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Abstract: As a system becomes more complex, at first, its description and analysis becomes more
complicated. However, a further increase in the system’s complexity often makes this analysis
simpler. A classical example is Central Limit Theorem: when we have a few independent sources of
uncertainty, the resulting uncertainty is very difficult to describe, but as the number of such sources
increases, the resulting distribution gets close to an easy-to-analyze normal one—and indeed, normal
distributions are ubiquitous. We show that such limit theorems often make analysis of complex
systems easier—i.e., lead to blessing of dimensionality phenomenon—for all the aspects of these
systems: the corresponding transformation, the system’s uncertainty, and the desired result of the
system’s analysis.

Keywords: limit theorems; curse and blessing of dimensionality; neural networks

1. Introduction: From Curse of Dimensionality to Blessing of Dimensionality
1.1. First, a Curse

Often, the more we analyze a system, the more accurately we want to predict its
behavior—the more factors we need to take into account, the more complex the sys-
tem’s behavior.

In some cases, real-life data is intrinsically low-dimensional: most of the factors can
be reduced to a few of them. However, in many other real-life situations, all these factors
are important. As a result, as a system’s description becomes more complex, analyzing this
system becomes more complicated. This phenomenon is known as a curse of dimensionality.

1.2. Then, a Blessing

Interestingly, often, a further increase in the system’s complexity often makes this
analysis simpler. Following [1], we will call this phenomenon a blessing of dimensionality.

1.3. Example

A classical example of this first-curse-then-blessing phenomenon is the joint effect
of many random phenomena. When we know the probability distribution of each phe-
nomenon, in principle, we can compute their joint effect—but, as the number of these
phenomena becomes larger and larger, the corresponding computations become more and
more complicated. At first glance, this is a classical example of the curse of dimensionality.

However, as the number of these phenomena increases further, we start seeing the
effect of the Central Limit Theorem (see, e.g., [2]), according to which, under reasonable
conditions, the joint effect of many small independent random phenomena is close to
Gaussian. The resulting distribution becomes very close to the easy-to-analyze Gaussian
distribution—and this is one of the main reasons why normal (=Gaussian) distributions
are ubiquitous.
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1.4. Other Examples

In the last decade, many other examples of blessing-of-dimensionality appeared, both
in the general analysis of complex systems (see, e.g., [1,3–7]) and, specifically, in the analysis
of neural networks; see, e.g., [8–11].

1.5. Are These Lucky Examples or a General Trend?

At first glance, it may appear that all these examples are lucky breaks in the dark
world of curse-of-dimensionality phenomena. So, a natural question is: is this pessimistic
viewpoint correct—or blessing-of-dimensionality results are ubiquitous?

1.6. It Is a General Trend

In this paper, we show that the above pessimistic viewpoint is unnecessarily pes-
simistic. Actually, as we will show, similar limit theorems are ubiquitous—and their use
can (and do) help in data processing in general—and, in particular, when using neural
networks to process data.

While most above-cited blessing of dimensionality results are related to a statistical
description of some phenomenon, we show that there are other limit theorems that are
related to non-random phenomena.

We also show that limit theorems help explain the surprising empirical success of
many techniques, from traditional neural networks to convex techniques and clustering.

1.7. Caution: Blessing-of-Dimensionality Is Not a Panacea

• The fact that limit theorems can explain some empirical successes does not mean,
of course, that these blessing-of-dimensionality results are the only reason for these
empirical successes: sometimes, as we have mentioned, the multi-dimensional data is
actually intrinsically low-dimensional.

• The fact that limit theorems often make data processing easier does not mean that as
the data complexity increases, the analysis always becomes simpler: many problems
remain complex. At present, there is no clear general understanding of when the
blessing of dimensionality occurs and where it does not occur. It would be nice to
find such an understanding.

1.8. What We Do in This Paper

In this paper, we review, in an expository mathematics format, several published
results (some of them our own) showing that limit theorems can simplify the analysis of
complex systems in general and neural networks in particular.

Our main interest is in applications to neural networks, so when a theorem has such
applications, we explicitly mention them—but we mention other applications as well. The
number of neural applications of limit theorems is, at present, not large, but we hope
that papers like this one—which explain how such theorems are successfully used in
other applications–will encourage interested readers to develop new applications of these
blessing-of-dimensionality results to neural networks.

The intended audience of this paper are readers with a conceptual understanding of
the mathematics involved, not necessarily with a specialist knowledge. Readers interested
in more detailed discussions and/or exact formulations and proofs are welcome to look at
the corresponding papers listed in the bibliography. In these papers, the corresponding
discussions, formulations, and proofs are presented in all necessary detail.

The general study of blessing-of-dimensionality phenomena has started only a few
decades ago, there are still more open problems than results—and available results are
mostly breakthroughs in different directions, not yet forming a very coherent picture.
Good news is that there are already many such results, and their applications already over
many areas. We hope that by listing these results and some of their applications, we will
encourage interested readers to get involved in the related research—and that, together,
we will make this phenomenon even more ubiquitous.
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1.9. How This Paper Is Structured

We start, in Section 2, with classifying sources of dimensionality into spatial and
temporal. Such a distinction is well known in neural network applications; in this section,
we extend it to the general case of complex systems. Section 3 deals with spatial dimension-
ality, of which the dimensionality corresponding to the Central Limit Theorem is one of the
examples. We start, in Section 3.1, with a new application of the Central Limit Theorem.
In Section 3.2, we consider generalizations of Central Limit Theorem to other types of
probability distributions. In Section 3.3, we consider limit theorems corresponding to the
case when we do not know the corresponding probabilities, when we only know the set of
possible values of the corresponding quantity or quantities. Section 3.4 lists related open
questions. Finally, Section 4 deals with limit theorems related to temporal dimensionality.

2. Two Main Sources of Dimensionality: Spatial and Temporal

To provide an adequate analysis of the situation, let us first observe that in general,
there are two main sources of dimensionality:

• First, at each moment of time, there is usually a large number of phenomena—located,
in general, at different points in space—that need to be taken into account. Even
if we use a few parameters to describe each of these phenomena, overall, we will
need a very large number of parameters to describe all these phenomena—and thus,
the dimensionality of the problems grows. We will call this dimensionality of spatial
origin, or simply spatial dimensionality, for short. The above-mentioned Central Limit
Theorem is a good example of spatial dimensionality.

• Furthermore, there may be parameters describing the history of the analyzed
phenomenon—which also affect its current state. What naturally comes to mind
is that the values of physical quantities change with time. In some cases, we observe
these changes and we can analyze the corresponding time series. In other cases,
we only observe the final results of these changes: e.g., inside a sensor, the original
value may be transformed many times, and what we get as a resulting signal is the
result of all these past transformations. In yet other cases, what changes are the
simulated values—e.g., when we apply iterative algorithms. We will call the resulting
dimensionality of temporal origin, or simply temporal dimensionality.

Furthermore, of course, in many real-life phenomena, we have both spatial and tem-
poral sources of dimensionality which are difficult to separate. A neural-related example
of such phenomena is traveling waves; see, e.g., [12,13].

In this paper, we will mention the limit theorems related to both spatial and tem-
poral sources of dimensionality—and we hope that these results can be extended to the
phenomena where both sources are intertwined.

Comment. Limit theorems are often somewhat complicated to understand and prove.
In our experience, a better understanding of a complex multi-dimensional phenomenon
is usually achieved if we consider easier-to-analyze few-dimensional particular cases or
analogues. For limit theorems, a natural few-dimensional analogues are iterative methods
in numerical mathematics, such as:

• Newton’s iterative method

x(k+1) = x(k) −
f
(

x(k)
)

f ′
(
x(k)

)
for finding the solution to the equation f (x) = 0 or

• the gradient descent method

x(k+1)
i = x(k)i − α · ∂ f

∂xi |x=x(k)



Entropy 2021, 23, 501 4 of 19

for finding the minimum of a function f (x); we mention this method, since back-
propagation, the main way neural networks learn, is, from the mathematical view-
point, exactly gradient descent—with additional computational simplifications;
see, e.g., [14,15].

In both examples, convergence is not guaranteed, and the results explaining when
there is convergence are often difficult to prove. However, what is much easier to prove
is that if there is a convergence, then the limit satisfies the desired property—e.g., for
Newton’s method, the limit value x satisfies the property f (x) = 0. In some cases, the limit
value only satisfies part of this desired property: for example, for the gradient descent
method, the limit is always a stationary point, but not necessarily the desired global
minimum of the objective function f (x). Indeed:

• For Newton’s method, if x(k) → x, then, in the limit, we get x = x − f (x)
f ′(x)

, which

implies that f (x) = 0.

• For the gradient descent, if x(k) → x, then, in the limit, we get xi = xi − α · ∂ f
∂xi

, which

implies that
∂ f
∂xi

= 0. Thus, the limit point is always a stationary point, which is a

necessary (but, as is well known, not sufficient) condition for it being the location of
the minimum.

Similarly to these cases, in this paper, we will concentrate not so much on the condi-
tions under which the processes converge, but rather on the description of the limit cases
when there is convergence.

3. Dimensionality of Spatial Origin

As we have mentioned, the standard Central Limit Theorem is an example of what we
called dimensionality of spatial origin. While many consequences of this theorem are well
known, as we will show, there are many aspects of this theorem which still need exploring.
So, the first thing we will consider—in the first subsection of this section—is what are the
less known consequences of the Central Limit Theorem.

Of course, the limit distribution does not have to be normal: as we have mentioned,
the convergence to the normal distribution happens only under certain conditions. For
situations when these conditions are not satisfied, there are more general limit theorems.
Applications of these more general theorems—mostly to uncertainty quantification—is
what we will overview in the second subsection of this section.

All this assumes that we know the probability distributions that we are trying to
combine. However, what if we do not know the probabilities, what if we only know the
corresponding range of possible values—and we do not know the probabilities of different
points from this range? This situation is discussed in the third subsection of this section.

This section ends with related open questions.

3.1. Not-Well-Known Consequences of the Central Limit Theorem
3.1.1. Why Are Many Things in the World Discrete?

Outside quantum physics, most physical processes are continuous, most probability
distributions are continuous—so what we should observe should be continuous as well.
However, in reality, many things in the real world are discrete. We do not have weather
continuously changing from sunny to rain: most of the time, we either have a sunny day
or a rainy day. Yes, it is possible to have hybrid animals like mules, but most of the time,
animals we see fall into one of the precise categories.

In many specific examples, there is a specific explanation for this discreteness—e.g.,
Darwin’s Theory of Evolution explains that only mutations which are beneficial to the
individuum survive, and all intermediate stages between two beneficial states become
extinct quickly. However, the very fact that the same discreteness phenomenon appears in
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many different application areas seems to be an indication that discreteness is a general
phenomenon that must have a general explanation.

Discreteness is observed in machine learning as well: when we use a neural network
(or any similar tool) for classification, what this network actually produces are continuous
numbers that can be converted, e.g., to degrees to which the object belongs to different
categories. However, usually, we do not return these degrees to the user. What we usually
do at the end is select one of these categories (e.g., the most probable one)—and in most
cases, this is exactly the desired classification, cat or dog, car or not-a-car, disease or healthy,
and this is usually exactly what the users want.

This discreteness definitely helps when making decisions—instead of a continuum of
possible values, we need to deal with only a few discrete ones. So, this discreteness can be
viewed as an example of a blessing of dimensionality.

However, why are we mentioning this discreteness? At first glance, it may seem to be
unrelated to the Central Limit Theorem—which is all about the normal distribution, which
is, of course, absolutely continuous. Interestingly, there is a relation. Let us describe it.

3.1.2. This Puzzling Discreteness Has Been Observed before

Of course, we are not the first ones who noticed that, in spite of the the fact that many
processes are continuous, what we observe is often discrete. For example, B. S. Tsirelson
noticed in [16] that in many cases, when we reconstruct a signal from noisy data, and we
assume that the resulting signal belongs to a certain class, the reconstructed signal is often
an extreme point from this class, i.e., it is one of the discrete extreme points. In other words,
the result is as discrete as our assumptions allow. For example:

• when we assume that the reconstructed signal is monotonic, the reconstructed func-
tion is often (piece-wise) constant;

• if we additionally assume that the signal is one time differentiable, the result is usually
one time differentiable, but rarely twice differentiable, etc.

3.1.3. Tsirelson’s Explanation

Out of many papers that mention the puzzling discreteness, we cited [16]—because
this paper not only mentions the fact of discreteness, it also provides an explanation for
this discreteness, and this explanation is closely related to the Central Limit Theorem; see
also [17].

Indeed, when we extract a signal from a mixture with Gaussian noise, then the
maximum likelihood estimation (a traditional statistical technique; see, e.g., [2]) means that
out of all possible signals from the given class of signals, we look for the signal which is
the closest (in the least squares—i.e., in effect, Euclidean—metric) to the observed “signal +
noise” combination.

In particular, if the signal is determined by finitely many (say, d) parameters, we must
look for a signal~s = (s1, . . . , sd) from the a priori set A ⊆ IRd that is the closest (in the usual
Euclidean sense) to the observed values

~o = (o1, . . . , od) = (s1 + n1, . . . , sd + nd),

where ni denotes the (unknown) values of the noise.
Since the noise is Gaussian, we can conclude that the average value of (ni)

2 is close to
σ2, where σ is the standard deviation of the noise. In other words, we can conclude that

(n1)
2 + . . . + (nd)

2 ≈ d · σ2.

In geometric terms, this means that the distance√√√√ d

∑
i=1

(oi − si)2 =

√√√√ d

∑
i=1

n2
i
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between~s and~o is ≈ σ ·
√

d. Let us denote this distance σ ·
√

d by ε.
For simplicity of explanation, let us consider the case when d = 2, and when A is a

convex polygon. When the point~o corresponding to observations is itself inside the set A,
then this point is its own closest point in the set A. Let us consider the case when the point
~o is outside the set A. We can divide all points~o which are outside the set A and which are
ε-close to A into several zones depending on what part of A is the closest to~o: one of the
sides (1D faces), or one of the vertices.

Geometrically, the set of all points~0 for which the closest point a ∈ A belongs to the
side e is bounded by the straight line segments orthogonal (perpendicular) to e. The total
length of this set is therefore equal to the length of this particular side; hence, the total
length of the set of all the points that are the closest to the sides is equal to the perimeter of
the polygon. This total length thus does not depend on ε at all.

On the other hand, the overall length of the set of all the points~o at the distance ε from
A grows with the increase in ε; this length grows approximately as the circumference of a
circle, i.e., as constant ·ε.

When ε increases, the (constant) perimeter of the polygon A is a vanishing part of the
overall length. Hence, for large ε:

• the fraction of the points that are the closest to one of the sides tends to 0, while
• the fraction of the points ~o for which the closest point from the set A is one of A’s

vertices tends to 1.

Thus, with high probability, the reconstructed signal corresponds to one of the vertices
(extreme points) of the set A.

Similar arguments can be repeated for any dimension d. For the same noise level
σ, when d increases, the distance ε = σ ·

√
d also increases, and therefore, for large d, for

“almost all” observed points~o, the reconstructed signal is one of the extreme points of the a
priori set A.

Much less probable is that the reconstructed signal~s belongs to the 1-dimensional face
of the set A, even less probable that~s belongs to a 2-D face, etc.

3.1.4. Methodological Consequence

So, when the dimension increases, we have a clear example of blessing of dimensional-
ity: instead of having to consider a continuum of possible states, we only have to deal with
a much smaller discrete set of extreme points—vertices of the corresponding polyhedron.

So, all observed phenomena fall into a few clusters—exactly as we observe in many cases.
Comment: This idea helps even in the quantum case. Namely, in quantum physics,

there is a known paradox formulated by Schroedinger himself (the author of the main
equation of quantum physics): while in quantum physics, we can have a superposition of
any two states, why do we never see a superposition of two macro-states, e.g., of the state
in which a cat is alive and the state in which the same cat is dead? This is indeed a serious
problem, and it was one of the reasons why Einstein did not believe that quantum physics
was an adequate description of reality; see, e.g., [18–20].

Strictly speaking, this is not a paradox in the purely logical sense of the word—it is
just a contradiction between our intuition and the predictions of quantum theory. Many
features of quantum physics are counter-intuitive, but usually, such counter-intuitive
features are about the micro-world of elementary particles, not about the usual macro-size
objects. The above idea makes this contradiction less troubling, because it implies that with
very high probability, we will observe one of the two original states and not their convex
combination (i.e., in this case, not their superposition).

3.1.5. Resulting Discreteness Is Only Approximate

Of course, as with every probabilistic phenomenon, the above conclusion about
discreteness is only approximate: we do not necessarily get one of the vertices, we get a
point which is close to one of the vertices. This is why we did not write that all observed
phenomena coincide with one of the few cases—we wrote that all observed phenomena
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fall into a few clusters. Within each cluster, we still have continuous changes—e.g., we can
have cats of different length, different weight, etc.

3.2. Uncertainty Quantification and Probabilistic Limit Theorems—Including Theorems beyond
Normal Distributions
3.2.1. Need for Data Processing

What are the main objectives of science and engineering? We want to understand
the world, i.e., to learn the values of the quantities that characterized the current state of
the world. We want to predict the future state of the world, i.e., we want to predict the
future values of the corresponding quantities. Furthermore, finally, we want to change the
world—we want to find the design parameters that satisfy given specifications, we want to
find the control values that will lead a system to the desired state, etc.

Some quantities that describe the world we can directly measure: e.g., the distance
between two houses on the same street. For many other quantities, we cannot measure
them directly: e.g., the distance to a nearby star. Furthermore, we clearly cannot directly
measure the future values of the quantities or the adequate value of control parameters.
All these quantities have to be estimated based on the known information about the world,
i.e., based on the results of measuring some measurable quantities.

To estimate a desired quantity y, we need to know the relation y = f (x1, . . . , xn)
between this quantity and measurable quantities x1, . . . , xn. Sometimes, we know an
explicit analytical expression for this relation. In many other cases, we just know an
algorithm that computes y from the values xi. This algorithm can include a numerical
solution of a complex system of non-linear differential equations—as when we predict
tomorrow’s weather. The algorithm can also be a neural network trained to estimate the
desired value y based on the known values x1, . . . , xn.

3.2.2. Need for Uncertainty Quantification

Whether we use neural networks or other algorithms for data processing, the in-
puts to all these algorithms are real numbers. These real numbers usually come from
measurements, and measurements are never absolutely accurate; see, e.g., [21]. There is
always noise. As a result, the measurement results x̃i are, in general, somewhat different
from the actual (unknown) values xi of the corresponding quantities, and the difference

∆xi
def
= x̃i − xi—known as measurement error—is, in general, different from 0. So, when we

apply the data processing algorithm f to the measurement results, the algorithm’s output
ỹ = f (x̃1, . . . , x̃n) is, in general, different from the value y = f (x1, . . . , xn) that we would
have obtained if we knew the actual values xi.

In practice, it is important to know how close our estimate ỹ is to the desired value y,

i.e., in other words, how big can the difference ∆y def
= ỹ− y be. For example, suppose that

we are prospecting for oil, and our estimate ỹ for the amount of oil y in the given region is
150 million tons. Then, if the accuracy is ±10 million tons, this estimate is good news, and
we can start exploiting this region. On the other hand, if it is 150± 200, then maybe there is
no oil at all, so before we invest a lot of money into digging deep wells, we better perform
more measurements to make sure that this money will not be wasted.

Estimating ∆y is one the most important aspects of uncertainty quantification.

3.2.3. Possibility of Linearization

We are interested in estimating the quantity

∆y = f (x̃1, . . . , x̃n)− f (x1, . . . , xn) = f (x̃1, . . . , x̃n)− f (x̃1 − ∆x1, . . . , x̃n − ∆xn).

Measurements are usually reasonable accurate, so the measurement errors ∆xi are rela-
tively small. For small values ∆xi, their squares (∆xi)

2 are much smaller than the values
themselves—and can therefore be usually safely ignored. For example, if ∆xi ≈ 10%, then
(∆xi)

2 ≈ 1% � ∆xi. Thus, a reasonable idea is to expand the above expression for ∆y
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in Taylor series and ignore terms which are quadratic (or of higher order) in terms of the
measurement errors ∆xi. As a result, we get a linear dependence:

∆y ≈
n

∑
i=1

ci · ∆xi, where ci
def
=

∂ f
∂xi

.

Comment: This linearization—replacing the generic dependence with a linear one—is
a common idea in applications. Actually, it one of the main ideas in many applications;
see, e.g., [22].

3.2.4. Here, the Central Limit Theorem Can Help

Let us first consider an important case—typically described in textbooks—when we
know the probability distribution of each measurement error ∆xi. Usually, each measuring
instrument is calibrated—if it has a bias, i.e., if the mean value E[∆xi] of the measurement
error is not 0, we simply subtract this mean value from all the measurement results and
thus, reduce it to 0.

In many practical applications, the number n of inputs is large, and the role of each of
these inputs is relatively small. For example, one of the important data when prospecting
for oil is seismograms—several-times-a-second recordings of the seismic signal. There are
thousands of the corresponding values, and the effect of each individual value of the result
of data processing is indeed small. The measurement errors corresponding to different
measurements are usually reasonably independent. Thus, we are under the condition of
the Central Limit Theorem—so we can conclude that the desired estimation error ∆y is
normally distributed.

A normal distribution is uniquely determined by its mean µ and its standard deviation
σ. When each measurement error ∆xi has mean value 0, the mean value of their linear
combination ∆y is also 0, and the variance σ of this linear combination can be determined
from the known fact that the variance of the sum of independent random variables is equal
to the sum of variances:

σ2 =
n

∑
i=1

c2
i · σ2

i .

3.2.5. How Can We Actually Estimate σ?

In principle, we can directly use the above formula to estimate the standard deviation σ
of the approximation error ∆y. The main computational difficulty is that the data processing
algorithm f is usually very complicated (especially in the case of neural networks), so it is
not possible to compute the partial derivatives analytically. We can, however, use the fact
that a partial derivative is defined as the limit of the ratios

∂ f
∂xi

= lim
h→0

f (x̃1, . . . , x̃i−1, x̃i + h, x̃i+1, . . . , x̃n)− ỹ
h

,

and thus, for a sufficiently small h, the value of the ratio is very close to the desired partial
derivative. Thus, we can estimate ci as

ci ≈
f (x̃1, . . . , x̃i−1, x̃i + h, x̃i+1, . . . , x̃n)− ỹ

h
.

The problem with this idea is that it takes too long. Indeed, if we have several thousand
inputs, then, to compute all the corresponding values ci, we need to call the data processing
algorithm f (which often takes hours to compute) n + 1 times: one time to compute ỹ,
and n time to compute the corresponding n ratios ci. For several thousand inputs, this is
not realistic.

The good news is that we can instead use Monte-Carlo techniques: instead of comput-
ing n partial derivatives, we can simply emulate certain number of times K, measurement
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errors δx(k)i which are normally distributed with standard deviation σi, and compute
the differences

δy(k) = ỹ− f
(

x̃1 − δx(k)1 , . . . , x̃n − δx(k)n

)
.

By the same logic as before, the differences δy(k) are normally distributed with the desired
standard deviation σ. Thus, from a sample of K values, we can estimate σ with accuracy
≈ 1/

√
K [2]. So, if we want to estimate σ with relative accuracy 1/

√
K ≈ 20%, it is

sufficient to call the algorithm f K = 25 times—which is much smaller than thousands
needed for exact estimation.

3.2.6. So What?

Why are we spending so much time on ideas that are well known to many readers?
Because this will prepare readers for something that—unfortunately—not too many readers
know: that we can use limit theorems beyond normal distributions to cover other realistic
cases of uncertainty quantification.

3.2.7. Need for Interval Uncertainty

In the previous text, we assumed that for each measurement, we know the probability
distribution of the corresponding measurement error. The usual way to find this distribu-
tion is to calibrate the given measuring instrument (MI), i.e., to compare its results with the
results of a “standard” (=much more accurate) measuring instrument. Since the standard
measuring instrument (SMI) is much more accurate than the one we are calibrating, we can
safely ignore SMI’s measurement errors (in comparison with MI’s measurement errors),
and take the results measured by SMI as true values.

However, there are two important cases when calibration is not done. The first is the
case of state-of-the-art measurements, when the MI that we have is the best there is. It
would be great if near the Hubble telescope, there would fly a five times more accurate in-
strument for measuring the stars’ locations, but this telescope is the best we have. Similarly,
in geophysics, oil prospecting companies use the best measuring instruments they can
find—these instruments are expensive, but digging a well in the location where there is no
oil would be much more expensive. In this case, there is no SMI to compare, so we cannot
calibrate our MI.

Another case is manufacturing and other practical applications. In this case, in
principle, we can calibrate every single measuring instrument and determine its probability
distribution. However, nowadays, many sensors are cheap—e.g., kids playing with robots
buy distance sensors for a few bucks. However, calibrating a sensor means utilizing
a standard measuring instrument, which is usually much more expensive to use. The
companies usually cannot afford to calibrate all their sensors. Instead, we have to rely on the
information provided by the manufacturers of the corresponding measuring instruments.

The manufacturer of the MI also has the option to calibrate it—but since this calibration
costs a lot, the calibrated sensors, with certified probability distributions of measurement
errors, cost much more. It is much cheaper to buy a sensor for which only the minimum
of necessary information is provided. In practice, this means that the only information
that we have about the measurement error ∆x is an upper bound ∆ on its absolute value:
|∆x| ≤ ∆. (At least such an upper bound needs to be provided—otherwise, it is not a
measuring instrument, it is a wild guess.)

Once we know the upper bound ∆i on the absolute value |∆xi| = |x̃i − xi| of each
measurement error, then, based on the measurement result x̃i, the only information we
gain about the actual (unknown) value xi of the corresponding quantity is that this value

belongs to the interval [xi, xi]
def
= [x̃i − ∆i, x̃i + ∆i]. Because of this fact, such a situation is

known as interval uncertainty.
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3.2.8. Is the Corresponding Distribution Gaussian?

If we carefully eliminated all major sources of measurement error, then only small
factors remain that affect the measurement error. Thus, due to the Central Limit Theorem,
we can safely conclude that the distribution of the measurement error is close to Gaussian.
Will that help? Not really: since we did not do the calibration, we do not know what is the
bias. In principle, the bias can take any value from −∆i and ∆i, so the fact that we have a
normal distribution will not decrease the interval of uncertainty.

3.2.9. Uncertainty Quantification: Case of Interval Uncertainty

Under interval uncertainty, the only thing we can conclude about the value y =
f (x1, . . . , xn) that we would have obtained if we used the actual (unknown) values of the
quantities xi is that it belongs to the range [y, y] of possible values of the function f when xi
are in the corresponding intervals:

[y, y] = { f (x1, . . . , xn) : xi ∈ [xi, xi] for all i}.

The problem of computing this interval is known as the problem of interval computation;
see, e.g., [23,24].

In general, this problem is NP-hard [25]—which means that, unless P = NP (which
most computer scientists do not believe to be possible), no feasible algorithm is possible
for solving all particular cases of this problem. However, in the linearized case, a feasible
algorithm is possible. Indeed, since the expression ∑

i
ci · ∆xi is linear (thus monotonic) in

the variables ∆xi, its largest value is attained:

• for ci > 0, when the value ∆xi is the largest, i.e., when ∆xi = ∆i, and
• for ci < 0, when the value ∆xi is the smallest, i.e., when ∆xi = −∆i.

Thus, the largest possible value ∆ of ∆y is equal to

∆ =
n

∑
i=1
|ci| · ∆i.

Similarly, one can easily show that the smallest possible value of ∆y is equal to −∆.

3.2.10. How to Estimate Uncertainty in the Interval Case

How can we compute this sum ∆? We can directly use this formula, i.e., use numerical
differentiation to compute all the partial derivatives ci and then compute the sum. However,
as we have mentioned earlier, in many practical situations, this approach is not realistic.
What can we do?

3.2.11. Another Limit Distribution Comes to the Rescue

As we have mentioned, the convergence to a normal distribution only happens under
certain conditions. In other cases, we may have convergence to other so-called infinitely
divisible distributions [2]. One of such distributions is the Cauchy distribution, in which the
probability density ρ(x) has the following form:

ρ(x) = const · 1

1 +
( x

∆

)2 ,

for some parameter ∆.
An important feature of the Cauchy distribution is that if we have several independent

Cauchy distributed random variables ri with parameters ∆i, then their linear combination
∑
i

ci · ri is also Cauchy distributed, with parameter ∆ = ∑
i
|ci| · ∆i—which is exactly the

value that we want to compute. This feature leads to the following Monte-Carlo method
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for computing ∆: we emulate a certain number of times K, measurement errors δx(k)i which
are Cauchy distributed with parameters ∆i, and compute the differences

δy(k) = ỹ− f
(

x̃1 − δx(k)1 , . . . , x̃n − δx(k)n

)
.

Then, due to the above feature, the differences δy(k) are Cauchy distributed with the desired
parameter ∆. Thus, to a sample of K values, we can apply, e.g., the maximum likelihood
method [2], and thus estimate ∆ with accuracy ≈ 1/

√
K. Similarly to the case of normal

distributions, this drastically speeds up computations: if we want to estimate ∆ with
relative accuracy 20%, it is sufficient to call the algorithm f 25 times—which is much
smaller than thousands of times needed for exact estimation.

This method has been successfully used in many applications; see, e.g., [26].
Comment: Note that, in contrast to many simulation techniques, the use of Cauchy

distribution in interval-related uncertainty quantification is not a realistic simulation:

• the actual measurement error is always located inside the interval [−∆, ∆], while
• the Cauchy-distributed random variable has a non-zero probability to be anywhere,

in particular, outside the interval.

3.3. What If We Have No Information about Probabilities
3.3.1. Formulation of the Problem

What if we know that the disturbance x = (x1, . . . , xn) is a joint effect of several
independent small ones: x = x(1) + . . . + x(N), where about each component x(i), we
only know the set X(i) of its possible values—and we do not have any information about
probabilities of different points within each set. The only constraint is that all the points
from each set X(i) are small, i.e., that for some small values ε > 0, the length

∥∥∥x(i)
∥∥∥ of each

vector x(i)) ∈ X(i) does not exceed ε. We will call such sets ε-small.
In this case, the set X of all possible values of the sum x is the set of all possible sums

x(1) + . . . + x(N), where x(i) ∈ X(i) for all i. In mathematics, the set of all such sums is
known as the Minkowski sum of the sets X(i). The Minkowski sum is usually denoted by
X(1) + . . . + X(N).

What can we say about such set X?

3.3.2. 1-D Case

The 1-D case n = 1 was studied in [27]. This paper showed that if a set X is
the Minkowski sum of several ε-small closed sets, then it is ε-close to some interval
I = [a, b], i.e.,:

• every point from the set X is ε-close to some point from the interval I; and
• every point from the interval I is ε-close to some point from the set X.

In the limit ε→ 0, we conclude that the Minkowski sum tends to the interval.
To be more precise, the following results were proven:

Theorem 1. If a set S ⊆ IR is a Minkowski sum of δ−small closed sets, then S is δ-close to
an interval.

Theorem 2. If a set S ⊆ IR can be, for every δ > 0, represented as a Minkowski sum of finitely
many δ-small closed sets, then S is an interval.

Comment: This limit theorem is similar, in formulation, to the Central Limit Theorem
and its generalizations: it shows that if a quantity can be represented as the sum of many
small components, then the set of all possible values of this quantity is close to an interval—
and the smaller the components, the closer is the resulting set to an interval.
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Similarly to the fact that the original Central Limit Theorem explains the real-life
ubiquity of normal distributions, this limit theorem explains the ubiquity of interval
uncertainty; see, e.g., [21,23,24].

3.3.3. General Case

It is well known that every convex set X containing 0 can be represented, for every
ε > 0, as a Minkowski sum of ε-small sets: indeed, it is sufficient to take X(i) = N−1 · X for
a sufficiently large N, then:

• The inclusion X ⊆ X(1) + . . . + X(N) follows from the fact that each element x can be
represented as the sum x = N−1 · x + . . . + N−1 · x; and

• the opposite inclusion X(1) + . . . + X(N) ⊆ X follows from the fact that the set X
is convex and thus, once the elements x(1), . . . , x(N) belong to this set, their convex
combination N−1 · x(1) + . . . + N−1 · x(N) also belongs to X.

Whether the opposite is true, i.e., whether only convex sets can be represented as sums
of small sets, remained an open problem. This problem—first formulated in [27]—was
resolved in [28], where the following result was proven:

Theorem 3. If a set X ⊆ IRn can be represented, for each ε > 0, as a Minkowski sum of ε-small
closed sets, then this set X is convex.

To be more precise, this paper proved the following result:

Theorem 4. For every γ > 0, if a set X ⊂ IRn of diameter < 1 is δ-close to a Minkowski sum of
sets of diameter ≤ ε, then X is γ-close to a convex set, for δ = γ/3 and ε = γ2/(20n).

Comment: This limit theorem explains the ubiquity of convex set in real-life problems.
This is very good news, since it is known that convexity makes many computational
problems easier to solve; see, e.g., [29].

3.4. Important Open Questions
3.4.1. What if We Only Have Partial Information About Probabilities?

In the above, we first considered cases where we know the probability distributions of
the aggregated factors before moving to those in which when we only know the ranges, and
we have no information about the probability of different values from these ranges. These
are two extreme situations—either we know everything about the probabilities, or we have
no information about these probabilities at all. In practice, we often have intermediate
situations, when we have partial information about the probabilities. It is therefore desirable
to extend the limit results from both extreme cases to the such intermediate situations
as well.

3.4.2. Possible Approach and Natural Generalizations of the Central Limit Theorem

When we know all the probabilities, then for uncertainty quantification, we can use
Monte-Carlo approach with normal distributions. When we only know the upper bounds,
we can use Cauchy distributions. What if for some components, we know the probabilities,
and for others, we only know bounds? The resulting random variable is the sum of two
partial sums, for which the first partial sum can be handled by the normal distribution,
while the second partial sum can be handled by the Cauchy distribution. In this case,
it seems reasonable to use the distributions corresponding to the sum of normally and
Cauchy distributed random variables.

The family of such distributions is also a natural limit—the limit of sums in which
the first partial sum tends to normal distribution and the second partial sum tends to
the Cauchy one. Such mixed distributions are not covered by the usual limit theorems,
which only consider 2-parametric limit families of probability distributions: e.g., a normal
distribution is determined by two parameters—the mean and standard deviation of the
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normal distribution. Sums would require more parameters: we need mean and standard
deviation of the normal part and the parameter ∆ of the Cauchy part.

Possible generalizations of the traditional limit theorems to such multi-parametric
families have been analyzed in [30]. It turns out that, in general, in this case, the resulting
distribution is equivalent to the distribution of the sum of several different infinitely
divisible distributions: e.g., to the sum of normally and Cauchy distributed variables. So
maybe other distributions of this type can be used for uncertainty quantification in other
cases when we only have partial information about probabilities?

3.4.3. What if We Are Interested in the Extreme Case?

Very often, we are interested in the extreme case: e.g., when we design a bridge,
we want it to withstand the strongest possible winds that can happen in this area. In
such situations, we are interested not in the summary effect of several random variables,
but rather in the largest value x = max(x1, . . . , xn) of several random variables xi—e.g.,
variables describing the wind on different days. When all these variables are identically
distributed, then, similarly to the Central Limit Theorem, we have a finite-parametric family
of distributions that represents the distribution of such extreme events; see, e.g., [31–38].
Such results are known as Extreme Value Theory. The most widely used result is that if the
random variables xi are independent and identically distributed, then, under reasonable
conditions, as n increases, the cumulative distribution function of the maximum x of these
variables tends to one of the three distribution functions: Gumbel law

F(x) = exp
(
− exp

(
− x− b

a

))
,

Fréchet law

F(x) = exp

(
−
(

x− b
a

)−α
)

for x > b,

and Weibull law

F(x) = exp
(
−
∣∣∣∣ x− b

a

∣∣∣∣α) for x < b.

This result is actively used in practice, e.g., in reliability engineering, to estimate the
probability of an extreme event.

The above result holds when all the variables xi are identically distributed. In reality,
the distributions of the corresponding values xi are, in general, somewhat different. So,
a natural question is: can we extend the Extreme Value Theory to such more general
case? A similar generalization is possible for the Central Limit Theorem: it holds for the
sum x = x1 + . . . + xn even when the distributions of different variables xi are different.
However, no such extension is known for the Extreme Value Theory. The absence of such
general extension is not caused by our inability to prove the corresponding result: it can
be shown that, if we simply remove the restriction that all variables xi are identically
distributed, then the set of all limit distributions is no longer finite-dimensional; see [39].

Due to the practical importance of the Extreme Value Theory, an important question
emerges: since in a general case, we have an infinite-dimensional family of limit distribu-
tions, can we find specific cases when distributions are different, but a finite-dimensional
family of limit distributions is still possible?

4. Dimensionality of Temporal Origin
4.1. Case Study

Let us consider the case of a simple hardware sensor, in which the input x—e.g.,
intensity of light—generates a signal that goes through multiple layers until it produces the
final electric signal. When passing through these layers, the signal undergoes a sequence of
transformations. These transformations are, in general, nonlinear. In mathematical terms,
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this means that the resulting transformation f (x) of the original real value x to the 1D
sensor output f (x) is a composition of several different nonlinear functions

f (x) = fn( fn−1(. . . f2( f1(x)) . . .)).

We can consider the sensor as a whole, with the transformation function f (x). We can
divide it into several layers and consider the overall value-to-signal transformation f (x) as
a composition of transformations corresponding to different layers. Each of these layers
can be viewed as several sub-layers, so the corresponding value n can be very large—and
transformations fi(x) corresponding to all these very thin sub-layers are close to identity
fi(x) ≈ x.

In the Central Limit Theorem, we took into account that the random variable x is equal
to the sum x = x1 + . . . + xn of a large number of small independent random variables,
and we used the fact that under reasonable conditions, in the limit when n → ∞, the
distribution of this sum tends to a distribution from a known finite-parametric family—
namely, to a normal distribution. The limit means that when n is large, the distribution of
the sum x is close to Gaussian.

In our case, we consider a composition of a large number n of functions fi(x), which
are close to identity. It is reasonable to look for situations in which, under some con-
ditions, when n increases, such compositions would also tend to functions from some
finite-parametric family. How can we describe the corresponding limit functions?

4.2. Let Us Formulate This Idea in Precise Terms

As we have mentioned earlier, in this paper, we do not focus on conditions when there
is a convergence, we only focus on the resulting limit. In line with this approach, let us
assume that we have a finite-parametric family F of limit functions.

If we have two sequences of transformations:

• A sequence fi whose compositions tend to some function f ∈ F; and
• a sequence gi whose composition tends to some function g ∈ F,

then in the case when we first apply all fi-transformations and then all gi-transformations,
then the resulting limit function g( f (x)) should also belong to the family F. Thus, the
desired family F of all possible limit functions should be closed under composition.

Most transformations in sensors are reversible. So, if we limit ourselves to such
transformations, and instead of first applying f1, then f2, etc., we change the direction
of signal processing and first apply f−1

n , then f−1
n−1, etc., then, in the limit, instead of the

original limit function f we will get the inverse function f−1(x). So, the class F of all
possible limit functions should contain, with each function f , its inverse function as well.
So, the class F must be closed under composition and inverse. Such classes are known as
transformation groups.

Furthermore, linear transformations are ubiquitous. Thus, it make sense to consider
finite-parametric groups that contain all linear transformations. What are these groups?

4.3. Enter Norbert Wiener

Interestingly, the answer to this question is related to Norbert Wiener, the father of
cybernetics. As he describes in his pioneering monograph [40] on cybernetics, when he
started working on engineering problems, at first, he trusted exact mathematical models
much more than vague biological analogies. Furthermore, then, when he came up with
a draft design of a system for automatic vision, a neurophysiologist colleague Arturo
Rosenblueth—who saw the corresponding picture—asked him with surprise since when
Wiener had become interested in human vision: because it turned out that what Wiener
came up with after many thoughts and tries was exactly the scheme implemented in
human vision. This experience lead to Wiener’s idea of cybernetics, a science studying both
engineering and biological systems, in which one of the main ideas is that since we humans
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are the product of billion years of improving evolution, our biology should be close to
optimal—and thus simulating this biology can be very helpful in engineering.

In some cases, this optimality was indeed confirmed. In some other cases, Wiener
became so confident in the related optimality that he made several mathematical hypotheses
based on this confidence. For example, he learned, from Dr. Rosenblueth, that when we
get closer and closer to an object, there are several clearly distinct phases in our visual
perception (which, by the way, again fits with the above explanation of discreteness):

• When the object is very far, all we see is a formless blur—in other words, objects ob-
tained from one another by arbitrary smooth transformations cannot be distinguished.

• When the object gets closer, we can detect whether it is smooth or has sharp angles.
We may see a circle as an ellipse, or a square as a rhombus (diamond). At this stage,
images obtained by a projective transformation are indistinguishable.

• When the object gets even closer, we can detect which lines are parallel, but we may
not yet detect the angles. For example, we are not sure whether what we see is a
rectangle or a parallelogram. This stage corresponds to affine transformation.

• Then, we have a stage of similarity transformations—when we detect the shape, but
cannot yet detect its size.

• Finally, when the object is close enough, we can detect both its shape and its size.

Each stage can be thus described by an appropriate transformation group. So, Wiener
conjectured that if there was a group intermediate between, e.g., all projective and all
continuous transformations, our vision mechanism—the result of millions of years of
improving evolution—would have used it. Thus, he formulated a hypothesis that such
intermediate transformation groups are not possible [40].

Many mathematicians did not take this hypothesis too seriously—while they appreci-
ated Wiener’s engineering ideas, they thought that he was going too far in his analogies.
However, other mathematicians took it seriously—and, two decades after the first edition of
Wiener’s book, they came up with a formal proof that, indeed, under reasonable conditions,
there is only one transformation group that contains all linear (=affine) transformations
and some non-linear ones: namely, the group of all projective transformations [41,42].

The general proof is very complicated, e.g., the paper [42] consists of more than 100
pages of dense mathematics. However, good news is that at present, we are only interested
in the transformations of 1D signals. In this case, projective transformations are nothing
else but fractional-linear ones

f (x) =
a · x + b
c · x + d

,

and the corresponding proof can be shortened to a few pages; see, e.g., [43,44].
So, we arrive at the following conclusion.

4.4. So, What Are the Limit Transformations?

We have shown that limit transformations form a finite-parametric transformation
group that contains all linear transformations, and that all transformations from such a
group are fractional linear—with linear ones being a particular case.

Thus, we conclude that all limit transformations are fractional-linear.

4.5. A Similar Conclusion Can Be Made about All Possible Reasonable Transformations

Instead of looking for limit transformations, we can consider a different problem:
to describe a class of all transformations which are, in some sense, reasonable. Linear
transformations are reasonable: shift corresponds to changing the starting point and a mul-
tiplication by a number corresponds to changing a measuring unit. A good example of both
transformations are transformation between Celsius and Fahrenheit temperature scales.
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It is also natural to conclude that a composition of two reasonable transformations is
reasonable, and that a transformation which is inverse to a reasonable transformation is
also reasonable. If we want to use computers to deal with reasonable transformations, it
also makes sense to require that the reasonable transformations form a finite-parametric
family—since in a computer, we can only stored finitely many parameter values.

Thus, the class of all reasonable transformations forms a finite-parametric transforma-
tion group containing all linear transformations. So, we conclude that every reasonable
transformation is fractional linear.

4.6. What Are the Implications for Neural Networks?

Artificial neural networks—a perfect example of Wiener’s belief that emulating bi-
ological systems can be beneficial—are formed of neurons. In a neuron, first, we form a
linear combination x of the inputs xi, and then we apply some non-linear transformation
y = s(x) to this linear combination. In neural networks, this nonlinear transformation is
known as an activation function.

Which activation function should we use? The first nonlinear neurons use sigmoid
activation function

s(x) =
1

1 + exp(−x)
,

because, in the first approximation, this is how signals are processed in biological neurons;
see, e.g., [14]. This activation function worked very well—much better than other activation
functions that have been tried. This activation function is still often used in some layers
of deep neural networks [15], where they are also very successful. How can we explain
this success?

A possible explanation comes from the fact that, as we have mentioned earlier, all
inputs come with noise. The simplest case is when, for each measurement, we just have a
constant noise ni = const, when instead of the actual values xi, the measurement results
are shifted by this value ni, to xi + ni. As a result, the linear combination x is also shifted
by some constant n (which is the similar linear combination of noises ni):

x → x + n.

We do not know the exact value of this noise—if we knew, we could simply subtract it
from all the measured values. It is therefore reasonable to require that the result of applying
the activation functions should be insensitive to this noise as much as possible.

Of course, we cannot simply require that s(x + n) = s(x) for all x and n—this would
imply that the function s(x) is a constant that does not depend on the input at all. This
makes sense: for example, the formula d = v · t showing that the distance can be obtained
by multiplying velocity and time does not change when we change the unit of time, e.g.,
from hours to seconds. However, this invariance does not mean that the formula remains
exactly the same when we change the unit of time: to keep the formula the same, we also
need to apply an appropriate transformation to velocity as well: namely, replace the values
in km/h with a value in km/sec. Similarly here, a natural idea is to require that if we
apply a shift x → x′ = x + n to the input, the formula remains the same if we apply an
appropriate transformation to y as well, i.e., that y′ = s(x′), where y′ = T(y) for some
reasonable transformation T.

In other words, we conclude that for every value n, there exists some reasonable
transformation Tn for which s(x′) = Tn(y). Here, x′ = x + n, and y = s(x), so s(x + n) =
Tn(s(x)). We have already concluded that reasonable transformations are fractional linear,
thus we have

s(x + n) =
a(n) · x + b(n)
c(n) · x + d(n)

for some values a(n) through d(n). To describe all the functions s(x) that have this property,
we can differentiate both side of this equation by n and take n = 0. The resulting differ-
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ential equation can then be explicitly solved; see, e.g., [43,45,46]. The generic monotonic
solution to this equation indeed differs from the sigmoid activation functions only by linear
transformations of x and y.

This explains why the sigmoid activation function indeed works well in many
application problems.

Comment: Of course, this does not mean that this activation function works best in
all practical applications. For example, in most layers of deep neural networks, a different
activation function s(x) = max(0, x)—known as rectified linear activation function—works
much better. Interestingly, similar invariance ideas can explain the use of the rectified linear
activation function—as well many other empirically successful features of deep learning
algorithms; see, e.g., [46].

5. Conclusions

In this paper, we showed that limit theorems—similar to the Central Limit Theorem
from statistics—make analysis of complex systems easier—i.e., lead to the blessing-of-
dimensionality phenomenon. We showed that this simplification happens for all the
aspects of these systems:

• For the corresponding transformations—as shown, e.g., by the description of all
possible limit and/or reasonable transformations, and by the resulting theoretical
explanation of the efficiency of sigmoid activation functions;

• for the system’s uncertainty—as shown, e.g., by the use of limit distributions such as
normal and Cauchy to make uncertainty quantification more efficient, and by the use
of limit theorems to explain the ubiquity of interval uncertainty; and

• the desired result of the system’s analysis—as shown, e.g., by a limit-theorem-based
explanation of why it is usually possible to meaningfully classify objects into a small
finite number of classes.
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