the Joule effect to a sphere.

3.2.3. Magnetic Field and Temperature Effects

The current version of MAELASviewer is designed to work in the saturated magnetostriction
regime, that is the magnetization is assumed to be saturated along the effective magnetic field (α‖He f f ).
However, notice that important aspects and applications of magnetostriction also take place below
the saturated magnetostriction. In the not saturated regime one can take into account the effects
of different magnetic domain orientations on the fractional length change by performing a spatial
average over magnetization directions, that is, replacing αiαj by their spatial average < αiαj > [12].
In the demagnetized state, we have < α2

i >= 1/3 and < αiαj >= 0 with i 6= j so that the anisotropic
fractional length change is zero (l = l0). Once the magnetic field is applied, magnetostriction is driven
by the domain structure of the material, making the analysis of this process more complicated [12].
The implementation of these features into MAELASviewer, at least to some extent, is an interesting
possibility that is worth exploring in the future.

In a remanence state close to saturation magnetization (all magnetic domains are almost aligned
in the absence of applied field), magnetic fields lower than the magnetocrystalline anisotropy field
(H < Ha) can also influence the magnetostriction by rotating the magnetization, e.g., when the
field is applied perpendicular to magnetization that is parallel to an easy axis (α ‖ Ha, α⊥H).
In this case, a quadratic dependence on the magnetic field is observed in magnetostriction until
the magnetization is completely aligned to the magnetic field (α‖H) [13]. This process can be
analyzed with MAELASviewer since it calculates the direction of the equilibrium magnetization
by a direct numerical integration of the Landau-Lifshitz-Gilbert equation. The minimum magnetic
field (Hmin) required to achieve the alignment of magnetization to certain crystallographic direction
is important when designing magnetostrictive materials. Typically, low values of Hmin are highly
desirable to make feasible applications. However, magnetic materials with giant magnetostriction
usually exhibit high magnetocrystalline anisotropy that can induce very hard directions. An optimal
balance between magnetostriction and magnetocrystalline anisotropy was achieved in Terfenol-D by
adding Dy to TbFe2 [11]. Therefore, combining the visualization and analysis of both magnetostriction
and magnetocrystalline anisotropy energy could allow identification of crystallographic directions
with high magnetostriction to magnetocrystalline anisotropy ratios.

Another important fact to take into account when designing magnetostrictive materials is
the temperature, since this greatly influences magnetostriction. Close to the Curie temperature
(TC), magnetostriction decreases very rapidly with temperature and it becomes zero above TC.
Hence, temperature limits the range of applicability of magnetostrictive materials, especially in devices
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working under extreme operating conditions. In the saturated magnetostriction regime, the fractional
length change depends on the temperature only via the magnetostrictive coefficients. Therefore,
MAELASviewer gives the fractional length change at the temperature that corresponds to the values
of the magnetostrictive coefficients used as inputs.

3.3. Modeling of the Wiedemann Effect

In the simulation of the Wiedemann effect, we consider an isotropic cylindrical rod as it is
described in Section 2.1.3. The twisted angle φ and torque τ are calculated via Equations (8) and (9),
respectively, using the input parameters provided by the user. In the 3D visualization of the rod,
it is also plotted the transverse and longitudinal magnetic fields in the exterior of the rod at z = L/2.
The transverse field is calculated by applying the Biot–Savart law for a finite wire [36]. Note that the
magnetic field generated by the magnetization of the rod is not plotted by the simulation.

4. Graphical User Interface

MAELASviewer has a user-friendly interface with interactive plots that allow the user to visualize
the relative length change of a material along an arbitrary direction β as a function of the external
magnetic field direction H, magnetostrictive coefficients λ and magnetocrystalline anisotropy constants
(Joule effect). For each available crystal system, the simulation shows four interactive figures: (i) a
3D visualization of the orientation of lattice vectors, magnetization, and external magnetic field, (ii) a
3D visualization of the total length l and relative length change ∆l/l0, (iii) 2D visualization of the
cross-section for relative length change in the XY, XZ, and YZ planes, and (iv) 3D visualization of the
magnetocrystalline anisotropy energy. Additionally, it includes tables with the experimental data of
magnetostrictive coefficients for some magnetic materials.

As an example, we used MAELASviewer to map the Joule effect to a sphere for FCC Ni
at room-temperature under a strong external magnetic field parallel to the z-axis (H � Ha).
In the simulation, we set the experimental values for the anisotropic magnetostrictive coefficients
λ001 = −46 × 10−6 and λ111 = −24× 10−6 without volume magnetostriction (λα = 0),
and magnetocrystalline anisotropy constants (K1 = −4.5KJ/m3, K1 = −2.3KJ/m3) [13].
The figures generated by MAELASviewer are depicted in Figure 7. We see that the external magnetic
field along the z-axis induced a compression along the z-axis due to the negative value of λ001.
This effect can clearly be seen using the scale factor s = 15,000. Note that this shape does not correspond
to the deformation induced by the Joule effect in a sphere, see Section 2.1.2. In Figure 7b, we clearly
see the easy and hard magnetic directions along [1, 1, 1] and [1, 0, 0], respectively. As an example
for polycrystals, in Figure 8 we mapped the Joule effect to a sphere for polycrystalline Terfenol-D at
room-temperature under an effective magnetic field parallel to the z-axis setting λs = 1080× 10−6 [1].
We observed a giant expansion of the material along the magnetic field that is mainly originated by
the grains with crystallographic axis [1, 1, 1] nearly oriented along the magnetic field (λ111 � λ001).
This extraordinary magnetostrictive response makes it very useful for many technological applications.

To illustrate the visualization of the Wiedemann effect in MAELASviewer, we simulated the
experiment performed in 1919 by Pidgeon on annealed Ni wire with radius R = 0.5 mm under a
longitudinal magnetic field H‖ = 22.3 kA/m [12,37]. Here, we used the experimental value for the
isotropic magnetostrictive coefficient λs = −36× 10−6 [12], and we set L = 5 mm for the rod height.
The applied electric current ranged from Imin = 0 A to Imax = 18.5 A. Additionally, we used the
experimental values of Ni for the Young’s modulus Y = 200 GPa and Poisson’s ratio σ = 0.31 to
calculate the helical field-induced torque τ. The results generated by MAELASviewer are shown in
Figure 9. The 3D visualization of the twisted angle as function of z-coordinate φ(z) of the rod is plotted
for the maximum applied electric current Imax = 18.5 A. This yields a twisted angle at z = L equal
to φ(L) = −71.3 µrad. MAELASviewer also plots the twisted angle at z = L and induced torque for
the all selected range of applied electric current. This simulation reproduces the experimental twisted
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angle at z = L given by φ(L) = [−6.74× 10−5 − 2.4× 10−9(I/A)]L rad, where A = 4πR2 is the area
of the cross-section of the cylindrical rod [12].

Figure 7. Mapping the Joule effect to a sphere for single-crystal FCC Ni at room-temperature under
an external magnetic field parallel to the z-axis. (a) Unit cell of FCC Ni. (b) 3D visualization of the
magnetocrystalline anisotropy energy. 3D visualization of the simulated length lsim via Equation (14)
with scale factor (c) s = 1 and (d) s = 15,000. The color of the surface corresponds to the relative length
change multiplied by the scale factor. (e) Cross-section of the simulated length lsim with scale factor
s = 15,000 in the planes XY (z = 0), XZ (y = 0), and YZ (x = 0).

Figure 8. Mapping the Joule effect to a sphere for polycrystalline Terfenol-D at room-temperature
under an effective magnetic field parallel to the z-axis. (a) Unit cell of Terfenol-D. (b) Atomistic model
of polycrystalline Terfenol-D. 3D visualization of the simulated length lsim with scale factor (c) s = 1
and (d) s = 500. The color of the surface corresponds to the relative length change multiplied by the
scale factor.
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Figure 9. Simulation of the Wiedemann effect for a Ni wire. (a) 3D visualization of the twisted angle as
function of the z-coordinate, φ(z), of the rod with applied electric current I = 18.5 A. The green arrows
at z = L/2 represent the magnetic field H‖ + H⊥. (b) Twisted angle at z = L, φ(L), versus the electric
current I. (c) The helical field-induced torque τ versus the electric current I.

5. Conclusions

Based on recent advancements in the software for online interactive applications, we have
developed the app MAELASviewer to visualize and analyze magnetostriction. Thanks to its
user-friendly interface, it allows users to easily simulate how an external magnetic field changes
the size of a magnetic material for different crystal systems. Among other possible applications,
this tool can be used to determine the length change due to the Joule effect along the cutting direction
of a crystal. Therefore, it might be helpful in the design and manufacturing stages of a magnetostrictive
material for some applications based on the Joule or Wiedemann effects, like sensors and actuators.
Additionally, from a fundamental point of view, it allows users to gain an accurate and deep intuitive
understanding of the anisotropic magnetostrictive responses of magnetic materials. It could also be
used as a complementary tool of MAELAS code to further analyze the magnetostrictive coefficients
calculated by automated first-principles calculations.
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