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Abstract

Constitutive activation of the WNT signaling effector CTNNB1 (b-catenin) in the Sertoli cells of the Ctnnb1tm1Mmt/+;
Amhr2tm3(cre)Bhr/+ mouse model results in progressive germ cell loss and sterility. In this study, we sought to determine if this
phenotype could be due to a loss of spermatogonial stem cell (SSC) activity. Reciprocal SSC transplants between
Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+ and wild-type mice showed that SSC activity is lost in Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+

testes over time, whereas the mutant testes could not support colonization by wild-type SSCs. Microarray analyses
performed on cultured Sertoli cells showed that CTNNB1 induces the expression of genes associated with the female sex
determination pathway, which was also found to occur in Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+ testes. One CTNNB1 target gene
encoded the secreted signaling molecule WNT4. We therefore tested the effects of WNT4 on SSC-enriched germ cell
cultures, and found that WNT4 induced cell death and reduced SSC activity without affecting cell cycle. Conversely,
conditional inactivation of Wnt4 in the Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+ model rescued spermatogenesis and male fertility,
indicating that WNT4 is the major effector downstream of CTNNB1 responsible for germ cell loss. Furthermore, WNT4 was
found to signal via the CTNNB1 pathway in Sertoli cells, suggesting a self-reinforcing positive feedback loop. Collectively,
these data indicate for the first time that ectopic activation of a signaling cascade in the stem cell niche depletes SSC activity
through a paracrine factor. These findings may provide insight into the pathogenesis of male infertility, as well as embryonic
gonadal development.
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Introduction

Spermatogonial stem cells (SSCs) are the progenitor population

of male germ cells. Similar to other stem cell types, they can be

directed to one of two cell fate decisions: either self-renewal to

maintain the SSC pool, or differentiation into more specialized

germ cells that will eventually become spermatozoa. SSCs reside

in a specialized microenvironment, termed the SSC niche, that

controls the activity of SSCs and is believed to be formed mainly

by Sertoli cells and the basal membrane along the vascular

network [1,2]. The Sertoli cells seem to be a particularly important

component of the SSC niche, as numerous factors such as glial

cell-derived neurotrophic factor (GDNF), fibroblast growth factor

2 (FGF2), kit ligand (KITL), activin A and bone morphogenic

protein 4 (BMP4) are all produced by Sertoli cells and affect self-

renewal, proliferation and differentiation of SSCs [3–7].

The wingless-related MMTV integration site (WNT) gene

family encodes a large number of secreted signaling glycoproteins

that are involved in many biological processes including

embryonic development [8,9], adult tissue homeostasis [10],

maintenance of progenitor cell types [11] and cell fate determi-

nation and differentiation [12–15]. WNT signal transduction can

occur via at least three distinct pathways, commonly referred to as

the WNT/Ca2+, planar cell polarity and WNT/CTNNB1 or

canonical pathway. In the latter, a pool of CTNNB1 (b-catenin)

protein localizes to the cytoplasm, where it is resides in a large

multiprotein complex that notably includes the scaffold proteins

APC and AXIN. Bound to these proteins, CTNNB1 is rapidly

phosphorylated by other components of the complex, but mainly

by glycogen synthase kinase 3b. These phosphorylations result in

the subsequent ubiquitination of the protein and its degradation by

the cellular proteosomal machinery, and as a result there is little or

no free CTNNB1 in the cytoplasmic pool in the resting state. The

WNT/CTNNB1 pathway is activated by the binding of a WNT to

a cognate receptor of the Frizzled (FZD) family, and ultimately

results in CTNNB1 escaping the complex in a hypophosphory-

lated state, allowing it to accumulate within the cell and to

translocate to the nucleus. In the nucleus, CTNNB1 associates

with different transcription factors to modulate the transcriptional

activity of various target genes in a cell type- and developmental

stage-specific manner [8,15–16]. WNT signaling in the postnatal

testis has not been well studied, but it has been suggested to affect

normal spermatogenesis. Notably, mice bearing a null mutation of

the WNT signaling antagonist Nkd1 have lower numbers of
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haploid spermatids [17], and WNT5a has been shown to promote

SSC self-renewal [18]. Recently, ourselves and others [19–20]

generated transgenic mice (Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+) in

which Cre-lox recombination leads to the expression of a

dominant-stable mutant of CTNNB1 in Sertoli cells, thereby

activating the WNT/CTNNB1 pathway constitutively in these

cells. These mice were sterile due to testicular atrophy associated

with degeneration of the seminiferous epithelium starting by 5 wks

of age and resulting in complete loss of germ cells before 4 months.

Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+ Sertoli cells also exhibited mor-

phological characteristics and gene expression patterns suggestive

of incomplete differentiation that appeared in a manner coincident

with germ cell loss. These data suggested that the WNT/

CTNNB1 pathway disrupts Sertoli cell functions critical to their

capacity to support spermatogenesis in the postnatal testis.

In the present study, we tested the hypothesis that the loss of

spermatogenesis in Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+ animals re-

sults from defective Sertoli cells that cannot support SSC activity.

We discovered that Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+ Sertoli cells

lose their SSC niche capacity and that this is due to the ectopic

expression of WNT4, which acts in a paracrine manner to

downregulate SSC activity.

Results

Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+ Sertoli cells fail to
support spermatogonial stem cell activity

To determine if germ cell loss in the Ctnnb1tm1Mmt/+;

Amhr2tm3(cre)Bhr/+ model could be associated with a loss of SSC

activity, reciprocal SSC transplant studies were performed. In the first

experiment, SSCs in mutant testes were transplanted into testes of

germ cell-depleted wild-type recipient mice. To genetically label

mutant donor cells with lacZ, Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+ mice

were crossed with Gt(ROSA)26Sor mice. Gt(ROSA)26Sor mice express

the lacZ transgene in virtually all cell types, including male germ cells,

allowing the discrimination of donor cells from recipient cells after

transplantation in vivo. Donor SSCs from 5 and 17 week-old

Gt(ROSA)26Sor;Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+ and control Gt(RO-

SA)26Sor;Ctnnb1tm1Mmt/+ mice were transplanted and the recipient

testes analyzed two months later. A 56% reduction in the SSC

frequency was observed in 5 week-old mutant mice (Fig. 1A–1D),

corresponding to a 46% reduction in total functional SSC numbers

per testis (Fig. 1H). SSC frequency further declined to 8.6% of control

in testes of 17 week-old mutant mice, with total SSC numbers per testis

reduced to 1% of control (Fig. 1D–1H). These results indicate that a

loss of SSC activity occurs in Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+ mice in

a manner temporally coincident with testicular atrophy and germ cell

loss [19].

In the second experiment, the ability of Ctnnb1tm1Mmt/+;

Amhr2tm3(cre)Bhr/+ testes to support wild-type SSCs was examined

by using 6-week-old mutant mice as recipients. Any endogenous

germ cells remaining in recipient testes at this age were depleted,

and Gt(ROSA)26Sor donor cells were transplanted into these testes.

One week after transplantation, donor germ cells were present in

both Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+ and control Ctnnb1tm1Mmt/+

testes but differed in appearance (Fig. 2A, 2B). In control testes,

donor cells were found on the basal membrane of the tubules,

indicating that the cells had migrated from the lumen and

colonized the recipient testes (Fig. 2A, inset). In contrast, no

migrating cells were observed in the testis of Ctnnb1tm1Mmt/+;

Amhr2tm3(cre)Bhr/+ mice, and most donor cells remained in the

lumen (Fig. 2B, inset). When analyzed two months after transplan-

tation, a complete regeneration of spermatogenesis was observed

in control animals (24.462.5 colonies/106 cells transplanted),

whereas no donor-derived spermatogenesis was observed in

Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+ testes (Fig. 2C, 2D). Taken

together, these results suggest that the activation of CTNNB1 in

Sertoli cells altered their functional properties, resulting in a failure

of the SSC niche and the loss of the ability to support SSC activity.

Sertoli cells in Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+ testes
express markers of female sex determination

We next sought to identify changes in Sertoli cell gene

expression in response to sustained CTNNB1 signaling that could

be responsible for the loss of SSC activity in Ctnnb1tm1Mmt/+;

Amhr2tm3(cre)Bhr/+ mice. An in vitro approach using short-term

primary Sertoli cell cultures was used in order to preferentially

identify immediate CTNNB1 transcriptional targets in an isolated

cell population. Sertoli cells from 3 week-old Ctnnb1tm1Mmt/tm1Mmt

mice were placed in culture and infected with adenoviruses to

induce the expression of either Cre recombinase (Ad-Cre, to

express dominant-stable CTNNB1) or eGFP (Ad-eGFP, control)

for 24 h. Then, each cell population was subjected to microarray

analyses, followed by in silico analyses to identify groups of genes

associated with specific signaling pathways or biological processes.

A first group of genes induced by Ad-Cre (i.e., dominant-stable

CTNNB1) consisted of Ccnd1 (cyclin D1) and a number of cell

cycle-associated genes with known interaction with cyclin D1 (Fig.

S1, Table S1), suggesting that CTNNB1 could regulate Sertoli cell

proliferation. Accordingly, abnormal Sertoli cell proliferation has

been previously observed in Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+

mice, eventually leading to tumor development [20–22]. A second

set of genes that were differentially expressed following Ad-Cre

treatment were genes involved in sex differentiation, or that are

differentially expressed between male and female genital ridges

during embryonic development (Table S1). Specifically, genes

normally associated with female gonadal development such as Klf4

and Fst were upregulated in Ctnnb1tm1Mmt/tm1Mmt Sertoli cells

treated with Ad-Cre, whereas male gonadal development genes

such as Sox9 and Wt1 were downregulated. Microarray results

were confirmed by real-time RT-PCR (Fig. 3A). Since Wnt4 is

known to be a CTNNB1 target gene in granulosa cells (equivalent

to Sertoli cells in developmental origin) and its overexpression

causes male-to-female sex reversal, we also analyzed Wnt4

expression in our short-term in vitro system using real-time RT-

PCR. As shown in Fig. 3A, there was a trend (P,0.1) that Wnt4

was preferentially expressed in Ad-Cre-treated cells but no

significant differences were detected.

To determine if genes identified in the in vitro approach are also

differentially expressed in vivo during the course of germ cell loss,

RT-PCR analysis was performed on Sertoli cells isolated from

testes of 3, 5 and 15 week-old Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+

and control mice. As in the in vitro model, markers of female sex

differentiation including Wnt4 were upregulated in Ctnnb1tm1Mmt/+;

Amhr2tm3(cre)Bhr/+ testes (Fig. 3B–3D). A clearly elevated level of

Wnt4 expression in Sertoli cells derived from mutant mice

contrasts with our results of the in vitro assay (Fig. 3A), suggesting

that Wnt4 may not be an immediate target of CTNNB1 signaling

but its expression may increase with time. On the other hand,

markers of male sex differentiation were unchanged in

Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+ testes, indicating an overall

maintenance of the Sertoli/male phenotype in these mice; the

reason for the discrepancy with the in vitro data is unclear.

Nonetheless, these results collectively suggested that sustained

activation of CTNNB1 signaling either drove cells committed to a

Sertoli cell fate to express granulosa-cell related genes, or directed

uncommitted somatic progenitor cells towards a granulosa cell-like

state.

WNT4 Downregulates Spermatogonial Stem Cells
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WNT4 downregulates spermatogonial stem cell activity
in vitro

As Sertoli cells regulate SSC activity via the secretion of

paracrine factors, the above-mentioned gene expression data was

carefully screened for the differential expression of genes encoding

secreted molecules that could contribute to the progressive loss of

SSC activity observed in Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+ mice.

Although no such factors were found to be down-regulated by

CTNNB1, both Wnt4 and Fst were up-regulated. We therefore

sought to determine if either could affect SSC activity in vitro.

Testis cells from C57BL/66Gt(ROSA)26Sor F1 hybrid mice were

enriched for SSCs and cultured on feeder cells, resulting in the

formation of undifferentiated spermatogonial aggregates (clusters).

Clusters were then transferred onto Matrigel without feeder cells

and treated with recombinant FST or WNT4 at different

concentrations. After 4 days, the cluster-forming ability of the

treated cells was assessed, as this is an in vitro indicator of SSC

activity [18,23]. Only WNT4 had a statistically significant effect,

reducing cluster formation by 43% at a concentration of 50 ng/ml

and by 61% at a concentration of 100 ng/ml (Fig. 4A, 4B). To

confirm the effect of WNT4 on SSC activity, transplantation

assays were also performed with WNT4-treated cells. Consistent

with the in vitro assay results, WNT4 reduced SSC activity by

65% compared to controls (Fig. 4C). Cells treated with both

WNT4 and FST did not reduce further colony numbers,

suggesting that WNT4 is the principal factor affecting SSC

activity and that there is no synergistic effect between the two

factors.

To determine if the loss of SSC activity in vitro in response to

WNT4 could be attributed to reduced proliferation, the cell cycle

profile of the WNT4-treated cluster cells was examined by FACS

analysis following propidium iodide incorporation. Results showed

Figure 1. Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+ mice lose spermatogonial stem cell activity over time. (A, E) Photographs of decapsulated,
LacZ-stained recipient testes 8 weeks after transplantation of donor cells from 5- (A) or 17- (E) week-old Gt(ROSA)26Sor;Ctnnb1tm1Mmt/+;
Amhr2tm3(cre)Bhr/+ (R;C, control) and Gt(ROSA)26Sor;Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+ (R;C;A) mice. Original magnification 12.56. (B, C, F, G)
Photomicrographs demonstrating complete regeneration of spermatogenesis in the testes shown in (A) and (E). (D) Spermatogenic colony
numbers obtained after donor cell transplantation, n = 8–9/time/genotype. Results are expressed as colonies per million transplanted cells. (H) Total
spermatogonial stem cells present in the donor testes, calculated by multiplying colony numbers (D) by the total number of germ cells harvested
from the donor testis. All data are expressed as mean (columns) 6 SEM (error bars). Significant differences from controls (P,0.05) are indicated with
an asterisk (*) and accompanied by relevant P values.
doi:10.1371/journal.pone.0029764.g001

WNT4 Downregulates Spermatogonial Stem Cells
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statistically indistinguishable proportions of cells in the prolifera-

tive phase (S/G2/M) of the cell cycle between WNT4-treated and

control cells, indicating that WNT4 did not affect proliferation

(Fig. 4D, 4E). We next examined the effects of WNT4 on apoptosis

in cluster cells. Twice as many TUNEL-positive cells were

detected in the group treated with WNT4 relative to the control

(54.7% vs 27.7%) (Fig. 4F, 4G), indicating that WNT4 hinders the

survival of germ cells in vitro. Accordingly, TUNEL analyses of

testes from 5 week-old Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+ mice (an

age at which WNT4 is already overexpressed, Fig. 3C) showed a

precipitous increase in germ cell apoptosis, including germ cells

situated at the periphery of the tubules, where spermatogonial

populations are located (Fig. 5). The timing of increased apoptosis

roughly coincided with the onset of testicular atrophy and germ

cell loss in the Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+ model [19], and is

similar to observations made by Tanwar et al. [20]. Together with

a significant reduction in SSC numbers in 5-week-old mutant

mouse testes (Fig. 1), this result suggests that WNT4 may also

induce SSC apoptosis in vivo.

WNT4 signals via distinct pathways in SSCs and Sertoli cells
To study the signaling mechanism through which WNT4 acts,

SSCs were isolated from a TCF/Lef-LacZ transgenic mouse

strain [24]. Cells from these mice respond to canonical WNT

signals by an increase in lacZ expression [18,24]. SSC culture

was established using germ cells of TCF/Lef-LacZ mice. Cluster

cells generated were then transferred to the feeder-free condition

and exposed to WNT4. The effect on SSC activity was assessed

using the in vitro assay, as in Fig. 4. No differences were

observed in the numbers of LacZ-expressing cells between

control and WNT4-treated cells (Fig. 6A). In a second

experiment, cluster cells were treated with WNT4, and levels

of active (i.e., dephosphorylated) CTNNB1 were determined by

western blot. Consistent with the results of the first experiment,

WNT4 had no effect on active CTNNB1 (Fig. 6A). These results

indicate that WNT4 does not activate the canonical pathway in

spermatogonia.

To determine if WNT4 can also act in an autocrine manner in

Sertoli cells, primary cultured Sertoli cells were treated with

WNT4 and levels of active CTNNB1 were determined by western

blot. Increased active CTNNB1 was detected as early as 1 h after

exposure to WNT4 (Fig. 6B), indicating that WNT4 can act

directly on Sertoli cells through the canonical pathway. As Wnt4 is

a CTNNB1 target gene in Sertoli cells (Fig. 3), this result suggests a

potential positive feedback loop through which WNT4 and

CTNNB1 mutually increase their expression (Fig. 6C).

Figure 2. Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+ testes are unable to support donor SSCs. (A, B) Photographs of decapsulated, LacZ-stained
recipient Ctnnb1tm1Mmt/+ (A) or Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+ (B) testes 1 week after transplantation of Gt(ROSA)26Sor germ cells. Insets show
higher magnification lateral views of seminiferous tubules from the corresponding testes. (C, D) Photographs of decapsulated, LacZ-stained recipient
Ctnnb1tm1Mmt/+ (C) or Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+ (D) testes 8 weeks after transplantation of Gt(ROSA)26Sor germ cells. Insets are
photomicrographs demonstrating complete regeneration of spermatogenesis in the Ctnnb1tm1Mmt/+ testes (C), whereas no evidence for
spermatogenesis was detected in the Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+ testes (D). Original magnification 326 (A, B) or 166 (C, D).
doi:10.1371/journal.pone.0029764.g002
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Figure 4. WNT4 downregulates SSC activity in vitro. (A, B) Germ cell cluster formation ability of cells treated with the indicated concentrations
of FST (A) or WNT4 (B). (C) Colony numbers obtained after transplantation of germ cells treated with WNT4 or WNT4 and FST at the indicated
concentrations. (D, E) Representative flow cytometric histograms (D) and analysis (E) showing the cell cycle profiles of cultured germ cells, with or
without prior WNT4 treatment (100 ng/ml). (F, G) Representative scatter plots (F) and analysis (G) showing TUNEL assay results of germ cells following
WNT4 treatment (100 ng/ml). All data are expressed as mean (columns) 6 SEM (error bars). Significant differences from controls (P,0.05) are
indicated with an asterisk (*) and accompanied by relevant P values.
doi:10.1371/journal.pone.0029764.g004
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WNT4 acts downstream of CTNNB1 to cause germ cell
loss in vivo

Based on the results described in Figs. 4 and 5, we next

hypothesized that WNT4 is the major effector downstream of

CTNNB1 responsible for SSC and germ cell loss in the

Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+ model. To test this, a floxed Wnt4

allele was introduced into the Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+

background so as to conditionally inactivate Wnt4 in the same cells

in which CTNNB1 signaling had been constitutively activated. The

resulting Ctnnb1tm1Mmt/+;Wnt4flox/2;Amhr2tm3(cre)Bhr/+ male mice

were fertile at least up to the age of 7 months, when the mating ex-

periments were terminated (not shown). Ctnnb1tm1Mmt/+;Wnt4flox/2;

Amhr2tm3(cre)Bhr/+ testis weights at 8 wks were significantly higher than

those of Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+ mice, and indistinguish-

able from Ctnnb1tm1Mmt/+;Wnt4flox/2 controls (Fig. 7F). Histopath-

ological analysis of Ctnnb1tm1Mmt/+;Wnt4flox/2;Amhr2tm3(cre)Bhr/+ tes-

tes revealed qualitatively normal spermatogenesis in the vast majority

of seminiferous tubules, along with abundant spermatotozoa in the

epididymides in animals up to 5 months of age (Fig. 7D and not

shown). Real-time RT-PCR analysis confirmed a near-complete loss

of Wnt4 expression in Ctnnb1tm1Mmt/+;Wnt4flox/2;Amhr2tm3(cre)Bhr/+

testes (Fig. 7G), whereas the dominant-stable CTNNB1 mutant

protein was expressed at levels comparable to Ctnnb1tm1Mmt/+;

Amhr2tm3(cre)Bhr/+ controls (Fig. 7H). Fst expression was also

downregulated in Ctnnb1tm1Mmt/+;Wnt4flox/2;Amhr2tm3(cre)Bhr/+ com-

pare to Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+ testes (Fig. S2), suggesting

that even though FST is not involved in the regulation of SSC acti-

vity, Fst is a downstream target of WNT4. Interestingly, control mice

bearing a single functional Wnt4 allele (Ctnnb1tm1Mmt/+;Wnt4+/2;

Amhr2tm3(cre)Bhr/+) had testicular Wnt4 and Fst expression levels

and testis weights intermediate between the Ctnnb1tm1Mmt/+;

Amhr2tm3(cre)Bhr/+ and Ctnnb1tm1Mmt/+;Wnt4flox/2;Amhr2tm3(cre)Bhr/+

groups, and this was accompanied by a partial rescue of

spermatogenesis, as evidenced by a delayed degeneration of the

tubules and the presence of spermatozoa in the epididymides

(Fig. 7C, 7F, 7G). Unexpectedly, we also observed that some (,30%)

animals of both the Ctnnb1tm1Mmt/+;Wnt4flox/2;Amhr2tm3(cre)Bhr/+ and

Ctnnb1tm1Mmt/+;Wnt4+/2;Amhr2tm3(cre)Bhr/+ genotypes had a much

more severe phenotype. Testes of these animals were very small

(,3 mg) and showed degeneration and coagulation necrosis of the

seminiferous epithelium, intratubular hemorrhages and dystrophic

mineralization (Fig. 7E and not shown). Although this severe

phenotype remained unexplained, a breakdown of the blood-testis

Figure 5. Increased germ cell apoptosis in Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+ testis. (A–F) TUNEL staining (red) in Ctnnb1tm1Mmt/+;
Amhr2tm3(cre)Bhr/+ testes (B, D, F) compared with Ctnnb1tm1Mmt/+ controls (A, C, E) at different ages. Counterstain = DAPI (blue). For clarity, seminiferous
tubules are circumscribed with a dotted white line in panel D.
doi:10.1371/journal.pone.0029764.g005
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Figure 6. WNT4 acts through canonical and noncanonical pathways in different testicular cell types. (A) Left panel: LacZ-positive cell
numbers in cultured germ cells from TCF/Lef-lacZ transgenic mice treated or not beforehand with WNT4 (100 ng/ml). Data is expressed as mean
(columns) 6 SEM (error bars). Right panel: Timecourse immunoblot analyses of cultured germ cells treated with WNT4 (100 ng/ml). ACTB was used as
a loading control. (B) Timecourse immunoblot analyses of cultured Sertoli cells treated with WNT4 (50 ng/ml). ACTB was used as a loading control. (C)
Experimental model illustrating WNT4/CTNNB1 signaling mechanisms in Sertoli cells and spermatogonial stem cells.
doi:10.1371/journal.pone.0029764.g006

WNT4 Downregulates Spermatogonial Stem Cells

PLoS ONE | www.plosone.org 8 January 2012 | Volume 7 | Issue 1 | e29764



WNT4 Downregulates Spermatogonial Stem Cells

PLoS ONE | www.plosone.org 9 January 2012 | Volume 7 | Issue 1 | e29764



barrier was apparently involved. Nonetheless, the rescue of

spermatogenesis and fertility observed in most Ctnnb1tm1Mmt/+;

Wnt4flox/2;Amhr2tm3(cre)Bhr/+ mice indicates that WNT4 is the major

effector downstream of CTNNB1 that is responsible for testicular

degeneration, SSC and germ cell loss and sterility in Ctnnb1tm1Mmt/+;

Amhr2tm3(cre)Bhr/+ mice.

Discussion

The SSCs are the adult stem cell population that sits atop the

male germ cell developmental hierarchy. The proper regulation of

SSC activity is therefore critical for the initiation and maintenance

of spermatogenesis. SSC survival and activity is dependent on a

highly specialized microenvironment, the SSC niche, which

provides the paracrine factors required to nurture SSCs and

regulate their cell division patterns to maintain spermatogenesis.

Various mutant mice have been reported in which spermatogen-

esis is disrupted and SSC activity declines. Phenotypes of some of

these mutants are known to arise from defects in Sertoli cells, an

important element of the SSC niche. Two examples of such

mutants are Steel (Sl) and ETV5-knockout mice. In Sl mice,

mutations occur in a Sertoli cell-derived growth factor, KITL, and

affect the survival and function of differentiating spermatogonia,

rather than SSCs, in postnatal mice and those of primordial germ

cells in embryos, resulting in the loss of spermatogenesis [25,26].

Although available data indicate that the SSC population size is

diminished in Sl mouse testes, SSCs remaining are capable of

accomplishing complete spermatogenesis when exposed to wild-

type Sertoli cells [27,28]. In the case of ETV5-knockout mice,

spermatogenesis takes place during the first cycle after birth but

ceases with time due to gradual depletion of SSCs. ETV5-null

mutation seems to affect both SSCs and Sertoli cells, and the

mechanism of SSC depletion has not been identified definitively

[29–30].

Here, we report that activation of CTNNB1 signaling

specifically in Sertoli cells results in a defective testicular somatic

environment that negatively regulates SSC activity. Our results

indicate that Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+ testes lose their

endogenous SSC activity over time and are unable to support

SSCs upon transplantation. These findings suggested an alteration

of the paracrine signals emanating from Sertoli cells, leading to a

functional breakdown of the SSC niche and resultant loss of SSC

activity. Our subsequent investigations identified WNT4 as a key

paracrine factor that acts downstream of CTNNB1 to downreg-

ulate SSC activity. Not only could WNT4 reduce SSC activity and

increase germ cell apoptosis in vitro, but conditional inactivation of

Wnt4 in the Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+ model rescued

spermatogenesis and restored fertility. We therefore conclude

that, rather surprisingly, WNT4 appears to be the major factor

downstream of CTNNB1 that is responsible for the loss of SSC

activity, the inability to support donor SSCs, and the collapse of

spermatogenesis that occurs in Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+

mice. It was previously suggested that GDNF might play a role

in the induction of germ cell apoptosis in Ctnnb1tm1Mmt/+;

Amhr2tm3(cre)Bhr/+ testes [20]. Contrary to Tanwar et al., we did

not find increased expression of Gdnf in the Ctnnb1tm1Mmt/+;

Amhr2tm3(cre)Bhr/+ model (Fig. S2), although we examined mRNA

levels whereas Tanwar et al. studied protein expression, and

therefore the stabilization of GDNF protein in Ctnnb1tm1Mmt/+;

Amhr2tm3(cre)Bhr/+ testes could explain this discrepancy. Regard-

less, our results suggest that WNT4 is the primary factor

involved in germ cells apoptosis, but do not exclude that GDNF

might also play a minor role.

The identification of WNT4 as a negative regulator of SSC

activity may provide insight into the pathogenesis of male

infertility. The Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+ model closely

mimics certain forms of Sertoli Cell Only Syndrome (SCOS),

being characterized by germ cell loss, normal virilization, and a

mosaic pattern of Sertoli cell differentiation in the adult testis with

the expression of markers of immature Sertoli cells [19,22]. The

pathogenesis of SCOS is poorly understood at the genetic level,

although microdeletions of the Y chromosome are involved in

some cases [31,32]. Our results suggest that any post-develop-

mental event resulting in the inappropriate activation of the

WNT4/CTNNB1 signaling loop in Sertoli cells could lead to SSC

loss, with subsequent loss of all germ cells. As WNT4 is a secreted

molecule that can act in a paracrine manner and can amplify its

own signal (Fig. 6C), localized inappropriate activation of this

pathway could conceivably spread to affect the entire organ.

Whether or not such a mechanism is relevant to the etiology of

SCOS in men has not been studied to our knowledge.

Importantly, our findings that WNT4/CTNNB1 signaling in

Sertoli cells results in the expression of granulosa cell genes and

downregulates SSC activity may provide new insight into

mechanisms of sex determination and gonadal development.

WNT4/CTNNB1 signaling has well-established roles in female

sex determination, as WNT4 insufficiency during embryogenesis

results in partial female-to-male sex reversal [33–35]. Conversely,

WNT4/CTNNB1 overexpression during embryonic development

can cause male-to-female sex reversal, the extent of which

apparently depending both on species and the amount of

WNT4 expression [36–39]. In this study, we demonstrate that

constitutive WNT4/CTNNB1 signaling in cells already commit-

ted to the Sertoli cell fate results in the expression of genes

normally expressed during female sex differentiation and a loss of

Sertoli cell differentiation and function (see also [19]). These

results are in agreement with the recent view that gonadal somatic

cell commitment to either the granulosa cell or Sertoli cell fate is

not ‘‘stable’’, and can be partially or completely reversed by

alterations in specific signaling processes [40]. Perhaps the most

dramatic example of this concept is the recent report that postnatal

deletion of Foxl2 results in the reprogramming of granulosa cells

into a Sertoli-like cell lineage [41].

Interestingly, WNT5a has recently been shown to promote SSC

activity via non-canonical pathways [18]. As WNT4 also appears

to signal via non-canonical mechanisms in SSCs, it remains to be

Figure 7. WNT4 acts downstream of CTNNB1 to cause germ cell loss in vivo. (A–D) Photomicrographs of testes from 8 week-old animals of
the indicated genotypes. Insets show sections of epididymides from the corresponding animals. (E) Photomicrograph of a testis of the indicated
genotype showing the severe testicular degeneration, coagulation necrosis and intratubular hemorrhage phenotypes described in the text. (F) Testis
weights from 8 week-old animals of the indicated genotypes, n = 4 animals/genotype. C;Wf/2: Ctnnb1tm1Mmt/+;Wnt4flox/2 (control), C;A: Ctnnb1tm1Mmt/+;
Amhr2tm3(cre)Bhr/+, C;W+/2;A: Ctnnb1tm1Mmt/+;Wnt4+/2;Amhr2tm3(cre)Bhr/+, C;Wf/2;A: Ctnnb1tm1Mmt/+;Wnt4flox/2;Amhr2tm3(cre)Bhr/+. (G) Wnt4 mRNA levels in
the mice described in panel F. Note the logarithmic scale on the Y axis. (H) CTNNB1 immunoblot analyses of testes from 8 week-old animals of the
indicate genotypes. The lower band corresponds to the dominant-stable CTNNB1 mutant protein produced by the recombined Ctnnb1tm1Mmt/+ allele.
ACTB was used as a loading control. Animals showing the severe degenerative phenotype described in the text and shown in panel E were excluded
from the data analyses shown in panels F–H. All data are expressed as mean (columns) 6 SEM (error bars). Groups labeled with different letters (a, b, c)
were significantly different (P,0.05).
doi:10.1371/journal.pone.0029764.g007
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determined how each molecule acts to generate opposite biological

effects via a similar mechanism in a single cell type. One possibility

is that they have distinct receptor complexes, the activation of

which triggers distinct (but partially overlapping) signaling

cascades [42]. This idea is supported by the observation that

WNT5a appears to actively repress CTNNB1 signaling in SSCs

[18], which we did not observe in the case of WNT4.

We believe that it is unlikely that WNT4 plays a physiological

role in the regulation of SSC activity in the adult testis. Indeed, we

found Wnt4 mRNA to be barely detectable or undetectable in

normal testes using PCR-based methods (Fig. 3, Fig. S3), whereas

the expression of most other Wnt genes (including Wnt5a)

was readily detectable (Fig. S3). Furthermore, Wnt4flox/2;

Amhr2tm3(cre)Bhr/+ mice are fertile and have qualitatively normal

spermatogenesis (unpublished observations). Our data therefore

seem to indicate that the WNT4/CTNNB1 pathway is not a

physiological regulator of spermatogenesis. It should further be

noted that Wnt1, a potent activator of the WNT/CTNNB1

pathway, is robustly produced by spermatids, which represent over

70% of cells in the seminiferous epithelium [43,44]. This implies

that Sertoli cells are constantly exposed to the activator of WNT/

CTNNB1 signaling, yet the pathway is not normally active in

these cells [18,19]. Collectively, these results therefore argue that

the canonical WNT signaling pathway must be suppressed

(presumably by repressors of WNT signaling such as SFRPs,

DDKs or NKDs) in Sertoli cells to maintain the functional

integrity of SSC niche, and thus the forced activation of this

pathway has catastrophic consequences for SSCs, spermatogene-

sis, and male fertility.

In summary, we have identified a WNT4/CTNNB1 signaling

loop in Sertoli cells that acts in a paracrine manner to

downregulate SSC activity. The results of this study may provide

important insight into gonadal development and into the etiology

of certain male germ cell loss pathologies.

Materials and Methods

Transgenic mouse strains
Gt(ROSA)26Sor;Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+, Gt(ROSA)26-

Sor;Ctnnb1tm1Mmt/+ and Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+ mice

were derived from previously-described Amhr2tm3(cre)Bhr/+ [45],

Ctnnb1tm1Mmt [46] and B6.129S7-Gt(ROSA)26Sor/J (Jackson Labo-

ratory, Bar Harbor, ME, stock number 002192) parental strains by

selective breeding. Genotypes were determined by PCR as

described [46,47]. TCF/Lef-LacZ transgenic mice were a kind

gift from Dr Daniel Dufort (McGill University) [24]. Wnt4 null and

floxed alleles were developed in our laboratory and genotype

analyses were done as previously described [48]. All animal

procedures were approved by the Comité d’Éthique de l’Utilisa-

tion des Animaux of the Université de Montréal (permit number

11-RECH-1320 and 11-RECH-1488) and were conform to the

USPHS Policy on Humane Care and Use of Laboratory Animals.

Germ cell transplantations
Donor mice were Gt(ROSA)26Sor, Gt(ROSA)26Sor;Ctnnb1tm1Mmt/+

and Gt(ROSA)26Sor;Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+. Gt(RO-

SA)26Sor mice express the Escherichia coli lacZ transgene in

virtually all cell types, including all types of postnatal male germ

cells, allowing the discrimination of donor cells from recipient

cells after transplantation in vivo and from feeder cells in culture

[49,50]. Donor cell suspensions were prepared from testes from

5- or 17 week-old mice using a previously-described two-step

enzymatic digestion protocol [51,52], except 1 mg/ml of colla-

genase I, 1 mg/ml collagenase IV, 1 mg/ml hyaluronidase and

1 mg/ml DNase I (Sigma, St. Louis, MO) were used in the first

step. Transplant recipients were Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+,

Ctnnb1tm1Mmt/+ and wild-type 129/SvEv6B6 F1 hybrid mice. To

deplete endogenous spermatogenesis, recipient mice were treated

with busulfan (50 mg/kg, i.p.) at 6 weeks of age [51,52]. Six weeks

later, donor SSC-enriched cells were resuspended at 1.0–1.26106

cells/ml, and injected into recipient seminiferous tubules through

the efferent duct as previously described [51,52]. For SSC

quantification, recipient testes were harvested at 1, 5 or 8 weeks

after transplantation, and stained with X-gal to visually count the

colonies of donor-derived spermatogenesis as previously described

[53].

Sertoli cell culture, adenoviral infection and microarray
analyses

Sertoli cells were isolated from 3 week-old Ctnnb1tm1Mmt/tm1Mmt

animals as previously described [39]. After 2 days of culture in

DMEM containing 10% fetal calf serum, cells were infected with

adenoviruses to express either eGFP or Cre recombinase for 24 h

in serum-free medium, and subsequently harvested for RNA

extraction as described below. Ad-Cre and Ad-eGFP viruses were

obtained from the Baylor College of Medicine Vector Develop-

ment Laboratory (Houston, TX, USA). Preliminary experiments

demonstrated that an infection efficiency of nearly 100% could be

obtained at an MOI of ,50 (as determined by analysis of

fluorescent signal in Ad-eGFP-infected cells), and that recombi-

nation of the floxed Ctnnb1 alleles was complete 12 h after the

infection with Ad-Cre (as determined by PCR-based genotype

analyses) (not shown). The recombined Ctnnb1tm1Mmt allele

encodes a truncated, ‘‘dominant-stable’’ CTNNB1 mutant protein

that, while still fully functional, is resistant to degradation and

therefore accumulates to abnormally high levels in the cell, thereby

altering the expression of CTNNB1 transcriptional target genes

[46]. Microarray analyses were done using triplicate RNA samples

from each adenoviral treatment, and using MouseRef-6 v.2.0

expression BeadChips technology (Illumina, San Diego, CA,

USA). All steps of RNA quality control, probe synthesis,

hybridization, washing, and array scanning were done by McGill

University and the Génome Québec Innovation Center (Montréal,

Qc, Canada). Microarray data were analyzed using FlexArray 1.3

software (Génome Québec). Ad-Cre and Ad-eGFP data were

processed using t-test, the EB (Wright and Simon) algorithm and

P-value calculation. A P-value threshold of 0.05 and 1.5-fold

change cut-off values were used for identification of differentially

expressed genes. All array data are MIAME compliant and the

raw data were deposited in the MIAME compliant database GEO,

with accession number GSE28402. Array data were also analyzed

with Pathway Studio (Ariadne, Rockville, MD) to identify

functional interactions between genes.

Real-time RT-PCR
Gene expression analyses were done by real-time RT-PCR on

Sertoli cells isolated from from 3, 5 or 15 week-old mice that were

either cultured or freshly-isolated as described above. Briefly, RNA

samples were purified with the RNeasy mini kit (Qiagen, Valencia,

CA). RT-PCR reactions were formulated using the Superscript III

Platinum two-step qRT-PCR kit with SYBR green (Invitrogen,

Burlington, ON, Canada) according to the manufacturer’s

instructions and using the oligonucleotide primer pairs listed in

Table S2. Thermal cycling and data capture were performed using

a Rotor-Gene RG-3000 apparatus (Corbett Research, Mortlake

NSW 2137, Australia) with the manufacturer’s recommended

conditions. Relative gene expression was calculated using Rotor-

Gene 6.0 software (Corbett Research) by comparing amplification
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curves to a series of standard curves obtained by amplification of

serial dilutions of an Rpl19 cDNA fragment. All data were

subsequently normalized by dividing expression levels of individual

genes by corresponding Rpl19 values. The Wnt4 RT-PCR analyses

described in Fig. 6 were conducted as described above, except

RNA was harvested from whole testes from 8 week-old mice of the

indicated genotypes.

Spermatogonial stem cell culture and cluster analysis
SSCs were enriched from C57BL/66Gt(ROSA)26Sor F1 hybrid

mouse testes and cultured as previously described [23]. SSCs

proliferate in culture as distinct germ cell accumulations termed

‘‘clusters’’ [54,55]. All in vitro experiments were conducted using

established cluster cultures (i.e. .5 passages; 30 days). To avoid

potential confounding effects associated with the presence of STO

feeder cells during experimental treatments, clusters were removed

from feeder cells by gentle pipetting, dissociated into single cells

with 0.05% trypsin-EDTA and seeded (4–96104 cells/cm2) on

culture dishes treated with Matrigel (BD Biosciences, Mississauga,

ON, Canada). To examine effect of Follistatin (FST) or WNT4 on

cultured cells, recombinant FST and/or WNT4 (R&D Systems)

were added at the indicated concentrations (Fig. 4A, B) at the time

of seeding. Cultures were maintained for 4 days and subsequently

trypsinized and seeded back onto feeder cells (1:1 split) under our

standard condition to induce cluster growth. Clusters were visually

counted following fixation and X-gal staining as previously

described [18]. The cluster assay was performed in triplicate. To

further examine SSC activity by spermatogonial transplantation,

cluster cells were cultured on Matrigel and treated as described

above, collected using 0.25% trypsin-EDTA, resuspended at 1.8–

3.26106 cells/ml and transplanted into recipient testes. Sper-

matogonial transplantation was performed in duplicate, and

colonies were counted in n.11 total recipient testes for each

treatment group (Fig. 4C).

In vitro proliferation, apoptosis and TCF/Lef-LacZ reporter
transgene analyses

To evaluate the effects of WNT4 on germ cell proliferation,

C57BL/66Gt(ROSA)26Sor F1 cluster cells were seeded onto

Matrigel at 10–126104 cells/cm2 as described above, with or

without recombinant WNT4 (100 ng/ml) for four days. Cells were

then trypsinized and fixed in 70% EtOH for 30 min or overnight.

Propidium iodide (40 mg/ml) and RNAse (100 mg/ml) were added

and cells incubated at 37uC for 30 min. Cell cycle profiles were

obtained using a FACScan apparatus, with 5,000–10,000 events

collected per sample. The percentage of cells in each phase of the

cell cycle was determined using FloJo Flow Cytometry Analysis

Software (TreeStar, Ahland, OR). The experiment was performed

in triplicate. To evaluate the effects of WNT4 on apoptosis, germ

cells were cultured and treated as described above for the cell cycle

analyses. Cells actively undergoing apoptosis were identified by

terminal deoxynucleotidyl transferase dUTP nick-end labeling

(TUNEL) using the APO-Direct Apoptosis Detection Kit (BD

Biosciences) according to the manufacturer’s instructions, followed

by FACS analysis (5,000–10,000 events recorded per sample).

Results from four independent experiments are shown in Fig. 4G.

To quantify the effects of WNT4 on WNT/CTNNB1 signaling,

TCF/LEF-LacZ reporter mice were used, which have copies of

the LacZ transgene under control of TCF/LEF responsive

elements thereby allowing faithful monitoring of WNT/CTNNB1

activity. Germ cell clusters cultured from TCF/Lef-LacZ testes

were seeded onto Matrigel-coated wells at 4–66104 cells/cm2 and

cultured and treated as described above. On day 4, cells were

trypsinized and reacted with X-gal overnight. Positive-staining

cells (indicative of CTNNB1-TCF/Lef signaling activity) were

then counted using a hemocytometer. The experiment was

performed in triplicate.

Immunoblot analyses
Sertoli cells from testes of 3 week-old C57BL/6 (B6) animals

were isolated as described above. After 2 days in culture in

DMEM containing 10% fetal calf serum, cells were put in serum-

free medium for 24 hours. Recombinant WNT4 was added at a

concentration of 50 ng/ml to the medium for 1, 2 or 4 hours.

Cluster cells were cultured in serum-free medium under feeder-

free conditions on Matrigel for 16 hours, and WNT4 (100 ng/ml)

was added for 90 mins or 4 hours. Cell protein extracts were

prepared using M-Per solution (Pierce, Rockford, IL) as directed

by the manufacturer. The recovered supernatant was stored at

280uC until electrophoretic analyses were performed. Protein

concentrations were determined by the Bradford method (Bio-

Rad protein assay, Bio-Rad Laboratories, Hercules, CA).

Samples were resolved by one-dimensional SDS-PAGE (12.5%

acrylamide) under reducing conditions and electrophoretically

transferred to a PVDF membrane (GE Amersham, Piscataway,

NJ). The membrane was sequentially probed with antibodies

against active CTNNB1 (Millipore, Billerica, MA, catalog #05-

665), total CTNNB1 (Cell Signaling, Danvers, MA, catalog

#9587) and ACTA (Santa Cruz Biotechnology, Santa Cruz, CA,

catalog #sc-8432) diluted in 5% BSA. Following incubation with

horseradish peroxidase-conjugated secondary rabbit anti-mouse

antibody (GE Amersham), the protein bands were visualized by

chemiluminescence using the ECL Plus Western Blotting

Detection Reagents (GE Amersham) and High Performance

Chemiluminescence film (GE Amersham). The immunoblots

shown in Fig. 6 were done as described above, except proteins

were isolated from testes of 8 week-old animals of the indicated

genotypes.

TUNEL analysis
Terminal deoxynucleotidyl transferase dUTP nick-end labeling

assay was performed on Bouins-fixed, paraffin-embedded, 7-mm

testis sections using the In Situ Cell Death Detection Kit, TMR

red (Roche, Laval, Qc, Canada) as directed by the manufacturer.

Slides were mounted using VectaShield with 49,6-diamidino-2-

phenylindole (DAPI) (Vector Labs, Burlingame, CA).

Statistical Analyses
Statistical analyses for multiple comparisons were done using

ANOVA followed by the Tukey post hoc test. Student t-test was

used for two-group comparisons. Means were considered signif-

icantly different when P,0.05.

Supporting Information

Figure S1 Cyclin D1 (CCND1) and a network of CCND1-
interacting genes are targets of CTNNB1 in Sertoli cells.
Known interactions between CCND1 and other genes that are up-

regulated by CTNNB1 in cultured Sertoli cells are illustrated. The

image was generated using Pathway Studio software.

(TIF)

Figure S2 Fst and Gdnf expression in transgenic mouse
testes. (A) Fst mRNA levels from 8 week-old animals of the indi-

cated genotypes, n = 4 animals/genotype. C;Wf/2: Ctnnb1tm1Mmt/+;

Wnt4flox/2 (control), C;A: Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+,

C;W+/2;A: Ctnnb1tm1Mmt/+;Wnt4+/2;Amhr2tm3(cre)Bhr/+, C;Wf/2;

A: Ctnnb1tm1Mmt/+;Wnt4flox/2;Amhr2tm3(cre)Bhr/+. (B) Gdnf mRNA
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levels in the mice described in A. Gdnf expression was also

evaluated in testes from 4 day-old wild-type mice, so as so

confirm its physiological decrease during postnatal development.

Data are expressed as mean (columns) 6 SEM (error bars).

Groups labeled with different letters (a, b, c) were significantly

different (P,0.05).

(TIF)

Figure S3 Analysis of the expression of Wnt and Fzd
family members in the adult mouse testis. The expression

of each gene was assessed by semi-quantitative RT-PCR analysis

following the indicated numbers of PCR cycles. PCR products

were separated by agarose gel electrophoresis, stained with

ethidium bromide, and photographed under UV light. As shown,

some degree of expression of all Wnt and Fzd genes was detected,

with the exceptions of Fzd2, Wnt4, Wnt7b, Wnt8a, Wnt10a and

Wnt16.

(TIF)

Table S1 Gene regulation in Sertoli cells in response to
dominant-stable CTNNB1. Microarray analyses of cultured

Sertoli cells from 3 week-old Ctnnb1tm1Mmt/tm1Mmt mice infected

for 24 h with adenoviruses to induce the expression of either Cre

recombinase (Ad-Cre, to express dominant-stable CTNNB1) or

eGFP (Ad-eGFP, control).

(DOC)

Table S2 Oligonucleotide primer sequences. List of

primer sequences used for gene expression analyses by real-time

RT-PCR.

(DOC)
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